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ABSTRACT ARTICLE HISTORY
Films of husks of Plantango ovate, Cydonia oblonga, Mimosa pud- Received 3 March 2021
ica, Cochlospermum religiosum were prepared, delignified without Accepted 29 April 2021
protein and cellulose content, and their optical properties were
evaluated. UV-Vis, FTIR TGA analysis revealed that these natural
materials have strong potential in fiber optics, contact lenses and
human transplantation infrastructure applications, where there is
need of efficient transparency, high thermal stability and good
conductivity with minimum light absorption. These natural poly-
meric films possess significant direct and indirect optical band
gap values and better optical conductivity than currently in use
synthetic polymeric materials. The Refractive index of these films
is also found high in the visible region in comparison to pure or
composite metal-doped synthetic films. Urbach energy (Eu),
Dispersion energy (Ed), Average oscillation wavelength (o), and
oscillation strength(So) of this hemicellulose based natural poly-
meric films were found to be appropriate for such optical materi-
als which are green, organic, economical and compatible to
human systems.
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Introduction

In 1953 Franz Urbach presented the idea of Urbach’s rule to explain the optical prop-
erties of metal halides [1]. Similarly, Magnum Opus reported some optical properties
of polymers but to date, limited information is reported regarding Urbach’s energy of
polymers particularly natural polymers. The history of polymers is about 100 years
old; the first nitrocellulose-based natural plastic was obtained in 1862 by the Parkes
[2]. Polymers are very dynamic and diverse in their properties that’s why they show
an extensive range of features with little variation in reagents [3-7]. Various natural
polymers like collagen [8] alginate [9] Polysaccharides in the form of chitosan [10]
cellulose [11] starch [12] and glycosaminoglycans as hyaluronic acid [13] have been
used in many applications.

Hydrogels are soft and absorptive polymer networks that can hold a huge quantity
of water with the retention of its shape in water used as a disperse medium [14]. One

CONTACT Hina Abid @ hinaabid@fccollege.edu.pk @ Department of Chemistry, Forman Christian College, A
Chartered University, Lahore 54000, Pakistan.

© 2021 Informa UK Limited, trading as Taylor & Francis Group


http://crossmark.crossref.org/dialog/?doi=10.1080/09205063.2021.1925392&domain=pdf&date_stamp=2021-06-06
https://doi.org/10.1080/09205063.2021.1925392
http://www.tandfonline.com

2 H. ABID ET AL.

of the unique features of hydrogels is its similarity with human soft tissue which
makes hydrogels as a promising candidate for biomedical use [15-18] such as in gene
vectors, [19] tissue engineering, [20,21] biosensors, [22,23] and cosmetic industry
[24]. These application demands excellent biocompatibility and controlled biodegrad-
ability of hydrogels. As natural polymer hydrogels are more biocompatible, and bio-
degradable than synthetic polymer-based hydrogels, that is why they have remarkable
potential in biomedical fields [25-30]. Several natural polymers are widely available
in plants, animals, and organisms having high molecular weight compounds with a
linear long-chain produced by repeating units as a basic structure [31-38].

Hemicelluloses are hetero-polysaccharide compounds. Various sugar units with dif-
ferent substituents make hetero-polymeric chains of polysaccharides. Their chain are
shorter than the chain length of cellulose [39]. Several agricultural residues contain
approximately 20-30% hemicelluloses, it is the second most abundant biopolymer
found in nature. Due to nontoxicity, structure versatility, hydrophilicity and great
tendency for chemical modification make the hemicellulose as likely material for mul-
tiple applications such as in agriculture land for slow release of fertilizers, biomimetic
mineralization and as biosensors [40] There are multiple methods to segregate the
hemicellulose from rest of biomass material but each method hold certain limitations
associated with it such as acid pretreatments (using strong mineral acids can degrade
the sugars) liquid hot water extraction (can cleave the functional groups) Ionic liquid
method (could give us high purity but required extensive processing) that is why
alkaline extraction method is well studied and broadly used method. As for the syn-
thesis of hydrogels and film alkaline extraction is extremely important to extract
hemicellulose from rest of biomass [41]

Films obtained from the seeds and husk of Plantango ovate, Cydonia oblonga,
Mimosa pudica, and Cochlospermum religiosum are studied in this article. Diversity in
properties of natural polymers is due to variation in adopted mode of purification
and because of chemical properties of added reagents. Thermal and optical properties
of the addressed polymers are magnificently suitable for optical applications and the
scarcity of information on these properties of natural polymeric films is the motiv-
ation of this article.

Aim of this research is to extract and synthesize most appropriate, human compat-
ible and economical raw materials to use in the field of fiber optics, ophthalmic lenses
and for encapsulation of various drugs for their controlled release.

Experimental
Method

The husk of Plantango ovate, Cydonia oblonga, Mimosa pudica, Cochlospermum reli-
giosum were purchased from the local market of Lahore, Pakistan. All the samples
were taken and soaked overnight into distilled water (approximately 10g in 1000 mL)
in dark to for maximum absorption of water in plants husks and seeds. The volume
of the material is enhanced multiple times by addition of water and then turned into
mucilaginous mass. After 24h of soaking, the upper layer of the mucilaginous mass
was decanted off into a separate container and blended using Black and Decker
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Figure 1. Raw film obtained before delignification.

Model Germany Blender for 5 to 10min to homogenize the material uniformly.
Afterward, blended mucilaginous material was left intact for ten minutes. The muci-
laginous mass was filtered using 3 to 4 folds of Muslin Cloth as filter media to
remove all fibers and suspended impurities. After filtration the mucilaginous material
was spread over the polyethylene sheets in polypropylene trays to turn into the uni-
form film by drying under persistent cold air. Once films were formed, it was
observed that these films still possess certain color substances due to the presence of
lignin content in the materials which is present naturally in hemicellulose materials.

The films were then submerged into the solution of 10% solution of sodium sulfite
(optimized the concentration according to the nature of films obtained) using alkaline
extraction [40] in order to remove cellulose and lignin. The solution was then agi-
tated continuously for 8 to 10h using magnetic stirrer LabTech Korea. Subsequently,
mucilaginous mass was then washed with water and ethanol respectively and spread
again on polyethylene sheets in polypropylene trays to get transparent films. This
process was repeated for multiple times till transparent pure hemicellulose films were
obtained (Figure 1).

Characterization

Fourier transform infra-red spectroscopy (FTIR)
The FT-IR spectra were recorded in using Agilent Technologies Cary 630 FTIR in
Transmission Mode at the wave number range 4000 to 630 cm ™'

Thermogravimetric analysis (TGA)

The TGA/DSC data was recorded using Thermogravimetric analyzer SDT Q600 TA
Instrument USA. from ambient temperature to 800 Degree Celsius by using tempera-
ture ramp of 20°C/min in the presence of 10 mL/minute Nitrogen supply for inert
atmosphere for the evaluation of the pyrolysis weight loss.

Optical studies

Optical studies of the prepared films were performed by using UV spectrophotometer
Model Make. The UV-Visible spectra were recorded in Absorption and Transmission
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Figure 2. FTIR of Plantango ovate, Cydonia oblonga, Mimosa pudica, and Cochlospermum religiosum.

mode at the wavelength from 200nm to 800 nm. Using UV visible absorbance values
UV-Visible Absorption and Transmittance Spectra was analyzed, and Optical Energy
Band Gap, Refractive Index, Optical Dispersion Parameters, Optical Conductivity and
Urbach Energy were calculated.

Results and discussion
FTIR studies

The FTIR spectra of films prepared after extraction of materials from husks of
Plantango ovate, Plantango ovate, Cydonia oblonga, Mimosa pudica, Cochlospermum
religiosu plants are shown in the Figure 2. The characteristic wavelength around
1246 nm is because of hemicellulose structure correspond to C-H stretching and
deformation of —-CHj;. Absorptions in the region of 1400-1660 nm are associated with
O-H stretching. As for lignin, the characteristic wavelength of 1404 nm is disappeared
due to the delignification of the all four samples. The wavelengths of 1600 nm and
1725 nm relate to C-H vibration. A distinct peak at 1148 nm is due to glycosidic link-
age in polysaccharides. The signal approximately 1725 nm, which appears is for hemi-
cellulose may relate to the C-H stretching of —-CH,. The common characteristic
wavelengths of near 1800 approximately 1725nm are recognized to CO stretching of
—-CO,H and the combination of O-H stretching and deformation vibrations. The sig-
nal around 2100 nm is connected with the combination of O-H and C-H stretching
vibrations for hemicellulose.

Thermogravimetric analysis

The films obtained from plant husks are natural polymers consisting mainly of hemi-
cellulose compounds having carbon and hydrogen network with multiple hydroxyl
groups. The films of a husk of Plantango ovate (sample 1), Cydonia oblonga (sample
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Figure 3. Thermogravimetric analysis of Plantango ovate (1), Cydonia oblonga (2), Mimosa pudica
(3), and Cochlospermum religiosum (4).

2), Mimosa pudica (sample 3), and Cochlospermum religiosum (sample 4) were taken
for the analysis.

All samples are similar in its chemical nature and almost shown similar peaks to
depict percentage weight loss as shown in Figure 3. One major curve difference is
35.77% weight loss which we might be due to the decarboxylation and dihydroxyla-
tion. The lower minor curve indicates ash and hydrogen gas evolution which is
14.39%. This confirmed the composition of material which is only comprise of hemi-
celluloses. The glass transition temperature (Tg) is found between 250 to 300 Degree
Celsius which make them thermally stable materials to resist the temperature vari-
ation in human body and made them compatible to be used as lens by providing lon-
ger shelf life, as drug binder by tuning for temperature and pH sensitivity and even
in fiber optics for better conduction of signals.

Optical studies

Optical studies of synthetic and natural polymers are mandatory for applications
including optical fibers, packaging, electronics, photonics, and many more [42-48].
To deal with light-sensitive and light-transmitting features of polymers we need to
have a particular set of optical parameters with a given range of optical properties.
Although ophthalmologists have long been aware of the lethal effects of poor optical
quality in spectacles lenses, there is still limited knowledge of the effects of the poor
optical quality of contact lenses. Any abnormality in the refractive surface of the lens
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Figure 4. Inset graph of transmittance and absorption in Visible region of Plantango ovate (a),
Cydonia oblonga (b), Mimosa pudica (c), and Cochlospermum religiosum (d).

cause variation in the shadow cast by the lens. Refractive index, transmittance, and
dispersion energy are the most vital optical parameters required to be evaluated for
materials to be used for optical applications. Some important optical parameters are
discussed below.

UV-visible absorption and transmittance spectra

Absorption and transmittance spectra of the husk of Plantango ovate, Cydonia
oblonga, Mimosa pudica, and Cochlospermum religiosum are shown in Figure 3 The
absorption bands around 280nm for Plantango ovate and Cydonia oblonga while the
absorption band at 340 nm for Mimosa pudica and Cochlospermum religiosum can be
assigned to the transitions of n 7* and n 7*. No characteristic absorption band struc-
ture is observed in the visible region and also the absorption is very low in this
region that can help us to conclude with the fact that hemicellulose films are trans-
parent to the visible region as it is depicted in the graph of the UV region with
Visible region as shown in Figure 4 From Figure 3, it is depicted that for transparent
materials the absorption should be minimum and transmittance should be maximum.
In this regard Plantango ovate is considered to be the most suitable natural polymer
while Cydonia oblonga and Mimosa pudica both have quite comparable behavior
which made them as potential substance to be used as translucent material.
Cochlospermum religiosum shown relatively more absorption because it imparts light
shade which make it to absorb more light. Although it is not crystal clear which
make it suitable to be used as lens, but it is showing excellent features for rest of
optical and thermal properties.
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Determination of optical energy band gap

The optical and electrical behavior of polymers can be explained by considering their
bandgap. The optical band gap determines that what portion of solar spectrum any
material could absorb. The optical absorption spectrum can be an important tool for
the determination of such a bandgap. The absorption is caused by transitions between
valence and conduction band states positioned near the respective mobility edges and
is expressed by optical band gap energy (E,). Mott and Devis [49,50] developed an
equation as shown below which relates the absorption coefficient as a function of
bandgap (E,) and photon energy.

(ahv) = B(hv — Eg)™

In the above-mentioned equation, “B” is a constant and a factor that depends on
transition probability whereas “m” is used to specify the type of electronic transition
and is related to the distribution of density of the states. The “m” is an index describ-
ing the type of optical transition where it receipts the value 1/, for direct transition
whereas for indirect transition m goes out to be 2 [45-49]. Here “o” is the absorption
coefficient of the material, “hv” is the photon energy and “E,” is bandgap energy. the
value of m=1/2 is for direct allowed transitions and m =2 for indirectly allowed
transitions. Direct as well as indirect band gaps are possible for Plantango ovate,
Cydonia oblonga, Mimosa pudica, and Cochlospermum religiosum. (ahv)"? was plotted
against independent variable photon energy (hv) to obtain an indirect bandgap. The
plots of (xhv)”? versus the photon energy (hv) are shown in Figure 5 for the
Plantango ovate (a), Cydonia oblonga (b), Mimosa pudica (c), and Cochlospermum
religiosum (d). Extrapolation of the linear portion of the curve to the point (ahv)?
= 0 gives the indirect optical energy bandgap. Such bandgap for Plantango ovate is
4.8¢V, for Cydonia oblonga it becomes 4.4eV, Mimosa pudica estimated value is
3.9eV and 3.9eV for Cochlospermum religiosum. Yoshimichi Ohki reported that the
bandgap energies vary with different functionalities of the polymers. It is rather high
in linear polyolefin polymers such as 6.9 and 7.0eV for polyethylene and polypropyl-
ene, respectively. However, the polymers with aromatic rings partake low band gap
energies. Hemicellulose is neither contain olefin nor aromatic rings in their structure
that is why their bandgap energy lies in between of both of these categories.

Whereas plot of (xhv)” verses hv was used to get the direct bandgap energy. The
plots of (xhv)’ versus the photon energy are shown in Figure 6 for the Plantango
ovate (a), Cydonia aoblonga (b), Mimosa pudica (c), and Cochlospermum religiosum
(d). Extrapolation of the linear portion of the curve to the point (ahv/’= 0 gives the
direct optical energy bandgap. Such bandgap for Plantango ovate is 5.9eV, for
Cydonia oblonga it becomes 5.5eV, Mimosa pudica estimated value is 4.6eV and
5.4 eV for Cochlospermum religiosum.

It is evident that for each sample the direct bandgap energy is higher than indirect
bandgap energy [46]. Direct and indirect bandgap energies are quite independent
from each other.
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Figure 7. Variation of Extinction coefficient (K) with the change in wavelength of light for
Plantango ovate (a), Cydonia oblonga (b), Mimosa pudica (c), and Cochlospermum religiosum (d).

Refractive index

The Refractive index is also a significantly important physical parameter to assign the
optical and electronic properties of the material system. The materials for optical and
optoelectronic items are highly inclined by the nature and magnitude of such physical
parameters [51]. High refractive index optical materials are needed in various fields
including ophthalmic lenses, optical waveguides, LED encapsulation objects, anti-
reflection films, and adhesives for optical components [42-47].

The Refractive indices are closely related to the structural features of polymeric materials.
The refractive indices for the samples were determined by the following equation [45-47].

7(;1—1)2—1—1(2
(n+1)7>+K2

Where “R” is the reflectance and “K” is the extinction coefficient (K =«4/47). The
data for reflectance is from the values of absorbance (A) and transmittance (T) using
the following equation [45-47].

T = (1—R)’exp(—A)

Refractive index (n) and extinction coefficient (K) are shown in Figures 7 and 8.
The Refractive index of any material is associated with the electronic polarization of
the ions and local field inside of the material [51]. The electronic polarization increases
with the frequency [52,53] therefore the RI also increases with the frequency.

In general, the behavior of refractive index (n) and extinction coefficient (K) follow
the same pattern, the extinction coefficient (K) decreased with an increase in the wave-
length except for Mimosa pudica (sample 3) which is also depicted through absorption
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spectrum, this variation is due to presence of slight shade and bit more thickness of the
film in comparison to rest of the films while refractive index (n) decreases with the
increase in wavelength for all the samples. The refractive index at 600 nm wavelength for
Plantango ovate is 2.5, Cydonia oblonga is 3, Mimosa pudica is 5.2 and Cochlospermum
religiosum possesses 3.75. The higher the value of the Refractive index, greater the time
required to travel through that material. The variation of the refractive index is a prop-
erty of dispersion that directly affects the functional properties of optical materials.

Optical dispersion parameters

The dispersal of RI of polymeric films with maximum transparency region of wavelength
has been examined in terms of the Wemple-Di Domenico single effective oscillator
model [54]. Refractive index (n) as a function of wavelength was fitted to Wemple-Di
Domenico single oscillator model; and the parameters like single oscillator energy (E,),
dispersion energy (E,), average oscillator wavelength, and oscillator length were also eval-
uated, and the results are discussed. Wemple-Di Domenico model expressed the relation
between the refractive index (n), Eo, and Ed by the following relation [54].

1 E, 1
n*—1 E; E.E,

(hv)?

Here, E, is the average excitation energy or oscillator energy gap for electronic
transitions, and E4 is the dispersion energy measuring the strength of inter-band
optical transition [47] (Figure 9).



JOURNAL OF BIOMATERIALS SCIENCE, POLYMER EDITION 1

(a) (b)
01 0.07
. ({1}
0.09 Cos, 006 [***%0eeq,
0.08 o. %0, ®90.0.¢
0.07 o 0.05 ®eaq,
Ad .
u ®oy - o.q
- 0.06 Lo & oo oy,
0.05 Yoy Cogy
Q P s Cyy
S 004 e = 003 L&
S 00 *%o.0, - y=-0.0048x + 01278
0.03 y=-0.0165x + 0838, ¢ i R?=0.9952
0.02 R?= 09927
0.01 0.01
0 0
7 25 8 85 29 295 30 305 31 % = = P p= G " 55
E? (eV)? E? (eV)
(© (d)
0.014 o
0.0135
06 [| e
6. g g
0.013 hi M
- A Rt S W "0
T I I I T T o
- 00125 -9, - T el .
: - ...
I B, (\l. 04 o
= oo e = y=-0.0577x + 1.6073
- R — 03 R?=0.977
00115 e
0011 A 02
) y = -0.0004x + ®261., 01
0.0105 R?=0.9936 .
0.01 0
29 30 31 32 33 34 35 36 17 175 18 185 19 195 20 205 2
E? (eV)? E? (eV)?

Figure 9. Plot of (1/n%-1) Vs (Energy)2 Plantango ovate (a), Cydonia oblonga (b), Mimosa pudica (c),
and Cochlospermum religiosum (d).

E4 and E, can directly be calculated from the intercept (E,/E4) and slope (1/E,Eq)
of the linear fitted lines by plotting1/(n2-1) versus E* shown in Figure 8 Actually, E4
measures the average strength of the inter-band optical transitions and is related to
the charge distribution, whereas E, measuring the average energy bandgap [30]. It
may be noted that the value of the oscillator energy (E,) follows the same trend with
the optical energy bandgap (E,) calculated from Eq. (2) for bandgap.

However, the calculated energy gaps from the W-D model are somewhat higher
but reasonably close to that obtained from the energy band gap equation. Based on
the concept of bandgap by Mott and Devis [49,50]. The evaluated values are summar-
ized in Table 1.

As the wave-length (1) depends on the refractive index, average inter-band oscilla-
tor wavelength (/), the long-wavelength refractive index (n..), and the average oscil-
lator strength (S,) for all the films are obtained from the following relations based on
the single term Sellmeir oscillator [55].

1 1 1
= — (a2
n?—1 S()}u() So( )

The parameters S, and A, were obtained from the intercept and the slope of the
linear fitted plot [56] of 1/n-1 against A~ as shown in Figure 10. The values
obtained from these curves correspond with the absorption edges obtained from UV-
Vis spectra.
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Table 1. Different optical parameters.

Samples So o Eo Eq
Sample 1 3.966 1.3440 9.2537 1.7264
Sample 2 1.342 4.8530 1.2584 9.8466
Sample 3 1.660 1.5312 8.0982 3.1750
Sample 4 8.548 2.3307 5.3744 5.1800
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Figure 10. The plot of (Wavelength)2 Vs (Energy)2 Plantango ovate (a), Cydonia oblonga (b),
Mimosa pudica (c), and Cochlospermum religiosum (d).

Optical conductivity

The optical conductivity (¢) is an important characteristic of the material to consider
its electronic states. The optical conductivity is represented by o.

onc

c=—
4m

According to this relationship, optical conductivity is related to the basic energy
band structure of the material. Where “a” is the absorption coefficient and is the
velocity of light while n is the refractive index [47,48].

Optical conductivity is the function of wavelength as shown in Figure 11. Where it
has dimensions of frequency. Optical conductivity was found to be decreased with an
increase in wavelength in the visible range of this study (400-800 nm). The value of the
optical conductivity at 600 nm is selected as the backdrop because 600 nm is the aver-

age of the visible range are obtained as 2 x 10'° for Plantango ovate, 3.5 x 10'° for

« »
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Figure 11. Optical conductivity vs Wavelength for Plantango ovate (1), Cydonia oblonga (2),
Mimosa pudica (3), and Cochlospermum religiosum (4).

Cydonia oblonga, 9.5 x 10'° for Mimosa pudica, and 3.75 x 10'° for Cochlospermum
religiosum. Thus at 6 nm, the optical conductivity is relatively highest for Mimosa pud-
ica (sample 3). As it depends on the nature of the material and the absorption coefficient
and for Mimosa pudica the value of a is high that’s why it is showing more optical con-
ductivity while the optical conductivity is quite comparable for Cydonia oblonga and
Cochlospermum religiosum and least for Plantango ovate.

Determination of urbach energy

The defect level of an optical material can be determined by the value of Urbach
Energy. From the absorption spectrum, it is revealed that the spectrum ends towards
the low-energy side below the band edge. These can be ascribed to the transition
from localized states in the valence band to the conduction band. Additives or defects
are the reason for localized states [57]. For amorphous materials, Urbach energy can
be calculated by using the following equation.

a(v) = oy exp (hv/E,)

Where E, is Urbach energy which depends on the width of the localized states in
the optical bandgap. and oy is a constant. The values of Ino verses hy are plotted
and shown in Figure 12. The value of E, can be calculated by the inverse of the slope.
It explains the defect level of in optical band gap of the films. The value of E, for
Plantango ovate is 2.9eV, Cydonia oblonga is 2.1eV, Mimosa pudica is 1.6eV and
Cochlospermum religiosum possesses 5.6 eV. According to E, values Mimosa pudica is
the most pertinent material for optical applications while it is least suitable for the
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Figure 12. Plots of Ina vs. energy (eV) for Plantango ovate (a), Cydonia oblonga (b), Mimosa pudica
(c), and Cochlospermum religiosum (d).

synthesis of contact lenses similarly Cochlospermum religiosum possess least potential
for optical devices while rest of the materials are quite appropriate to be used as a
potential raw material for contact lens synthesis and to use as a drug binder or to
show good adsorption capabilities to remove metal ions.

Comparatively the E, (Urbach energy) value is lower than the E; (bandgap energy)
or E, (dispersion energy) values. Thus, it is also evident that E; (bandgap energy) val-
ues are lower than E, (dispersion energy) values but higher than E, (Urbach
energy) values.

It can also be observed that disorder in optical material affects the band gap
regardless of the type or nature of the defect [57].

Conclusion

Films of a pure husk of Plantango ovate, Cydonia oblonga, Mimosa pudica,
Cochlospermum  religiosum were prepared and proteins, lignin, and cellulose was
removed to make transparent films for a variety of applications. Thermal analysis
indicates that obtained material is quite stable substance and can sustain high tem-
perature as their Tg is around 250 to 300 °C. Spectral information reveals that these
are transparent materials with minimum absorption and maximum transmittance.
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The optical studies indicate that both the direct and indirect bandgap of each of the
natural polymers are comparable. The purity of the extracted substances have high
optical conductivity and a good refractive index. Optically, these natural polymers are
suitable to possess noteworthy values of dispersion and Urbach energy. In recent
times researchers are in search of understanding how disorder influences the optical
absorption spectrum of a material system. This paper is an effort to understand how
the thermal and structural components of the disorder within these natural polymeric
films contribute to the optical properties of the films. These results are quite inform-
ative and interesting and might help to observe their applications not only from fiber
optics to transparent contact lens materials but also for their use as drug binder and
adsorptive biomass to remove heavy metals from organic dyes to industrial effluents.
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