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A B S T R A C T   

Two perovskite solar cells one with leaves and needles like TiO2 (LNT) and other with meso-porous TiO2 as 
electron transfer layer (ETL) were fabricated. The perovskite solar cell structure FTO/Compact-TiO2/LNT/ 
CH3NH3PbBr3/Spiro-OMeTAD/Ag with leaves and needles like TiO2 electron collector, exhibit high efficiency up 
to 9% being supported by high open-circuit voltage and fill factor up to 0.8 V and 0.89, respectively. The second 
perovskite solar cell structure FTO/Compact-TiO2/Meso-porous TiO2/CH3NH3PbBr3/Spiro-OMeTAD/Ag with 
meso-porous TiO2 electron collector, efficiency is 6.2% with open-circuit voltage and fill factor up to 0.77 V and 
0.71 respectively. As compared to meso-porous TiO2 electron collector layer, leaves and needles like TiO2 has 
better electron band alignment with compact TiO2 as hole blocking layer and hence, results in higher efficiency.   

1. Introduction 

Organic-inorganic halide perovskite solar cells (PSCs) are rapidly 
emerging renewable energy sources in the world of photovoltaics, owing 
to their advantages such as low cost easy fabrication, use of light weight 
flexible substrates and PCE exceeding 25.2% [1,2]. Perovskite (ABX3, 
where A is organic, B is inorganic and X3 is trihalide) material has 
received remarkable interest due to long diffusion length (up to 175 
μm), high charge carrier mobility, high absorbance coefficient (103 

cm− 1) in complete visible solar spectrum, low band gap range 
(1.5–2.3eV), low binding energy, long diffusion lengths for 
photo-generated carriers and ambipolar transport behavior [3]. 

Perovskite layer acting as light absorbent is sandwiched between n- 
type electron transporting layer (ETL) and p-type hole transporting layer 
(HTL). To obtain efficient devices, choice of these charge selective 
contacts depends upon some stringent requirements such as selection of 
material, structure, and ample energy level alignment. Among the 
different ETL materials (ZnO, Al2O3, PCBM, CdSe, Zn2SnO4, CdS, SnO2, 
etc.) introduced in PSCs, TiO2 is still grasping the efficiency record [4]. 

TiO2 is widely used in photovoltaic technologies due to its good optical 
properties, photostability, high electron mobility, suitable band struc
ture, chemical stability, corrosion resistance, non-toxicity, and simple 
fabrication [5]. Surface morphological characteristics of TiO2 are closely 
related with photocatalytic efficiencies. Various nano structures of TiO2 
such as nano rods, nano spheres, nanotubes, nanowires and mesoporous 
have been implemented as ETL. Among different structural morphol
ogies one dimensional structure like TiO2 nanotubes (TNTs) and TiO2 
nano rods (TNR) can be an attractive approach to enhance charge 
transfer hence increasing the PCE. These structures have been widely 
explored due to easy fabrication process and outstanding properties. 
These structures provide 1D transportation path to electrons which not 
only increases the charge transfer rate but also hinders the charge 
recombination [6,7]. Due to these outstanding properties of superior 
charge transport, high scattering and high absorption of light 1D 
nanostructures have been used as ETL [8–15]. Hence deposition of 1D 
TiO2 as ETL increased charge transportation and showed better device 
performance [16,17]. 

Different strategies have been used to increase the solar energy 
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conversion. One of these approaches is to increase the surface area by 
developing more active sites to enhance the capability of light scattering 
and trapping. The morphology of TiO2 also plays an important role for 
enhancement in light harvesting. Branched structures show better 
ability to scatter and trap light because of high surface area [17–20]. On 
the other hand, leave like structures can also been used to enhance 
trapping of light which can also contribute in increase of PCE [21]. 

Granular nano-disks like structures of amorphous titanium dioxide 
synthesized using simple technique of anodiztion of porous titanium 
foam show excellent photo-electrocatalytic properties and photo- 
electric conversion. Better photo-electrochemical performance can be 
attributed to high surface area of titanium (Ti) foam and multiple active 
adsorption-sites of titanium dioxide nano-disks [22]. Photo-electrode 
based on flexible three dimensional (3D) nanotubes of TiO2 prepared 
by anodization of titanium (Ti) mesh showed low interface impedance 
and photocurrent of 1.63 mAcm− 2. This type of photo-electrode based 
on novel 3D nanotubes of TiO2 have application in solar cells. Bi2S3/
TiO2 nanotubes based photo-electrode show excellent photo
electrochemical properties with 5.99 mAcm− 2 photo-current density 
[23,24]. 

Several methods available for fabricating 1D structures includes 
electrochemical anodization, micro-wave irradiation, template method, 
sol gel method, hydrothermal method, sonoelectrochemical, and alka
line synthesis. Among all these methods electrochemical anodization is 
widely used cost effective technique. Advantageous characteristics 
include controllable growth (controlled by anodization parameters), 
production of strong adhesive nanotubes, and feasibility to tune size and 
shape of nanotubes to required dimensions [25]. 

In this research work, leave and needle like structures of TiO2 (LNT) 
have been grown as ETL by electrochemical anodization process. A 
compact layer of TiO2 is deposited between FTO layer and LNT. 
Methylamine lead bromide (CH3NH3PbBr3) used as perovskite layer 
shows better stability under heat and moisture [26]. 2,20,7,70tetrakis 
(N, N-di-p-ethoxyphenylamino)-9,90-spirobifluorene (Spiro-OMeTAD) 
as HTM and silver conducting paste as electrode is used. Compact TiO2 
also known as blocking layer is an important component of high effi
ciency perovskite solar cells [27]. It helps to prevent charge recombi
nation which can take place between perovskite layer and FTO. This 
charge recombination must be prohibited as it leads to lower charge 
collection efficiency [9]. Then this device was compare with another 
device having meso-porous TiO2 layer instead of LNT layer. All other 
layers were kept same in both devices just to compare the effect of leaf 
and needle like structure. 

2. Experimental 

2.1. Deposition of TiO2 compact layer 

To deposit TiO2 compact thin film on FTO glass a precursor solution 
of 0.15 M of titanium isopropoxide in ethanol was stirred for 1 h. The 
solution was spin coated on glass substrate at 3000 rpm for 30s. The film 
was thermally annealed at 450◦c for 2 h [28]. 

2.2. Deposition of leaves and needles like TiO2 

For the deposition of leaves and needles like TiO2 (LNT) two- 
electrode configuration was used, with compact TiO2 coated FTO as 
the working electrode and graphite as the counter electrode in electro
chemically anodization at 20 V for 10 min at room temperature. 0.3 g 
ammonium fluoride was mixed in ethylene glycol and 2 ml DI water was 
used as electrolyte solution. The sample was rinsed in DI water to 
remove the electrolyte and then dried in air after anodization. To 
convert amorphous LNT into anatase phase thermal annealing was done 
at 450 C for 3 h. For better cell performance, the LNT was also treated in 
7.587 g of TiCl4 (aqueous solution) at 70 C for 10 h and then rinsed with 
ethanol and DI water. 

2.3. Deposition of meso-porous titanium dioxide (TiO2) 

TiO2 paste (Dyesol 18 NR-T) was diluted in ethanol at 1:35 by 
weight. The solution was spin coated at 2000 rpm for 50s and heated at 
500 C for 30 min [29]. 

2.4. Deposition of methylamine bromide (CH3NH3PbBr3) 

Methyl amine (40% in methanol) was mixed with hydrobromic acid 
(48% in water) under continuous stirring for 2 h in 1:1 M ratio to prepare 
CH3NH3Br. The solution was then heated for 24 h at 60 ◦C in vacuum 
oven. After that lead bromide PbBr2 and methyl ammonium bromide 
CH3NH3Br were mixed in equi-molar ratio in dimethylformamide (DMF) 
to prepare CH3NH3PbBr3 40% weight followed by 1 h stirring. The 
prepared solution was spin coated at 500 rpm for 5s and then at 3000 
rpm for 30s. Deposited film was heated at 150 ◦C for 15 minutes to get 
dark orange color [30,31]. 

2.5. Deposition of 2,20,7,70-tetrakis(N,N-di-p-ethoxyphenylamino)- 
9,90-spirobifluorene (Spiro-OMeTAD) 

A hole transporting layer (HTL) was deposited via spin-coating of 
mixture of Spiro-OMeTAD in Dimethyl formamide DMF (120 mg/ml) at 
1000 rpm for 9s and then 4000 rpm for 30s. The prepared sample was 
then dried at 120 ◦C for 15 minutes [32]. 

2.6. Deposition of silver (Ag) electrode 

Finally, as top most layer silver was deposited using doctor blade 
method and dried on hot plate. 

After fabrication both devices were analyzed using different char
acterization techniques. The crystal structure and surface morphology 
was examined by x ray diffractometer (XRD), transmission electron 
microscope (TEM) and scanning electron microscopy (SEM). The ultra
violet visible absorption spectra were recorded using spectrophotom
eter. Localized conductivity of leaves and needle like TiO2 layer and 
meso-porous TiO2 layer was measured with scanning tunneling micro
scope (STM), EIS analysis was done to find out resistance between 
interfacial charge transport and charge transfer processes. Solar simu
lator was used for efficiency analysis. 

3. Results and discussion 

3.1. Morphology and structural studies 

Fig. 1 (a) and (c) shows the SEM micrographs of LNT TiO2 and meso- 
porous TiO2 respectively. Fig. 1 (b) and (d) shows XRD pattern of LNT 
TiO2 and meso-porous TiO2 respectively. 

The SEM image in Fig. 1(a) reveals the formation of leaves and 
needles like structures. Both leaves and needles like structures show no 
specific alignment. Needles are randomly dispersed among the leaves. 
This needles and leaves like morphology increases the surface area and 
area of contact with other layers and thus improves the optical prop
erties like absorbance [33]. SEM micrograph in Fig. 1(c) confirms the 
formation of mesoporous structure. There are few empty spaces between 
the particles appear as dark areas in SEM image. Moreover, clusters of 
particles exist due to agglomeration of particles during synthesis pro
cess. Particle size is not uniform throughout the structure. The meso
porous layer plays a vital role to transport electrons from perovskite to 
external circuit through its conduction band [33]. 

XRD diffractogram in Fig. 1(b) confirms the formation of TiO2. There 
is one high intensity peak at two theta position of 24.8◦ and its corre
sponding (hkl) values are (101). This suggests that LNT TiO2 has grown 
preferentially with (101) plane that is parallel to FTO substrate [7]. Two 
other prominent peaks with relatively low intensity are obtained by 
diffraction from (200) and (211) planes at two theta position of 48.2◦
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and 55.1◦ respectively. Besides this, there are four other low intensity 
peaks at two theta positions of 37.8◦, 62.9◦, 70◦ and 75.1◦ with hkl 
values (004), (204), (202) and (104) respectively. XRD pattern in Fig. 1 
(d) shows the peaks due to diffraction from (101), (004), (200), (211), 
(204), (202) and (104) planes corresponding to the two theta values of 
26◦, 37.8◦, 47.8◦, 49.7◦, 63◦, 69.8◦ and 76.2◦ respectively. All the peaks 
have very low intensity except the one obtained at (101) plane. It may 
indicate the preferential growth of mesoporous TiO2 in this direction 

[7]. The peak broadening is due to the porous structure of TiO2. XRD 
pattern has confirmed the formation of TiO2. 

In Fig. 2(a), SEM micrographs of all the layers FTO, compact TiO2, 
LNT TiO2, perovskite and spiro arranged according to device assembly. 
Similarly, Fig. 2(b) exhibits SEM micrographs of all layers i.e. FTO, 
compact TiO2, mesoporous TiO2, perovskite and spiro. These SEM im
ages are arranged in layers one above the other following the device 
architecture. 

Fig. 1. SEM images of along with XRD profiles of TiO2 at ETL on compact TiO2 coated FTO substrate (a) SEM micrograph Leaves and Needle like TiO2 (LNT) (b) XRD 
profile of the Leaves and Needle like TiO2 (LNT) (c) SEM image Meso-porous TiO2 and (d) XRD pattern of. 

Fig. 2. SEM images of all layers as arranged in both solar cells having all identical layers except electron transport layer (ETL) (a) leaves and needle like TiO2 as ETL 
(b) Meso-porous TiO2 as ETL. 
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To gain more insight into morphological study of resulting leaves and 
needles like structures of TiO2 transmission electron microscopy (TEM) 
measurements were carried out. TEM images of leaves and needles like 
structures of TiO2 are shown in Fig. 3(a) and 3(b). 

One dimensional structures shown in Fig. 3(a) are the needles while 
Fig. 3(b) reveals the presence of randomly oriented leave like nano 
structures of TiO2. These leave like structures are of TiO2 crystals are of 
different sizes and there are few empty spaces between them. 

The scanning tunneling microscopy (STM) was performed and STM 
images of particle and needle like structures of TiO2 are presented in 
Fig. 4(a) and 4(b) and their corresponding IV curves obtained are shown 
in Fig. 4(c). 

The diameter of a TiO2 particle calculated from STM image is 187 
nm. The length and diameter of TiO2 needle is 137 nm and 39 nm 
respectively. From IV curves it is observed that both needle and particle 
structures of TiO2 exhibit semiconducting behavior. The maximum 
current of 28 nA can be detected under voltage bias up to 1 V for TiO2 
particle. For TiO2 needle structure maximum current of 84 nA can be 
detected. 

The electrical conductivity for both was calculated using STM anal
ysis. For TiO2 particle the conductivity is 0.02 Ohm− 1cm− 1 while con
ductivity of TiO2 needle is 0.88 Ohm− 1cm− 1. The electron mobility was 
also calculated for both particle and needle like structure of TiO2. The 
mobility of needle like structure is 5.56 × 1018 cm2V− 1. Whereas for 
particle like structure the electron mobility is 1.54 × 1017 cm2V− 1. So it 
is obvious that electrical conductivity and electron mobility of TiO2 
particle is less than that of TiO2 needle. The better conductivity of needle 
like structure of TiO2 will play an important role to improve the effi
ciency of solar cell. 

3.2. Optical and elecrochemical impedance spectroscopic analysis 

Fig. 5 shows the UV–Visible absorption spectra of both LNT and 
mesoporous TiO2 ETL based solar cells. It is obvious from the figure that 
both devices show broad absorption in visible range. LNT TiO2 based 
solar cell shows maximum absorption in 500 nm–700 nm range. While 
mesoporous TiO2 based solar cell has maximum absorption in 400 
nm–600 nm range. The maximum absorption for LNT TiO2 based device 
is 0.42 at wavelength 524 nm while mesoporous TiO2 based device has 
maximum absorption 0.14 at wavelength 402 nm. LNT TiO2 based solar 
cell exhibit stronger absorption than mesoporous TiO2 based solar cell 
which implies its ability to be photo-activated under irradiation of 
visible light. 

The increased absorption of LNT TiO2 based solar cell is due to better 
light trapping characteristics of leaves and needle like structure of TiO2. 
Such structure maximizes scatter efficiency and reflectance capability in 
entire visible region. This results in multiple absorption of incident light. 

When light falls, it bounces back and forth multiple times and then 
eventually absorbed. It is beneficial in photon capturing and enhances 
light harvesting efficiency [21]. The enhanced photocatalytic behavior 
is attributed to larger surface area and active surfaces which allow them 
to absorb more incident light [34]. 

One dimensional structures are considered as an appropriate scaffold 
to composite with other nanostructures such as nanoparticles, nano
sheets etc. To increase surface area and to minimize charge recombi
nation. High surface area of 1D needle like structures of TiO2 provides 
active sites to increase capability of light scattering and trapping. 
Combination of one dimensional needle like structures and leaves like 
structures increase the surface area and thus scattering and trapping of 
light [20,35–38]. So the improved optical behavior due to high scat
tering and absorption of light will contribute to high efficiency. 

3.2.1. Electrochemical impedance spectroscopy (EIS) 
Electrochemical impedance spectroscopy is an important tool to 

understand dynamics of interfacial charge transport and charge transfer 
processes. 

Electrochemical impedance spectra were obtained for both mp-TiO2 
and LNT-TiO2 structures based solar cells. The corresponding Nyquist 
plots with alternating current (AC) amplitude of 10 mV and frequency 
range of 10− 1 to 105 Hz are displayed in Fig. 6. 

It can be observed from Fig. 6 that only one semi-circle is obtained 
for these devices. Solar cell based on leaves and needle like structure of 
TiO2 has smaller arc so it shows low interface resistance and fast transfer 
of charge carriers [39]. Mesoporous TiO2 structure based solar cell has 
more interface resistance and slow charge transfer. Recombination 
resistance calculated from Nquist plots for both devices. For mesoporous 
TiO2 structure based device the recombination resistance is 993.511 Ω. 
Whereas recombination resistance calculated for leaves and needle like 
TiO2 structure based solar is less i.e. 938.85 Ω. 

The low interfacial resistance and fast carrier transport in leaves and 
needle like TiO2 structure based device can contribute to achieve better 
efficiency. 

3.3. Device performance 

Fig. 7 shows the energy levels of TiO2, CH3NH3PbBr3 and spiro- 
OMeTAD. It can be seen from this figure that the conduction band 
(CB) of TiO2 and CH3NH3PbBr3 lies at − 4.0 eV and − 3.38 eV respec
tively. This difference of ~0.6 eV between conduction bands provides 
the required charge separation driving force for collection of electrons. 

The valence band (VB) of CH3NH3PbBr3 lies at − 5.69 eV and highest 
occupied molecular orbital (HOMO) of spiro-OMeTAD is located at 
− 5.2 eV. Therefore, holes can be easily moved from valence band of 
CH3NH3PbBr3 to highest occupied molecular orbital (HOMO) of spiro- 

Fig. 3. TEM images of (a) needle like structure of TiO2 (b) leaves like structure of TiO2.  
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OMeTAD. The energy levels of CH3NH3PbBr3 are well aligned with TiO2 
and spiro-OMeTAD for separation and collection of charge carriers. 

The current density curves of both devices are shown in Fig. 8. 
Photovoltaic parameters like open circuit voltage (VOC), short circuit 
current density (Jsc), maximum voltage (Vmax), maximum current den
sity (Jmax), fill factor (FF) and power conversion efficiency (PCE) are 
listed in Table 1. 

The values of all these parameters are calculated from IV curves. 
From Table 1 it is evident that LNT TiO2 based solar cell has best PCE of 
9% with Voc 0.80 V, Jsc 13.12 mA/cm2 and FF 0.85. Mesoporous TiO2 
based solar cell shows PCE of 6.2% with Voc 0.77 V, Jsc 11.21 mA/cm2 

and FF 0.71. 
The better performance of LNT TiO2 based solar cell is due to its 

leaves and needle like structure. From SEM analysis it is observed that 
one dimensional needles are randomly dispersed over the leaves 
throughout the structure. This morphology of TiO2 plays a vital role to 
increase the device efficiency. The charge recombination phenomenon 
tends to lower the efficiency. This factor is overcome by the needles like 

Fig. 4. STM images of (a) needle like TiO2 (b) particle like TiO2. (c) IV curves of Particle and Needle of TiO2.  

Fig. 5. UV–Visible Absorption spectra of ( ) leaves and needles like TiO2 (LNT) 
and ( ) Mesoporous TiO2 based solar cells. 

Fig. 6. Nyquist plots of LNT and Mesoporous TiO2 based solar cells.  

Fig. 7. Diagram of energy levels of each functional layer.  
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structure of TiO2. Because the one dimensional nanostructures hinder 
the charge recombination and increase the charge transport [7,8]. 

From the STM analysis it is observed that electrical conductivity of 
needle like structure of TiO2 is more as compared to TiO2 particle which 
also contributes towards increased efficiency. 

The leaves like TiO2 structures help to increase light scattering and 
trapping by increasing active sites [20,21]. Moreover, this needles and 
leaves like structure increase the active surface area and area of contact 
with other layers to provide fast charge transport. 

EIS analysis has shown that leaves and needles like TiO2 structure 
based solar cell has less interface resistance which leads to fast carrier 
transport and thus contributes towards better efficiency as compared to 
mesoporous- TiO2 structure based solar cell. 

4. Conclusions 

Two perovskite solar cells with variations in electron transport layers 
have successfully fabricated. One device has leaves and needle like TiO2 
nanostructure while other device employs mesoporous TiO2 in electron 
transport layer. XRD analysis has confirmed the formation of TiO2. The 
surface morphology of LNT TiO2 and mesoporous TiO2 structures is 
revealed by TEM, SEM and STM analysis. STM analysis proved that 
conductivity and electron mobility of needle like structure of TiO2 is 
better than particle like structure of TiO2. Absorption spectra has proved 
that solar cell based on LNT TiO2 shows stronger absorption in visible 
range than solar cell based on mesoporous TiO2. EIS analysis confirmed 
that LNT TiO2 based solar cell shows less interface resistance. The IV 
analysis has shown that LNT TiO2 based solar cell shows better PCE of 
9% with Voc 0.80, Jsc 13.12 and FF 0.85 while mesoporous TiO2 based 
solar cell shows PCE of 6.2% with Voc 0.77, Jsc 11.21 and FF 0.71. So it is 
concluded that better performance of LNT TiO2 based solar cell is due to 
its leaves and needle like structure. This structure enhances absorption, 
scattering and trapping of light and also hinders the charges 

recombination leading to higher efficiency. 
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Table 1 
Device Performance of CH3NH3PbBr3 solar Cells with Different Electron 
Transport layers (ETL) (Leaves and Needle like TiO2 (LNT) as ETL, Meso-porous 
TiO2 as ETL).  
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cm2) 
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(V) 
Vmax 

(V) 
Jmax (mA/ 
cm2) 

FF PCE 
(%) 
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13.12 0.801 0.716 12.57 0.85 9  
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