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Abstract: The advancement in our understanding to engineer plant genome to tailor multigenic traits
makes it necessary to express multiple genes, in parallel with the development of a better understanding
of factors that control the concerted expression of such transgenes. Multiple gene expression in the same
recipient cell/plant favors the engineering of organelle genome of the plants. After nucleus, plastids
provide the targets to carry out routine transformation. The ability to engineer plastid genome in higher
plants is extremely attractive and important to the development of transgenic traits that may be difficult
or impossible to achieve by nuclear transformation. Moreover, plastome engineering is advantageous,
since proteins in chloroplasts may accumulate to high levels, multiple genes may be expressed as
polycistronic units, and lack of pollen transmission in most cultivated crops results in natural gene
contamment offering the development of bio-safe transgenic plants -- a major concern of many agencies
today. Although limitations are always there, engineering the plastome will remain an excellent choice
t0 develop environment friendly transgenic plants that may offer a site to overexpress products of
pharmaceutical interest: highly pure, safe and cheap source to reach the consumers.

Keywords: Proplastd, plastome, vcf, RNA polymerase, NEP, PEP, chimeric tissue.
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Introduction

Progress in plant genetic engineering has
been spectacular since the recovery of the first
transgenic plant in 1980s, and has now been

~ applied to a variety of species, resulting in the
- generation of numerous transgenic plants. A
- number of techniques, like electroporation, PEG-
~treatments of protoplasts, Agrobacterium and
- microprojectile bombardment have been used to
deliver foreign DNA into plants. Genetically
modified crops have provoked some
environmental concerns. One common concern
is the possibility of gene escape through pollens
or seed dispersal from crop plants engineered for
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herbicide resistance to contaminate their weedy
relatives. Another concern is the toxicity of the
transgenic pollens to non-target insects such as
the monarch butterflies. Still another concern is
sub-level expression of transgenes like Br,
resulting in increased risk of pests developing
Br-resistance. One possible solution to such
problems or threats is to express such genes at
high levels and compartmentalize their
expression. Most of the cultivated crop plants
transmit their plastids to progeny plants through
female part rather than pollens, thus providing
natural containment of transgenes.

Chloroplasts known to have evolved from
free-living microorganisms are double
membrane-bound intracellular structures

containing their own genetic material functioning
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independently or in association with mflstcr
organelle, the nucleus. Chloroplasts either
develop from proplastids in meristematic tissues
or from other differentiated plastids such as
chromoplasts, amyloplasts and leucoplasts on
exposure to light. They contain the entire
enzymatic machinery for photosynthesis playing
important roles in many essential metabolic
processes, including synthesis of starch, amino
acids and lipids. The transformation of
proplastids into viable chloroplasts is one of the
most important changes that take place during
plant development. These developmental
changes lead to the formation of distinctive
features in the chloroplasts. One of the most
important features is the presence of extensive
internal thylakoid membrane system that is
responsible for photosynthetic energy
transduction. The four major components of the
thylakoid membrane are photosystem I,
photosystem II, cytochrome b/f complex and the
ATP synthase complex [1]. These complexes
together with a number of enzymes housed in
the stromal fraction of chloroplasts carry out
conservation of molecules such as water and
carbon dioxide into carbohydrates on energy
utilization derived from light. In addition, many
biochemical pathways essential for plant growth
and development are found in plastids. They
include biosynthesis of fatty acids, amino acids
and carotenoids. Beneficial alteration of such
processes can be explored by incorporating
heterologous gene (s) into the plastome. Keeping
in view such ideas scientists have tailored a
number of characteristics in tobacco model
through plastome engineering. Moreover, work
is in progress to extend this technology to other
crop plants, salient examples of which are
discussed in detail in this review.

Plastid Genome Organization

Plastid number varies from 10-20 pro-

plastids in meristematic cells to several hundre
in a leaf cell and provides more targets fc
transformation. Besides, the number and type
of plastids vary, each plastid carries thc.: sam
genetic material, a double stranded circula
molecule of 120 to 160 kb divided into smal
and large single copy regions separated b;
inverted repeats. Plastids generally contain 50
150 copies of circular DNA molecules. Plastic
genome has been sequenced from a number o
organisms (Table 1). It encodes about 12(
proteins both for genetic as well as photosynthetic
systems (Table 2). A number of open reading
frames called ycfs (hypothetical chloroplast open
reading frames) are unknown for their functions
(Table 3). In addition to these several
polypeptides encoded in the nuclear genome,
synthesized on cytoplasmic ribosomes, are
imported into the plastids.

Table 1. Fully sequenced plastid genome of organisms

Organism Genome References

size (bp)
Algae
Chlorella ellipsoidea 150,613 Wakasugi e al. [62]
Cyanophora paradoxa 135,599 Stirewalt et al [63]
Euglena gracilis 143,172 Hallick er al. [64]
Odontella sinensis 119.704 Kowallik er al [65]
Porphyra purpurea 191,028 Reith and Munholland [66]
Land plants
Epifagis virginiana 70,028 Wolfe et al. [67]
Marchantia polymorpha 121,024 Ohyama er /. [68]
Nicotiana tabacum 155,844 Shinozaki er al. [69]
Oryza sativa 134,525 Hiratsuka er al. [70]
Pinus thunbergii 119,707 Wakasugi et al. [71]
Zea mays 140,387 Maier er al. [72)
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Table 2. Genes in land plant chloroplast genomes
(;l‘ncsf(lrlh(‘ Wgcr;e_l—ir;:_\'ﬂcn; e ;
RNA polymerase oA, B, Cl, C2
Ribosomal RNAs ren (168, 238, 4 .55, 58)

mpl2, 14, 16, 20, 21, 22, 23, 32, 33, 36
Ips2, 3.4.7.8 11,12, 14, 15, 16, 18, 19

Ribosomal proteins

IRNAs 1rn (30 (RNA genes)
Protease clpP

Genes for the photosynthetic system
Photosystem | psaA. B. C. 1L J M
Photosystem 11 psbA. B, C.D. E.FH I.JKLMNT
Cytochrome b/f complex petA. B. D. G, L
ATP synthase atpA. B E.F H. 1

Ribulose-1. S-bisphosphate
carboxylase rbcl.

Protochlorophyllide

reductase chiB. chil., chiN

NADH-dehydrogenase ndhA. B, C.D. E. F G H I J K
Acetyl CoA carboxylase aceD

| Genes of unknown function vef/. 2, 3,4, 5. 6. 9. 10

Table 3. Hypothetical Chloroplast Open Reading Frames (ycfs) (The
size of the open reading frame in tobacco chloroplast DNA

is given)
| ORFs YCFs Possible function/structure
i
Orf1901 yefl highly basic, essential for cell survival
E Orf2280 yef2 contains ATPase domain
f Orf168 vofd contains mtron
? Orf184 vord photosystem regulation in
E- Svynechocvstis
40rf‘3|3 vefs cell homology-cytochrome ¢
synthesis
Orf29 yef small membrane-spanning protein
Orf62 vef9 small membrane-spanning protein
T,‘orf229 yeflo chloroplast inner envelope membrane
protein
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Gene Expression in Plastids

Plastid DNA of higher plants contains genes
for the genetic and photosynthetic functions of
the organelle. Chloroplast gene expression has
many similarities to gene expression in
prokaryotes, from which plastids are believed to
have originated [2,3]. Chloroplast genes are
transcribed by two separate RNA polymerases.
The photosynthesis genes are transcribed by an
RNA polymerase containing plastid-encoded
subunits homologous to the o, 3, and B” subunits
of E. coli RNA polymerase [4,5]. This RNA
polymerase activity was characterized in its
soluble and DNA-bound forms [2,3] and the
expression of the rpo genes was confirmed by
detection of the corresponding subunits in highly
purified enzyme preparations from maize
chloroplasts [6,7] and by western blotting of
crude extracts from spinach chloroplasts with
antisera raised against individual subunits [8].
Evidence for the expression of the rpo genes in
the form of the corresponding RNA [9.4] and of
specific proteins in soluble chloroplast extracts
[4.5] confirmed that the core subunits of a
chloroplast RNA polymerase are encoded in the
chloroplast genome.

Plastid genes are transcribed by two distinct
RNA polymerases: the plastid-encoded plastid
RNA polymerase (PEP) and the nuclear-encoded
plastid RNA polymerase (NEP). The genes of
the multi-subunit PEP core are encoded by the
plastid genome, and are homologous to the
eubacterial (E.coli-like) DNA-dependent RNA
polymerase «, 3, and B’ subunits [3]. The 8-
like factors required for promoter recognition
[10] are encoded in the nucleus [11]. PEP
promoters are similar to eubacterial § -type
promoters: the core comprises two hexameric
sequences corresponding to the eubacterial-35
(TTGACA) and eubacterial-10 (TATAAT)
promoter elements. The hexamers are spaced 17-
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19 nucleotides apart: transcription initiation 5-7
nucleotides downstream of the cuhuclcr!al!(:
box sequence [3]. The catalytic subunit of N[}

is related to the mitochondria and phage-type T3/
I'7 RNA polymerases [12]. PEP is derived t"rum
the RNA polymerase of the ancestral bacterium.
It is assumed that the phage-type plastid RNA
polymerase evolved by duplication of the nuclear
gene encoding the mitochondrial enzyme, and
re-targeting of the gene product to plastid [13].
Several plastid promoters have been shown to
direct the transcription of genes in prokaryotic
cells [ 14], and the expression of chloroplast genes
in E. coli cell-free extracts allows identification
and localization of many of the genes for
photosynthesis components [15,16,17]. How-
ever, there are some cases where transcription
Initiation sites are not preceded by typical
consensus elements [ 18], e.g. rnS and trnR genes
in spinach and a light-inducible psbD/psbC
promoter in barley and wheat [19,20,21].
Recently, another non-consensus type promoter
in the S’ region of the tobacco arpB/E operon
has been reported [22]. Transcript levels from
these promoters have been decreased by
cyclohexamide, a cytoplasmic protein synthesis
inhibitor, providing further evidence for non-
consensus-type plastid promoters [22]. More
recently, it has been shown that many plastid
genes and operon have at least one promoter each
for E. coli-like RNA polymerase and nuclear-
encoded plastid RNA polymerase [23].

Transcription of plastid genes by one or both
RNA polymerases reflects their function. PEP
transcribes Photosystem I and 11 genes; therefore
it plays an important role in chloroplast gene
expression. In the absence of the PEP, non-
photosynthetic proplastid is still maintained
indicating that NEP transcribes all essential
housekeeping genes. Indeed, most non-
photosynthetic genes have promoters for both
RNA polymerases. Only a few genes are known

nscribed ex« lusively from a NI .;'
a subunit of the acetyl
ots [23] (this gene 18
clpF

to be tra
promoter: accD encoding
CoA carboxylase in dic |
encoded by the nucleus 1n nmn.mnl\“; om
g the proteolytic subunit of the Clp /

encodin ;
in monocots, and the rpof

ependent protease
:i)pgron in :ll higher plants [24,25]. -Thg'7’7)t(|:€
operon includes rpoB, rpoCl and gt
genes for three of the four PEP corc‘\sub!.mll.s.
Transcription of the rpoB operon |s.h|g.h_')'
regulated (1,000-fold), controlling the availability
of the PEP. Thus, the rpoB NEP promoter plays
a central role in chloroplast development. It is
assumed that the phage-type plastid RNA
polymerase evolved from a mitochondrial
enzyme [13]. We propose that, initially,
transcription of plastid genes by the NEP
occurred from spurious promoters, generating
additional sets of RNAs for plastid genes. NEP
probably became indispensable when it took over
transcription of essential genes, such as the rpoB
operon encoding the subunits for the PEP, the
RNA polymerase derived from the ancestral
cyanobacterium. Transcription of PEP genes by
the NEP was probably a critical step of the
nucleus indirectly taking control of the
transcription of plastid genes, thereby fully
integrating plastids in multicellular plants.

Selectable Marker Genes to Manipulate
Plastome

The selectable marker genes confer
resistance to drugs in plastids. These drugs inhibit
chlorophyll accumulation and shoot formation
on plant regeneration media. A number of drugs
like hygromycin, lincomycin, spectinomycin,
streptomycin, kanamycin or G418 and
phosphinothricin (PPT) encoded by hph, aadA,
nptll and bar genes, respectively, have been used
to select and screen cells or plants carrying these
genes during the process of plant genome
engineering and selection. Of these, the genes
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encoding spectinomycin, streptomycin,
kanamycin and phosphinothricin (PPT) have
been successfully used to select cells with
transformed plastid genome. During normal
selection procedure, marker gene recipient cells
go through phases of embryogenesis and
organogenesis before regenerating as green
shoots. During the time of embryogenesis and
organogenesis. the wild type and transformed
plastids and plastid genome copies gradually sort
out. Extended period of genome and organelle
sorting yields chimeric plants consisting of
sectors with wild type and transgenic cells. In
the chimeric tissue, antibiotic resistance
conferred by marker gene (s) is not cell
autonomous: transplastomic and wild type
sectors are both green due to phenotypic masking
by the transgenic tissue. Chimarism necessitates
asecond cycle of plant regeneration on a selective
medium. In the absence of a visual marker, this
is an inefficient process and ends up in
heteroplastomic tissues or plants in most of the
transformation events [26]. To facilitate this
system, a gene providing visual selection and
screening is required. Availability of such genes
is discussed below.

Reporter Genes to Manipulate Plastome

In addition to selectable marker genes, vital
reporter genes undoubtedly contribute to the
development of transformation technology by
serving as tools for visual monitoring of
transgene expression in transformed cells, tissues
and organisms. A number of genes have been
used to study gene expression, in plants as well
as animals, as reporters. For example, the genes
encoding B-glucuronidase, wuidA [27] and f-
galactosidase, lacZ [28], chloramphenicol acetyl
transferase, cat and neomycin phospho-
transferase, nptll [29,30], nopaline synthase, nos
[31,32], octopine synthase, ocs [33] and
luciferase, luc [34] have been used as reporter
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genes for transformation. From these genes. uidA
has successfully been expressed transiently and
is stable in a variety of organisms [35,36]

However, histochemical detection of GUS in
plant organelles requires prolonged incubation
because the envelope membranes of the
organelles act as a selective barrier to substrate
penetration. Moreover, chlorophyll bleaching in
plants is required to make GUS staining more
effective using either ethanol or chloral hydrate
[37]. Furthermore, chemicals and physical
procedures used in staining disrupt cell
ultrastructure [38].

The use of a non-toxic marker to identify
transgenic cells after transformation is an
effective procedure for discerning transformed
cells/organs and removing untransformed or non-
expressing cells, tissues or organs. The green
fluorescent protein (gfp) of the jellyfish,
Aequorea victoria, has recently been used as a
reporter gene in plants and animals [38,39.40,
41,42,43,44] which provides an easily scored
cell-autonomous genetic marker in plants and has
major uses in monitoring gene expression,
protein localization and screening of
transformation events at high resolution. The
green fluorescent protein has successfully been
expressed in E. coli and chloroplasts of tobacco,
rice [26], different plastid types [45] and potato
using chloroplast as well as bacterial-specific
expression signals. It was therefore expected that
genes would be expressed from bacterial
promoters in chloroplasts. This protein has been
expressed in plastids transiently [45] as well as
stable expression of gfp in chloroplasts under the
control of such bacterial promoters has been
obtained successfully [46]. The development of
a gene encoding bifunctional proteins can
minimize the use of different set of promoters
and terminators and may result in plastid DNA
fragment deletion through homologous
recombination due to homology with plastid
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DNA, and physical separation of the genes.
Moreover such a gene will facilitate both
selection and visual screening of recipient cells.
Such a gene has been developed through
translational fusion of aadA (a selectable marker
gene) and gfp (a visual reporter gene from
jellyfish) genes called FLARE-S (Fluorescent
antibiotic resistance enzyme conferring
resistance to spectinomycin and streptomycin).
This bifunctional protein facilitates plastid
transformation to rice beside tobacco, where
plastid transformation is not associated with a
readily identifiable phenotype [26].

Techniques to Manipulate Plastome

The prerequisite of plastome engineering in
plants is the availability of efficient tissue culture
system to provide mature chloroplasts as targets.
Different explants such as leaves in tobacco [47],
Arabidopsis [48], potato and embryogenic cells
in rice [26] provide different plastid types and
proplastids to mature chloroplasts as targets
during plastid transformation process. Other
prerequisites include a method to deliver foreign
DNA through the double membrane of the
plastids, efficient integration of the heterologous
DNA without interfering with the normal
functions of the plastid genome and efficient
selection and screening of the transplastome.
Work on transient gene expression in plastids in
several laboratories has provided different means
to introduce foreign DNA into the plastome.
These include Agrobacterium [49], polyethylene
glycol (PEG) treatment [50,51,52], biolistic DNA
delivery [53,54] and microinjection [55]
methods. Of these methods, only PEG treatment
[51,52] and biolistic DNA delivery [47,56,57]
have yielded stable plastid transformants. Of
these two, only biolistic DNA delivery method
is being used to extend plastid transformation to

different plastid types in different plants including
dicots [45,47,56] as well as monocots [26]. A
pictorial protocol for plastid transformation to

A into the plastid genome in highes
’

” ]
sorale DN
integ 1) and summarized

plants 1s given here (Fig
below.

During the process of plastid transformation
by biolistic delivery, the PN/\ I}l()ls‘t‘llls‘? are
precipitated onto the surface of microscopic
metal particles either of gold or lung-"@“ that
carry at least 20 to 50 copies of the pla.s:mnd DNA
[58]. However, a single or at the most l'cw copies
of the DNA come in contact with plastid genome
resulting in the development of transplastomic
clone after transformation cells or leaf pieces are
placed on regeneration medium containing a,’
drug. In most of the cases, the drug used to select
and screen transformed cells is spectinomycin’
encoded either by mutated 16S rRNA genes
[47,59,60] or by bacterial gene aadA [56).
Sensitive cells tart regenerating into green plants.
During this process, the cells have to go through
at least 16 to 17 divisions to regenerate into
homoplastomic transgenic clones. Selection, !
using aadA gene, yields 100-fold increase in '1
plastid transformation efficiencies compared to
that obtained with mutant 16S rRNA genes [56].
Low transformation efficiency using mutant 165
rRNA genes is explained by elimination of 99
out of 100 copies of the integrated DNA before
the recessive selectable marker can be expressed
[56].

The foreign DNA integrates into the plastid
genome through two homologous recombination
events (Figure 2). The selectable and passenger
genes in a transformation vector are flanked by
chloroplast DNA on either side to integrate
foreign DNA at a specific site. The challenge
faced by the plastid transformation technology
is the introduction and expression of passenger
genes in the plastid in the absence of selectable
marker and to extend this technology to non-
green plastids of cereal crop plants. As discussed
later, research is in progress for solving these
problems.
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Figure 1. Plastid transformation. A. Introduction of DNA using PDS 1000 He biolistic gun. B &
C. Selection of plastid transformants on regeneration medium containing
spectinomycin that results in regeneration. D. Regeneration and proliferation of
regenerated shoots on selection medium. E. Regenerated shoot was excised and placed
for rooting and transfer to soil after obtaining homoplasmicity.

A L B

A B B

Mnsplastome

Left border  Marker Right border
gene

Figure 2. Gene insertion into the plastome. A and B are plastid DNA fragments used to introduce
a marker gene (C) into the plastome through homologous recombination events
between A & B in the plasmid DNA and plastid DNA.
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Present Status of Engineering Plastome in
Plants

Although successful and reproducible
plastome engineering is limited to such model
species as Chlamvdomonas and tobacco, 1t has
also been recently achieved to some extent in
many other plants like Arabidopsis [48], potato
and rice [26]. An intensive effort is required to
make this system more reproducible in crop
plants other than tobacco to get deeper insight
into the molecular biology of plastids than is
currently available. Among higher plants, very
low transformation through plastome engineering
has been reported in Arabidopsis with unfertile
regenerated plants [48]. As in tobacco,
chloroplast transformation in potato has resulted
in stable transformation events after bombard-
ment of leaves using bacterial gene aadA that
encodes aminoglycoside 3"-adenylyltrans-ferase
conferring resistance to spectinomycin and
streptomycin which inhibit translation of
mRNAs. However, plastid transformation has
remained a mystery in cereals such as rice due to
the unavailability of efficient tissue culture
system that could provide mature chloroplasts
as targets as happens in tobacco, Arabidopsis and
potato. Regeneration of plants is not possible
through leaf tissue in vitro. Alternative
approaches are to bombard either embryos or
scutellum-derived calli. Since collection of
embryos at mass scale is a very intensive and
laborious process, the choice is limited to
developing embryogenic cells from the

scutellum.

In rice, plastid transformation is thus not
associated with readily identifiable tissue culture
phenotype and the target is not mature
chloroplasts. Therefore, only proplastids are
available to access the plastome. Proplastids are
smaller than the microprojectiles used in the
biolistic transformation protocol, a major

drawback with transforming the plﬂnsndg ,n{
ugrmmmicnlly important crop plants. ‘Sl”lc)::’”l_';
plastids may not be a problenll for the erS(l e
the particles do not have to hit the target p .d-s 1d:
directly, as thought previously, because In the
PEG (polyethylene glycol treatment) treatment
method the DNA is targeted to the cellular
compartment where it is imported into 'the
chloroplasts. However, the exact mechanism
involved in targeting the DNA into he plastids is
not yet known. In the absence of alternative
protocols for transforming rice proplastids,
embryogenic rice cells have been bombarded
with constructs containing FLARE-S [26],
excluding the possibility of directly hitting the
plastids. Plants obtained with this procedure are
genetically unstable. However, our effort
continues to be directed at search for an
alternative protocol and gene expression signals
that could be help in developing fertile and stable
transgenic plants of rice. The results are
encouraging, especially when GFP is used to
express in different plastids types of marigold,
carrot roots and pepper fruits, under plastid gene
expressing signals, transiently [45]. Together
with the results obtained with FLARE-S. our
results show that foreign genes can be expressed

in non-green plastids and, at least in case of rice,
the DNA can be incorporated into the genome

of non-green plastids. Moreover, the results with
potato and rice provide a good start for
broadening the species range of the technology.

Future Status of Engineering Plastome in
Plants

The compelling demand for expressing
multiple genes controlling multiple traits, into
the same recipient plant, favors the engineering
of organelle genome of the plants. The ability
for genetic transformation of the plastid genome
in higher plants is aagmely atmcu've ar‘ad
important for development of transgenic traits
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ultimate objectives of gcnilcli:::v:v'(hc 'r‘oad‘ 1
decipher w‘hal and f'lOW events (i:""‘c‘.:"”“i;' e
o § occur inside the
h\fmg cells or organisms during the process of
Falloring particular characters of economic
1mp9rlancc in them. The application of plastome
engineering of crop plants will depend on choice
or suitability of plant material for cell culture
manipulations, a prerequisite of plastid
transformation technology, and on an efficient
system to detect transformation events.

As plastids of higher plants house many
biochemical pathways such as biosynthesis of
starch, amino acids and lipids encoded
exclusively by nuclear genome, beneficial
alteration of these processes can be explored by
incorporating heterologous genes into the
plastome. Keeping in view such ideas or points,
a number of characteristics have been tailored in
the tobacco model through plastome engineering.
The following are some salient examples of such
research activities: (1) high level expression of
Bt genes to eliminate the possibility of low
toxicity effects on insects resulting in the
development of resistance against pesticides [61],
(2) diversification of resistance to insects of
different orders in the same plant by stacking
different cry genes in an operon form (e.g. Bt
cry2aa2 operon) in tobacco chloroplasts leading
to formation of insecticidal crystals [62], (3)
expression of anti-microbial peptide (AMP), an
amphipathic alpha-helix molecule that has an
affinity for negatively charged phospholipids
commonly found in the outer-membrane of
bacteria in tobacco chloroplasts and retaining
biological activity against Pseudomonas syringae
(amajor plant pathogen), and (4) altering plastid
genome by utilizing yeast trehalose-6-phosphate
synthase gene for developing drought tolerance
in tobacco plants (Henry Daniell, personal
communication). In addition to these, marker-free
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selection of chloroplast transformants has also
been obtained [63]. Hopefully, plastid genome
engineering in plants may become an industry in
the near future for expressing highly pure, safe
and cheap proteins of pharmaceutical and
consumer interest.

Conclusions

Engineering chloroplast genome of land
plants is becoming an important Bio-Industry
since the first chloroplast transformant was
obtained in 1990 by Svab et al. [47]. Plastid
transformation provides a means of producing
bio-safe transgenic plants engineered for different
traits such as development of insect-resistant,
herbicide-resistant, bacterial-resistant and salt/
drought-tolerant plant lines. Moreover, oral
vaccines would become available in near future.
Although there are always some limitations,
engineering plastome remains an excellent choice
for developing environment friendly transgenic

plants.
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