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Abstract
Microbial communities from extreme environments, such as saline, arid, hot, cold, acidic, or alkaline are especially important 
because they have special genetic and physiological modifications to function properly under extreme environments. They 
possess extremozymes and other biomolecules that can be used in various industrial processes, e.g., pharmaceuticals, paper 
manufacturing, degradation of complex organic molecules, biofuel production and food industries. With the advent of new 
sequencing technologies and ‘omics’ approaches, such as metagenomics, metatranscriptomics and metaproteomics, new 
windows have been opened to study the microbial ecology and functional microbial communities from extreme environments. 
Recently, metaproteomic analysis has been extensively used to explore the functional microbial communities from various 
extreme environments around the globe. In this review, we have focused on the microbial diversity analysis, identification 
of novel proteins, and enzymes from extreme environments, through metaproteomic approaches.
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Introduction

Extremophiles are a group of microorganisms having the 
capability of living in extreme environments. These are 
named according to their isolation source of extremity such 
as halophiles (hypersaline), thermophiles (high tempera-
ture), psychrophiles (low temperature), acidophiles (acidic 
pH) and alkalophiles (alkaline pH). These microorganisms 
have great potential for different biotechnological applica-
tions. They can be used for the production of novel enzymes 
and biopolymers (Borges et al. 2014; Boteva and Kam-
bourova 2018; Mukhtar et al. 2019a).

Different meta-omic approaches, such as metagenomics, 
meta-transcriptomics and meta-proteomics have been used 
to study microbial ecology as they allow deeper insights into 
the organismal and functional make-up of a natural envi-
ronment. Meta-proteomics enable us to resolve the major 
catalytic units of microbial populations and helps to under-
stand the genotype-phenotype linkages from in situ samples 

(Wilmes et al. 2015). This technique is used as a tool for 
understanding the role of different members of a specific 
microbial community (Pieper et al. 2014). In the last decade, 
the metaproteomics approach has been used to study func-
tional microbial communities from different environmental 
samples including ocean water, activated sludge, acid mine 
drainage biofilms, plant or animal tissues, etc. (Wilmes et al. 
2015). Industrially important enzymes and other proteins 
from these microorganisms can be studied and utilized by 
using advanced omics-based approaches, such as func-
tional metagenomics and metaproteomics (Kleiner 2019). 
Based on bacterial and fungal proteins and peptides, micro-
bial diversity from various environments has been studied. 
Metaproteomic approaches can also be used for the resto-
ration of contaminated and degraded soil by identification 
of different microbial proteins and enzymes with potential 
biotechnological applications (Bastida et al. 2009, 2015).

Different proteins and enzymes from the extreme environ-
ments can be identified based on different electrophoresis 
and mass spectrometry techniques and for final validation, 
various protein datasets are used. Samples for MALDI-TOF 
(matrix-assisted laser desorption/ionization) analysis are 
usually prepared by coating the protein sample with a matrix 
(Fig. 1). Upon ionization, proteins from a specific sample get 
protonated and separated on the basis of charge and mass 
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ratio upon acceleration on fixed potential. These proteins 
are identified and measured using different mass analyzers 
(Sussulini and Becker 2011). LC-MS/MS (Liquid Chroma-
tography with tandem mass spectrometry) is another useful 
technique to identify proteins from different environmental 
samples. This technique is based on the combined analysis 
of liquid chromatography and highly sensitive mass analysis 
capability of triple quadrupole mass spectrometry as shown 
in Fig. 1 (Everley et al. 2008).

Metaproteomics technique is still challenged due to 
limitations in protein extraction methods, computational 
analyses and available databases. For example, in case of 
soil metaproteomic analysis, the presence of humic acids, 
seasonal variability, and nestedness hinder the extraction 
of proteins with good quality Bunge 2016; Keiblinger and 
Riedel 2018; Mocali et al. 2010). Gans et al. (2005) reported 
the microbial diversity from soil based on metaproteomic 
analysis and it was estimated that about 8 × 106 different taxa 
per gram of soil were present (Bastida et al. 2014). None-
theless, this technique has been used for microbial diversity 
analysis and many recent studies have highlighted the need 
for better protein isolation methods from the environmental 
samples, especially soil (Mattarozzi et al. 2017; Mukhtar 
et al. 2018c; Nicora et al. 2013). A large number of proteins 
cannot be identified because of the absence of complete pro-
tein databases (Bastida et al. 2014; Keiblinger and Riedel 
2018; Schneider et al. 2012).

There are several enzymes from different classes, present 
in soil that are involved in plant material decomposition. 
While the enzymes involved in litter decomposition can also 
provide insights to taxa involved in this process (Schneider 
et al. 2012). Plant-microbe interactions have been studied 
for many decades and now being analyzed through metapro-
teomics approaches. Bao et al. (2014) combined the spatial 
resolution of catalyzed reporter deposition-fluorescence in 
situ hybridization (CARD-FISH) and metaproteomics to 
study the methylocystaceae family of bacteria that inhibit 
the epidermal and vascular bundles cells of rice roots.

With relatively low cost of high throughput sequenc-
ing techniques, metagenomics and metatranscriptomics 
approaches are commonly used to study the functional 
microbial communities from various extreme environments. 
However, metaproteomics is still considered a complex tech-
nique and has been well-established in a few laboratories 
around the world (Wilmes et al. 2015). This review gives 
an overview of microbial diversity analysis from various 
extreme environments and explains the identification of 
novel proteins and enzymes from extreme environments 
through metaproteomic approaches.

Metaproteomic analyses of extreme 
environments

Saline environments

Halophiles live in a diverse range of habitats including salt 
mines, deep-sea brines, solar salterns, hydrothermal vents, 
marshy lagoons, hypersaline and alkaline lakes (Sarwar 
et al. 2015). Saline area in the world is increasing as a result 
of natural changes as well as anthropogenic effects on the 
environment (Mukhtar et al. 2018b; Oren 2002). Halophiles 
have the ability to survive under a wide range of salt con-
centrations because these microorganisms have developed 
special physiological and genetic modifications (DasSarma 
and DasSarma 2015; Mukhtar et al. 2019a, b).

Halophiles use two basic strategies to live in salin-
ity affected environments (Karan et  al. 2012; Mukhtar 
et al. 2019a). Halotolerant and halophilic bacteria, such 
as Bacillus, Alkalimonas, Brachybacterium, Cronobacter, 
Halomonas, Halobacillus, Methylibium, Marinococcus, 
Oceanobacillus, Stenotrophomonas and Virgibacillus use 
‘compatible solute strategy’. They usually balance their 
osmotic pressure inside and outside of the cell by accumula-
tion of osmolytes. They use small organic molecules, such as 
ectoine, betaine, trehalose, proline, glutamic acid, glutamine 
and other amino acids (Mukhtar et al. 2019b, 2020; Naghoni 
et al. 2017). Anaerobic halophilic bacteria and haloarchaea 
use ‘salt in strategy’ to balance their cytoplasmic salt con-
centrations. They use inorganic ions, such as potassium, 
sodium, magnesium and chloride.

A variety of proteins and enzymes including, amylase, 
protease, pullulanase, lipase, pectinase, xylanase and nucle-
ase trehalose, proline, ectoine, sugars, polyols and proteins 
involved in signal transduction and stress responses are 
synthesized and used by halophilic bacteria and archaea to 
survive under hypersaline environments (Table 1) (Hanson 
et al. 2014; Mukhtar et al. 2019b, 2020; Pinar et al. 2014). 
Halophilic microorganisms use these molecules to protect 
their cells against desiccation, freezing or chemical denatur-
ation (Delgado-García et al. 2014; Osman et al. 2019; Sch-
neider et al. 2007). These osmolytes or halophilic enzymes 
stabilize the cellular membrane, reduce the freezing point of 
cytoplasm and maintain the internal osmotic balance under 
various extreme environments.

Halophilic enzymes and other proteins have also been 
used for bioremediation of polluted saline environments 
(Fig. 1) (Cowan et al. 2015; Liszka et al. 2012). Halophilic 
microorganisms are considered as a rich source of thera-
peutic proteins and other compounds, such as antibiotics, 
anticancer proteins and important industrial enzymes (Mor-
ris et al. 2010; Mukhtar et al. 2019a; Shi et al. 2012). Halo-
philic proteins and other organic molecules have various 
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Table 1   Identification of microbial enzymes and other biomolecules from various extreme environments using metaproteomic approaches

Extreme 
environ-
ment

Protein identification method Biome/ Isolation source Target enzymes/ other proteins References

Saline MALDI-TOF/TOF MS Great Salt Lake, Utah Lipase, amylase, protease, pul-
lulanase, pectinase, xylanase, 
nuclaese and proteins involved 
in signal transduction and stress 
response

Hanson et al. (2014)

LC–MS/MS Howz Soltan Lake (Iran) Amylase, lipase, chitinase and 
protease and proteins involved in 
stress response

Morris et al. (2010)

MALDI-TOF/TOF MS Saltern crystallizer ponds (Spain) Protease, amylase, chitinase, pecti-
nases and nuclease

Fernández et al. (2014)

LC–MS/MS Marine solar saltern, Korea Amylase, protease and DNase, 
chitinase and proteins involved 
in degradation of organic pol-
lutants

Cowan et al. (2015)

LC–MS/MS Pink Salt Lakes in Camargue 
(France)

Protease, amylase and nuclease, 
xylanase, serine peptidase and 
proteins involved in signal 
transduction

Osman et al. (2019)

MALDI-TOF/TOF MS Hypersaline Lake Meyghan, Iran Esterase, lipase and caseinase Naghoni et al. (2017)
LC–MS/MS Himalatt salt lakes of the Algerian 

Sahara
Esterase, xylanase, chitinase and 

inulinase
Boutaiba et al. (2011)

Arid LC–MS/MS Cold deserts Lipases, esterase, cholesterol oxi-
dase, ketoreductases, hydrolase 
and DNase

Ewing et al. (2015)

MALDI-TOF/TOF MS Arid soils Esterase, lipase and amylase, xyla-
nase and cryoprotective proteins

Bastida et al. (2015)

LC–MS/MS Desert soils Esterase, protease, lipase, casei-
nase and proteins involved in 
signal transduction and stress 
response

Sánchez-Porro et al. (2007)

LC–MS/MS East Antarctica Lipase, laccase, cellulase, chi-
tinase, nuclease and esterase

Oren (2010)

LC–MS/MS Himalatt salt lakes of the Algerian 
Sahara

Amylase, cellulase and esterase Boutaiba et al. (2011)

Acidic LC–MS/MS Acid mines Amylase, cellulase, sulfur dioxy-
genase oxidoreductase, xylanase, 
lipase, iron-hydrogenase, alcohol 
dehydrogenase and esterase

Xie et al. (2011)

MALDI-TOF/TOF MS Acid mines Sulfur dioxygenase, galactosidase, 
serine peptidase, iron-hydro-
genase, lipase and cytochrome 
oxidase

Zhang et al. (2016)

LC–MS/MS Sulfide mines Esterase, lipase, glucosidase, iron-
hydrogenase and protease

Mueller et al. (2011)

LC–MS/MS Acid mines Esterase, glucosidase, amylase, 
iron-hydrogenase and oxidase, 
protease and lipase

Denef et al. (2009)
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applications in food and nutraceutical industries, e.g., they 
are used for fermentation of fish sauces and production of 
carotenes (Boutaiba et al. 2011; Mukhtar et al. 2019a; Oren 
2010). Osmoregulatory genes identified and characterized 
from halophilic microorganisms may be used for the devel-
opment of transgenic crops with salinity tolerance (Mukhtar 
et al. 2019c). Halobacterium has the ability to produce a 
membrane protein, rhodopsin which absorbs sun light and 
can be used in memory and processing units of a computer.

Identification and characterization of stress related pro-
teins and osmolytes including trehalose, glycine betaine, 

proline dehydrogenase, ectoine, sugars, polyols can be used 
to study functional microbial diversity from various salin-
ity affected environments. A number of proteins that are 
involved in signal transduction and metabolic pathways can 
be identified to study the interaction among different micro-
organisms (Cavicchioli et al. 2019; Talwar et al. 2020). Some 
recent studies on the characterization of transcriptionally 
active genes and their proteins through metatranscriptomic 
and metaproteomic analyses have provided useful informa-
tion about the microbial communities that exist in extreme 
environments (Martinez et al. 2016; Overland et al. 2019).

Table 1   (continued)

Extreme 
environ-
ment

Protein identification method Biome/ Isolation source Target enzymes/ other proteins References

Alkaline LC–MS/MS Soda lakes and halophyte rhizo-
sphere

Esterase, lipase, chitinase, 
protease, iron-hydrogenase and 
amylase

Xiong et al. (2012)

MALDI-TOF/TOF MS Soda brine lakes Pectinase, protease, iron-oxidase, 
cellulase, thermo-alkali-stable 
peptidase, alcohol dehydroge-
nase

Vavourakis et al. (2016)

MALDI-TOF/TOF MS Halophyte rhizosphere Iron-oxidase, xylanase, amylase, 
protease and lipase

Preiss et al. (2015)

LC–MS/MS Soda lakes Protease, iron-oxidase, cellulase, 
chitinase and lipases

Paul et al. (2016)

Hot LC–MS/MS Hot spring, Italy Amylase, pullulanase, cellulase, 
chitinase, lipase, esterase, 
alcohol dehydrogenase and 
polymerases

Hensley et al. (2014); 
Martin et al. 2008

MALDI-TOF/TOF MS Deep-sea hydrothermal vent, USA Amylase, lipase, esterase, cel-
lulase, protease and polymerases 
and proteins involved in stress 
response and degradation of 
pollutants

López-López et al. (2013)

LC–MS/MS Hot springs, hydrothermal vents 
and volcanoes

Amylase, pullulanase, cellulase, 
protease, lipase, esterase, and 
hydrogenase

Kashefi and Lovley (2003)

LC–MS/MS Sea floor, hydrothermal vents and 
hot springs

Amylase, cellulase, lipase, 
xylanase, iron-hydrogenase, 
galactosidase and esterase

Schut and Adams (2009)

LC–MS/MS Hot springs and oil wells Cellulases, lipase, esterase, 
xylanase, thermo-alkali-stable 
peptidase and protease

Qi et al. (2017)

Cold LC–MS/MS East Antarctica and Arctic polar 
sea ice

Lipase, cellulase and exopolysac-
charides

Fang et al. (2010)

LC–MS/MS Arctic soils Protease, laccase, and amylase Bell et al. (2013)
LC–MS/MS South Coast of Korea Amylase, chitinase, cellulase and 

esterase
Stokke et al. (2012)

MALDI-TOF/TOF MS Coastal sea ice and sediments Esterase, lipase and amylase, cryo-
protective exopolysaccharides

Qin et al. (2014)

MALDI-TOF/TOF MS Antarctic soils Amylase, cellulase, protease and 
antifreezing proteins

Williams et al. (2012)

LC–MS/MS Tundra soil Protease, lipase, amylase and 
pectinase

Lauro et al. (2011)
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Arid and semi‑arid environments

Water stress is one of the main limiting factors which affects 
plant growth and yield worldwide (Sharp et al. 2004). Glob-
ally, about 41.3% of Earth’s surface is affected by salt and 
drought, and this area continues to expand because of global 
climate change. Further increase in the percentage of abi-
otically stressed land will even more adversely impact the 
ability of the world’s population to grow enough food (Long 
and Ort 2010). Drought stress leads to cellular dehydration, 
which ultimately causes osmotic stress, thus hampering 

cell expansion (Bartels and Sunkar 2005). Stomata remain 
closed due to deficiency of water and thus reduce the rate of 
photosynthesis and plant growth (Chen and Murata 2008; 
Yang et al. 2009).

Metaproteomic and metagenomic analyses of different 
arid and semi-arid environments showed that bacterial and 
archaeal genera including Pseudomonas, Chromohalobac-
ter, Rhodococcus, Actinopolyspora, Marinomonas, Halo-
bacterium and Halococcus were found to be dominant. A 
number of proteins and enzymes including proteases, cel-
lulases, amylases, chitinases, oxidases, alpha hydrolase, 

Fig. 1   Metaproteomics based approaches to identify microbial communities and their novel proteins and enzymes from various extreme environ-
ments
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pyrroline-5-carboxylase, exo-polyphosphatase, universal 
stress protein UspA, and biopolymers, such as polyhydroxy 
alkanoates, exopolysaccharides, carotenoid pigments, 
osmolytes and bacteriorhodopsin were identified from these 
environments and ultimately used to analyse the microbial 
diversity (Chiang et al. 2019; Ewing et al. 2015; Roca et al. 
2013; Talwar et al. 2020). Drought also affects growth of 
bacteria and archaea by physiological and genetic modifica-
tions in proteins’ structure, and causes a change in activity, 
assembly and folding of different proteins (Chaplin 2006; 
Julca et al. 2012; Manzanera et al. 2002).

Drought tolerant microorganisms utilize osmolytes, such 
as proline, betaine, ectoine and trehalose to protect their cells 
under water stress environments (Julca et al. 2012; Mukhtar 
et al. 2019c; Sánchez-Porro et al. 2007). The drought-toler-
ant rhizobacteria have the ability to thrive in such extreme 
conditions by using mitigation strategies including, nitro-
gen fixation, phytohormone production, minerals solubili-
zation (P, K, Zn), ACC deaminase (1-aminocyclopropane-
1-carboxylate) and siderophores production. These bacteria 
produce several antifungal and antibacterial compounds to 
induce systemic resistance in the developing plant roots 
(Glick et al. 1999; Conrath 2006; Kosova et al. 2015; Yang 
et al. 2009). The number of potential targeted enzymes were 
xylanases, proteases, cellulases, amylases, and biopolymers, 
such as polyhydroxy alkanoates, exopolysaccharides, carot-
enoid pigments, osmolytes and bacteriorhodopsin that can 
be used for different biotechnological applications (Table 1). 
Some plant proteins, such as sigma factor RpoH1 induce 
the production of ACC deaminase and phytohormones in 
rhizobacteria to enhance plant growth under abiotic stress 
(Defez et al. 2016; Ewing et al. 2015).

Acidic environments

Acidic environments, such as acid mine drainages and 
marine volcanic vents are present around the world. Micro-
organisms that grow in acidic environments have the special-
ized molecular mechanisms which enable them to survive 
in such harsh conditions (Johnson and Hallberg 2005; Xie 
et al. 2011). In acidic conditions, protons enter in a cell to 
reduce the cytoplasmic pH (Richard and Foster 2004; Zhang 
et al. 2016). Acidic pH may lead to uncoupling of oxida-
tive phosphorylation and unfolding of proteins (Denef et al. 
2009; Richard and Foster 2004). This may also cause dam-
age to many cellular structures as well as disruption of many 
biological processes in the cell and may lead to  cell death 
(Small et al. 1994). For instance, amino acid decarboxy-
lase systems are expressed by E. coli in which a reductive 
decarboxylation of the substrate that is usually glutamate, 
arginine or lysine, consumes a proton and ultimately results 
in decrease of free proton concentration in cytoplasm (Foster 
2004).

Microbial diversity analysis through metaproteomic 
approaches showed that acidophiles including Acidithio-
bacillus, Acidianus, Leptospirillum, Acidiphilium and Fer-
roplasma have several protective proteins to survive under 
acidic stress environments (Table 1). A number of studies 
on metaproteomic analysis from different acid mines across 
the globe reported more than 2500 proteins. These proteins 
may be involved in the various microbial functions including 
metabolism, cell signaling, defense mechanisms, abiotic and 
biotic stresses (Wilmes and Bond 2004). Identification and 
characterizationf of these proteins help to study the com-
plex microbial communities associated with acidic regions 
(Simon et al. 2009).

Some of these are DnaK and GroEL chaperone machines 
and DNA repair enzymes (Thompson and Blaser 1995). 
HdeA and HdeB are periplasmic acid chaperones that pre-
vent the aggregation of periplasmic proteins in bacteria 
during acidic stress (Dahl et al. 2015). Several industrially 
important enzymes such as proteases, amylases, cellulases, 
chitinases and lipases have been identified and characterized 
from the acidic environments (Mueller et al. 2011; Qi et al. 
2017; Tang et al. 2014) through metaproteomics analysis. 
Most frequently identified proteins belonged to Lactoba-
cillus spp., while the proteins from Clostridium spp. and 
Streptococcus spp. were also identified. The most frequently 
identified enzymes were pyruvate kinases and heat shock 
chaperones (Fig. 1).

Alkaline environments

Microorganisms that can grow at alkaline pH range are 
known as alkaliphiles (Kevbrin 2019). Alkaliphilic micro-
organisms grow above pH 8, usually at pH 9–12 (Horikoshi 
and Bull 2011; Horikoshi et al. 2011). These microorgan-
isms are omnipresent and have been studied from different 
extreme environments. Alkalinity in an environment can be 
caused by ecological processes or may be due to human 
activities. It might be possible that neutralophilic micro-
organisms are responsible for the development of alkaline 
conditions (Kevbrin 2019). Alkaliphiles can be found in 
soda lakes, the sites of serpentinization, ocean, soils, man-
made alkaline sites, microbially mediated alkalinization, and 
alkaliphilic eukaryotes (Kevbrin 2019). The soda lakes are 
widely spread around tropical, subtropical and intraconti-
nental cryo-arid zones of the Earth (Deocampo and Renaut 
2016; Vavourakis et al. 2016; Xiong et al. 2012).

Alkaliphiles have developed an adaptive mechanism for 
their survival by producing extracellular alkaline tolerant 
enzymes, such as cellulase, amylase, lipase, protease, xyla-
nase, glucosidase, esterase and chitinase which are stable 
and functional at high alkaline conditions (Fujinami and 
Fujisawa 2010; Khalikova et al. 2019). Alkaliphiles pro-
duce several organic acids, such as acetic acid, lactic acid, 
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formic acid and malic acid which play an important role in 
an array of industrial processes (Kulshreshtha et al. 2012). 
Some alkaliphiles produce siderophores and carotenoids that 
have many applications (Mamo and Mattiasson 2016; Preiss 
et al. 2015).

Sukul et al. (2018) reported the identification of a novel 
gene that encodes a lipolytic enzyme, labeled as ML-005 by 
using functional metaproteomics techniques. This protein 
was expressed heterologously in E. coli and characterized 
biochemically. ML-005 shows lipolytic activity to short 
chained substrates with the preferred substrate being p-nitro-
phenyl-butyrate, which makes ML-005 an esterase (Table 1). 
Through homology analysis and site directed mutagenesis, 
Ser-99, Asp-164, and His-191 are identified as a catalytic 
trio of enzymes. The optimal pH and temperature were 8 and 
45 °C, respectively. It showed the tolerance of a wide range 
of pH (5–12), temperature, and salt concentration.

Some recent studies on metagenomics and metaprot-
eomics from oil contaminated alkaline soils described the 
identification of novel proteins and enzymes (Sukul et al. 
2018). Microbial diversity analysis of alkaline environments 
showed that bacterial and archaeal genera, such as Bacil-
lus, Thioalkalivibrio, Serpentinomonas, Chromobacterium, 
Exiguobacterium, Halobacterium and Halalkalicoccus were 
dominant. A number of metaproteomic studies have reported 
that extremozymes, such as protease, xylanase, cellulase, 
lipase, amylase, esterase, glucosidase, chitinase and pecti-
nase from alkaliphilic microorganisms have the ability to 
work at extreme pH (7.5–10.37) (Mirete et al. 2016; Vavou-
rakis et al. 2016; Mukhtar et al. 2018a).

Hot environments

High temperature induces heat shock response in bacteria 
which helps them to survive in such extreme conditions 
(Lüders et al. 2009). Thermophiles are classified as moderate 
thermophiles (50–60 °C), extreme thermophiles (60–80 °C), 
and hyperthermophiles (80–110 °C), based on their growth 
temperature (Gupta et al. 2014; Khalil 2011). Among all 
extremophiles, thermophilic microorganisms, such as Ther-
mococcus, Pyrococcus, Pyrobaculum, Thermotoga, Altero-
monas and Geobacillus are the most popular microorgan-
isms in many biotechnological processes (Mohammad et al. 
2017; Schut and Adams 2009; Singh et al. 2011).

Heat shock proteins are playing a vital role in various 
scientific and industrial applications, for instance, the pro-
cess in which heterologous proteins’ production is induced 
through elevated temperature (Hensley et al. 2014; Han et al. 
2004; Kashefi and Lovley 2003; Lüders et al. 2009). Chaper-
ons and proteases are the most common heat shock proteins 
which stimulate protein folding, refolding, quality control 
and protein breakdown (Lüders et al. 2009). In recent dec-
ades, the thermostability of extreme thermophiles attracts 

molecular biologists and biotechnologists to use these 
microorganisms on the platform of metabolic engineering 
by developing extraordinary molecular genetic tools. Now, 
biofuel and chemical manufacturing at high temperatures is 
due to recombinant extreme thermophiles (Liu et al. 2015; 
Zeldes et al. 2015).

During recent years, metaproteomics has been used 
for the discovery of thermozymes from different hyper-
thermophilic archaea and bacteria. A number of thermo-
philic enzymes, such as cellulases, amylases, chitinases, 
pectinases, lipases, proteases, laccases, etc. are preferably 
required for use in different industrial processes and biore-
fineries (Keiblinger et al. 2012; Liu et al. 2015; López-
López et al. 2013; Williams et al. 2012). These thermostable 
enzymes have specific features which help thermophiles to 
survive at extreme temperature as well as make them sta-
ble against a range of alkaline and acidic pH, solvents and 
detergents (Table 1) (Bhalla et al. 2013; Dettmer et al. 2013; 
Martin et al. 2008; Mohammad et al. 2017).

Microbial diversity from the deep sea hydrothermal vents 
and hot springs has the ability to adapt to extreme environ-
ment through the expression of certain transporter proteins 
such as ATP binding cassette (ABC)-type, glycine betaine 
transporter, cell signaling proteins, dehydrogenases, hydro-
genases and proteins involved in DNA processing, nucleic 
acid binding and refolding. Expression level of these proteins 
from marine environments can be used to identify microor-
ganisms such as Pelagibacter, Rhodobacter and Prochloro-
coccus and their role in nitrogen and carbon cycling in these 
environments (Azam and Malfatti 2007; Hanson et al. 2014). 
Metaproteomics and functional metagenomic analysis of 
deep-sea hydrothermal vents showed that specific proteins, 
enzymes and exo-polysaccharides (EPSs) from thermophilic 
bacteria, such as Alteromonas infernus, Geobacillus ther-
modenitrificans and Vibrio diabolicus can be used in various 
biotechnological applications including industrial processes 
and regenerative medicines (Arena et al. 2009; Spanò et al. 
2013).

Cold environments

Cold environments are predominant over the earth and the 
microorganisms inhabiting such environments are called 
psychrophiles (Morita 1975). Mechanisms that enable 
microorganisms to survive in cold adaptation involve the 
expression of cold shock proteins and structural adjustment 
of enzymes (Table 1). Other mechanisms include mainte-
nance of membrane fluidity, and translation and transcrip-
tion machinery adaptation (Barria et al. 2013). Reactive oxy-
gen species (ROS) which cause oxidative stress and level 
of oxygen solubility at low temperatures (also generate the 
ROS) may affect tricarboxylic acid cycle (TCA), glycoly-
sis, electron transport chain and pentose phosphate pathway 
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(Piette et al. 2012). These underlying mechanisms are not 
fully understood which help the bacteria to adapt the cold 
environments (Bell et al. 2013; Fang et al. 2010; Myka et al. 
2017).

The results of six functional metagenomic datasets 
obtained from Antarctic Lake Joyce were used to get infor-
mation about cold adaptation proteins. Other proteins 
observed were ice nucleation protein, antifreeze proteins, 
trehalose synthase, fatty acid desaturase and cold-shock 
DEAD-box protein A. A cold-shock family of proteins 
called CSPs, was also reported that included CspA, CspB, 
CspD, CspC, CspG and CspE (Liljeqvist et al. 2015).

Some cold-tolerant bacterial genera including Psych-
romonas, Photobacterium, Arthrobacter, Zunongwangia 
Micrococcus, Pseudomonas and Marinomonas have the abil-
ity to produce antifreeze proteins (Table 1). These proteins 
can be used in microbial fermentations at low temperatures 
(Nunn et al. 2015; Simon et al. 2009; Stokke et al. 2012). 
The psychrophilic microorganisms can produce a number 
of novel enzymes with applications in industrial processes 
(Bell et al. 2013; Qin et al. 2014; Williams et al. 2012). 
Several bacteria can synthesize the polyhydroxy, alkanoates 
(PHA) to respond to cold environments. These are reverse 
polymers and have important physiological roles. The prot-
eomic analysis of these bacteria showed an increase in PHA 
depolymerase at a lower temperature (around − 10 °C). This 
depicts the PHA utilization at low temperatures.

To survive under cold conditions, microorganisms also 
use the compatible solutes, e.g., glycine, betaine, trehalose, 
sorbitol, glycerol, sucrose, mannitol and ectoine that play 
an important role in osmoregulation as well as in cryopro-
tection. These molecules can scavenge the free radical, 
reduce the cytoplasm freezing point and stabilize cellular 
membrane under cold conditions (Collins and Deming 2013; 
Lauro et al. 2011). Ghobakhlou et al. (2015) also reported 
an increase in the level of threonine, valine and sarcosine in 
Arctic isolate Mesorhizobium sp. strain N33 when grown 
at 4 °C. The presence of an envelope was observed in both, 
Gram-negative and Gram-positive, bacteria to avoid stiffness 
at low temperatures to maintain membrane fluidity (Médigue 
et al. 2005; Rodrigues et al. 2008).

Functional characterization of microbial communi-
ties from cold environments showed that several essential 
enzymes and proteins involved in energy production and 
metabolism, ABC transporters, proteins required for stress 
adaptation were dominantly reported. The identification of 
these proteins revealed that bacterial genera including Halo-
monas, Pseudomonas, Marinobacter, Bacillus, Arcobacter 
and Desulfobacter were more abundant as compared to oth-
ers (Cavicchioli et al. 2019; Collins and Deming 2013).

Future prospective

Extremophiles are a sustainable source and can be used for 
the development of bio-based economy. One of the main 
challenges in metaproteomic analyses includes genetic het-
erogeneity within the microbial communities, uneven distri-
butions of species and changes observed in protein expres-
sion levels in different microorganisms. Identification and 
characterization of proteins involved in various metabolic 
activities and adaptation to abiotic and biotic stresses by 
using metaproteomic approaches can be helpful to study spe-
cific microbial communities or individual microorganisms 
from extreme environments that cannot be isolated or culti-
vated in a laboratory. Another exciting new direction is that 
metagenomic and metatranscriptomic approaches should 
also be studied parallel to check cross-contamination or 
other errors that may affect the homologous protein(s) iden-
tification (Vilanova and Porcar 2016; Wang et al. 2020). By 
using more efficient methods for proteins’ extraction from 
various environmental samples and mass spectrometry anal-
yses, the full potential of metaproteomic approaches can be 
studied. Metaproteomic analyses can be improved by using 
advanced software tools with the capability of handling large 
datasets and they should be user friendly. In future, the cost 
for metaproteomic analysis should be reduced as in the case 
of DNA sequencing, so that this technique can be used to 
study proteins and their applications from various unex-
plored environments (Chiapello et al. 2020; Deutsch et al. 
2020).  Despite all hurdles, metaproteomic approaches can 
also be used to analyze and develop a link between micro-
bial diversity and functions of microbial communities and 
ultimately help in studying ecological changes.

Conclusions

Advancement in meta-omics approaches, such as metagen-
omics, metatranscriptomics and metaproteomics has been 
used to uncover the complex composition as well as the key 
functional traits responsible for the survival of microorgan-
isms from extreme environments. We can say that metapro-
teomics came as a boom in microbiology to study functional 
microbial communities from extreme environments includ-
ing hypersaline, sodic lakes, deep sea hydrothermal vents 
and frozen lakes of polar regions. Metaproteomic approaches 
enhance the understanding of the functional microbial com-
munities from various extreme environments and they can 
be used to discover novel genes, enzymes and other proteins 
with great biotechnological potential.
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