Х

Hamiltonicity in Directed Toeplitz Graphs $T_n\langle 1,3;1,t\rangle$ by Shabnam Malik

Abstract

A square matrix of order n is called a Toeplitz matrix if it has constant values along all diagonals parallel to the main diagonal. A directed Toeplitz graph $T_n\langle s_1,\ldots,s_k;t_1,\ldots,t_l\rangle$ with vertices $1,2,\ldots,n$, where the edge (i,j) occurs if and only if $j-i=s_p$ or $i-j=t_q$ for some $1\leq p\leq k$ and $1\leq q\leq l$, is a digraph whose adjacency matrix is a Toeplitz matrix. In this paper, we study hamiltonicity in directed Toeplitz graphs $T_n\langle 1,3;1,t\rangle$. We obtain new results and improve existing results on $T_n\langle 1,3;1,t\rangle$.

Key Words: Adjacency matrix; Toeplitz graph; Hamiltonian graph, length of an edge.

2010 Mathematics Subject Classification: Primary 05C20; Secondary 05C45.

1 Introduction

Let G be a finite vertex-labeled graph with vertex set $V(G) = \{v_1, \ldots, v_n\}$ and edge set E(G). A graph G' is called a subgraph of G if $V(G') \subset V(G)$ and $E(G') \subset E(G)$. If $E(G) = \{(v_1, v_2), (v_2, v_3), \ldots, (v_{n-1}, v_n), (v_n, v_1)\}$, where $v_i \neq v_j$ for all distinct i, j, then G is called a cycle. A cycle minus one edge is called a path. A cycle that visits each vertex of a graph H is called hamiltonian, and H is then called a hamiltonian graph. We consider here simple graphs, as multiple edges and loops play no role in hamiltonicity. The adjacency matrix $A = (a_{ij})_{n \times n}$ of G is the matrix in which $a_{ij} = 1$ if v_i is adjacent to v_j in G, and $a_{ij} = 0$ otherwise. The main diagonal is zero, i.e., $a_{ii} = 0$ as G has no loop.

A Toeplitz matrix, named so after Otto Toeplitz (1881-1940), is a square matrix which has constant values along all diagonals parallel to the main diagonal. The main diagonal of a Toeplitz adjacency matrix of order n will be labeled 0. The n-1 diagonals above and below the main diagonal will be labeled $1, 2, \ldots, n-1$. Let s_1, s_2, \ldots, s_k be the upper diagonals containing ones and t_1, t_2, \ldots, t_l be the lower diagonals containing ones, such that $0 < s_1 < s_2 < \cdots < s_k < n$ and $0 < t_1 < t_2 < \cdots < t_l < n$. Then, the corresponding Toeplitz graph will be denoted by $T_n \langle s_1, s_2, \ldots, s_k; t_1, t_2, \ldots, t_l \rangle$. That is, $T_n \langle s_1, s_2, \ldots, s_k; t_1, t_2, \ldots, t_l \rangle$ is the graph with vertices $1, 2, \ldots, n$, in which the edge (i, j) occurs, if and only if $j - i = s_p$ or $i - j = t_q$ for some p and q $(1 \le p \le k, 1 \le q \le l)$, see an example in Figure 1. The edges of $T_n \langle s_1, s_2, \ldots, s_k; t_1, t_2, \ldots, t_l \rangle$ are of two types: increasing edges (u, v), for which u < v, and decreasing edges (u, v), where u > v. We define the length of an edge (u, v) to be |u - v|. Note that any increasing edge has length s_p for some p, and any decreasing edge has length

 t_q for some q. If the Toeplitz matrix is symmetric, then $s_i = t_i$ for all i, so the corresponding Toeplitz graph is undirected and can be denoted as $T_n\langle s_1,\ldots,s_k\rangle$. Hamiltonicity results obtained in the undirected case for a Toeplitz graph have a direct impact on the directed case. Hamiltonicity of $T_n\langle s_1,s_2,\ldots,s_k\rangle$ means hamiltonicity of $T_n\langle s_1,\ldots,s_k;t_1,\ldots,t_l\rangle$.

Remark that $T_n\langle s_1,\ldots,s_i;t_1,\ldots,t_j\rangle$ and $T_n\langle t_1,\ldots,t_j;s_1,\ldots,s_i\rangle$ are obtained from each other by reversing the orientation of all edges.

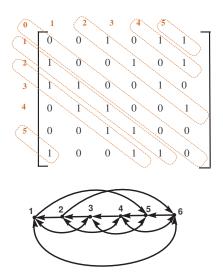


Figure 1: Toeplitz graph $T_6\langle 2, 4, 5; 1, 2, 5 \rangle$

Properties of Toeplitz graphs, such as colourability, planarity, bipartiteness, connectivity, cycle discrepancy, edge irregularity strength, decomposition, labeling, and metric dimension have been studied in [1]-[6], [8]-[12], [14]-[15], and [24]. Hamiltonian properties of Toeplitz graphs were first investigated by R. van Dal et al. in [7] and then studied in [13, 23, 25], while the hamiltonicity in directed Toeplitz graphs was first studied by S. Malik and T. Zamfirescu in [22], by S. Malik in [16], by S. Malik and A.M. Qureshi in [21], and then by S. Malik in [17]-[20].

Suppose that H is a hamiltonian cycle in $T_n\langle s_1, s_2, \ldots, s_k; t_1, t_2, \ldots, t_l \rangle$. The hamiltonian cycle H is determined by two paths $H_{1\to n}$ (from 1 to n) and $H_{n\to 1}$ (from n to 1), i.e., $H=H_{1\to n}\cup H_{n\to 1}$.

In [18], the hamiltonicity of the Toeplitz graphs $T_n\langle 1,3;1,t\rangle$ was investigated. In this paper, we improve upon [18]. In [18], it was shown that: For odd t, $T_n\langle 1,3;1,t\rangle$ is hamiltonian if and only if n is even. For even $t \leq 6$, $T_n\langle 1,3;1,t\rangle$ is hamiltonian for all n. For even $t \geq 8$, $T_n\langle 1,3;1,t\rangle$ is hamiltonian if $n \cong 0,2,4,6,5,7,9,\ldots,t-3 \mod(t-1)$, or if $n \cong 3 \mod(t-1)$ and $t \cong 0,2 \mod 3$. Here we prove that, for even $t \geq 8$ and $t \cong 1 \mod 3$, $T_n\langle 1,3;1,t\rangle$ is hamiltonian if $n \cong 3 \mod(t-1)$, which together with a result in [18], says that, for even $t \geq 8$, $T_n\langle 1,3;1,t\rangle$ is hamiltonian if $n \cong 3 \mod(t-1)$. We also prove that, for even $t \geq 8$, $T_n\langle 1,3;1,t\rangle$ is hamiltonian if $n \cong 1 \mod(t-1)$. For even $t \geq 8$, we also discuss the hamil-

tonicity of $T_n\langle 1,3;1,t\rangle$ for $n\cong 8,10,12,\ldots,t-2\,mod(t-1)$. We see that $T_n\langle 1,3;1,t\rangle$ is hamiltonian for $n\cong s\,mod(t-1)$ if $t\cong s\,mod\,6$, where $s\in \{8,10,12,\ldots,t-2\}$. The paper will be concluded with a conjecture that, for even $t\geq 8,\,T_n\langle 1,3;1,t\rangle$ is non-hamiltonian for $n\cong 8,10,12,\ldots,t-2\,mod(t-1)$ if $t\ncong s\,mod\,6$, which completes the hamiltonicity investigation in Toeplitz graphs $T_n\langle 1,3;1,t\rangle$.

For any vertex a and b > a, of the Toeplitz graph $T_n\langle 1,3;1,t\rangle$, we define a path $P_{a\to b}$ in $T_n\langle 1,3;1,t\rangle$ from a to b as $P_{a\to b}=(a,a+3,a+4,a+7,\ldots,a+4k,a+4k+3,\ldots,b)$, where k is a non-negative integer, see Figure 2.



Figure 2: $P_{a\to b}$

2 Toeplitz Graphs $T_n(1,3;1,t)$

Lemma 1. If $T_n\langle 1,3;1,t\rangle$ has a hamiltonian cycle containing the edge (n-2, n-1), then $T_{n+t-1}\langle 1,3;1,t\rangle$ has the same property.

Proof. Let $T_n\langle 1,3;1,t\rangle$ have a hamiltonian cycle containing the edge (n-2,n-1). We transform this hamiltonian cycle to a hamiltonian cycle in $T_{n+t-1}\langle 1,3;1,t\rangle$, by replacing the edge (n-2,n-1) with the path $(n-2,n+1,n+2,\ldots,(n+t-1)-2,(n+t-1)-1,n+t-1,n-1)$, see Figure 3. This shows that $T_{n+t-1}\langle 1,3;1,t\rangle$ has the same property. This finishes the proof.

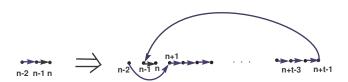


Figure 3:

In [18], it was proved that, for even $t \geq 8$, $T_n\langle 1,3;1,t\rangle$ is hamiltonian if $n \cong 5,7,9,\ldots,t-3 \mod(t-1)$, and it was also proved that, for even $t \geq 8$ and $t \cong 0,2 \mod 3$, $T_n\langle 1,3;1,t\rangle$ is hamiltonian if $n \cong 3 \mod(t-1)$. Here we prove that, for even $t \geq 8$ and $t \cong 1 \mod 3$, $T_n\langle 1,3;1,t\rangle$ is hamiltonian if $n \cong 3 \mod(t-1)$. This shows that, for even $t \geq 8$, $T_n\langle 1,3;1,t\rangle$ is hamiltonian if $n \cong 3 \mod(t-1)$. We also prove that for even $t \geq 8$, $T_n\langle 1,3;1,t\rangle$ is hamiltonian if $n \cong 3 \mod(t-1)$.

Theorem 1. For even $t \geq 8$, $T_n(1,3;1,t)$ is hamiltonian if $n \cong 1 \mod (t-1)$.

Proof. Let $n \cong 1 \mod (t-1)$, then the smallest possible value for n is t which we can not consider as n > t. So the next value for n is t + (t-1), i.e., n = 2t - 1.

Case 1. If $t \cong 0 \mod 4$, then a hamiltonian cycle in $T_{n=2t-1}\langle 1, 3; 1, t \rangle$ is $(P_{1 \to n-t-2}, n-t+1, n-t+4, n-t+5, \dots, n-2, n-1, n, n-t, n-t+3 = t+2, 2, P_{3 \to n-t-4}, n-t-1, n-t+2 = t+1, 1)$, see Figure 4.

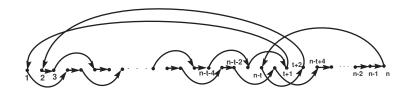


Figure 4: A hamiltonian cycle in $T_{n=2t-1}\langle 1,3;1,t\rangle$, where $t\cong 0 \mod 4$

Case 2. If $t \cong 2 \mod 4$, then a hamiltonian cycle in $T_{n=2t-1}\langle 1,3;1,t\rangle$ is $(P_{1\to n-t-8},n-t-5,n-t-2,n-t+1,n-t+4,n-t+5,\dots,n-2,n-1,n,n-t,n-t+3=t+2,2,P_{3\to n-t-6},n-t-3,n-t-4,n-t-1,n-t+2=t+1,1)$, see Figure 5.

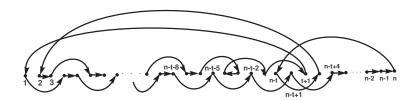


Figure 5: A hamiltonian cycle in $T_{n=2t-1}\langle 1,3;1,t\rangle$, where $t\cong 2 \mod 4$

Note that (n-2, n-1) is an edge in both of the above hamiltonian cycles. Suppose $T_n\langle 1,3;1,t\rangle$, with n=(2t-1)+r(t-1), has a hamiltonian cycle containing the edge (n-2, n-1), for some non-negative integer r. By Lemma 1, $T_{n+t-1}\langle 1,3;1,t\rangle$ enjoys the same property. This finishes the proof.

Theorem 2. For even $t \geq 8$, $T_n(1,3;1,t)$ is hamiltonian if $n \cong 3 \mod (t-1)$.

Proof. By Theorem 6 in [18], for even $t \geq 8$ and $t \cong 0, 2 \mod 3$, $T_n\langle 1, 3; 1, t \rangle$ is hamiltonian if $n \cong 3 \mod (t-1)$. Here we show that, for even $t \geq 8$ and $t \cong 1 \mod 3$, it is also hamiltonian if $n \cong 3 \mod (t-1)$.

Let $t \ge 8$ (even) and $t \cong 1 \mod 3$. Assume $n \cong 3 \mod (t-1)$; then the smallest possible value for n is t+2, which is an even number.

Case 1. If $n \cong 0 \mod 12$, then a hamiltonian cycle in $T_{n=t+2}(1,3;1,t)$ is $(P_{1\to n-3},n,n-t=2,P_{3\to n-5},n-2,n-1,n-1-t=1)$, see Figure 6.

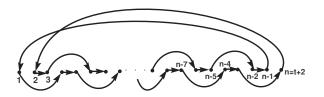


Figure 6: A hamiltonian cycle in $T_{n=t+2}\langle 1,3;1,t\rangle$; $n\cong 0 \mod 12$

Case 2. If $n \not\equiv 0 \mod 12$, then a hamiltonian cycle in $T_{n=t+2}\langle 1, 3; 1, t \rangle$ is $(P_{1 \to n-9}, n-6, n-3, n, n-t=2, P_{3 \to n-7}, n-4, n-5, n-2, n-1, n-1-t=1)$, see Figure 7.

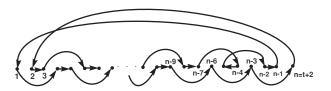


Figure 7: A hamiltonian cycle in $T_{n=t+2}\langle 1,3;1,t\rangle$; $n\not\cong 0 \ mod \ 12$

Note that (n-2, n-1) is an edge in both of the above hamiltonian cycles. Suppose $T_n\langle 1,3;1,t\rangle$, with n=(t+2)+r(t-1), has a hamiltonian cycle containing the edge (n-2, n-1), for some non-negative integer r. By Lemma 1, $T_{n+t-1}\langle 1,3;1,t\rangle$ enjoys the same property. This finishes the proof.

In [18], it was proved that, for even $t \geq 8$, $T_n\langle 1,3;1,t\rangle$ is hamiltonian if $n \cong 0,2,4,6 \mod(t-1)$. Now, for even $t \geq 8$, we will discuss the hamiltonicity of $T_n\langle 1,3;1,t\rangle$, if $n \cong 8,10,12,\ldots,t-2 \mod(t-1)$. Clearly, here $t \geq 10$.

Theorem 3. For even $t \geq 10$, and $n \cong s \mod(t-1)$ where $s \in \{8, 10, 12, \ldots, t-2\}$, $T_n\langle 1, 3; 1, t \rangle$ is hamiltonian if $t - s \cong 0 \mod 6$ or $(t - s \cong 4 \mod 6 \mod s \neq 8)$ or $(t - s \cong 2 \mod 6 \mod n \neq s + t - 1)$.

Proof. For even $t \ge 10$, let $n \cong s \mod(t-1)$, where $s \in \{8, 10, 12, \dots, t-2\}$. The smallest possible value for n is s+t-1, i.e., n=s+t-1, which is an odd number. Case 1. Let $t-s \cong 0 \mod 6$.

(i) If $s \cong 0 \mod 4$, then a hamiltonian cycle in $T_{n=s+t-1}\langle 1, 3; 1, t \rangle$ is $(P_{1 \to n-t-2}, n-t+1, n-t+4, \ldots, t+3, t+4, \ldots, n-2, n-1, n, n-t, n-t+3, \ldots, t+2, 2, P_{3 \to n-t-4}, n-t-1)$

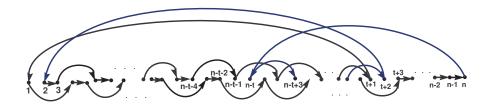


Figure 8: A hamiltonian cycle in $T_{n=s+t-1}\langle 1,3;1,t\rangle$, where $s\cong 0\,mod\,4$

 $1, n - t + 2, \dots, t + 1, 1$, see Figure 8.

(ii) If $s \cong 2 \mod 4$, then a hamiltonian cycle in $T_{n=s+t-1}\langle 1,3;1,t\rangle$ is $(P_{1\to n-t-8},n-t-5,n-t-2,\ldots,t+3,t+4,\ldots,n-2,n-1,n,n-t,n-t+3,\ldots,t+2,2,P_{3\to n-t-6},n-t-3,n-t-4,n-t-1,n-t+2,\ldots,t+1,1)$, see Figure 9.

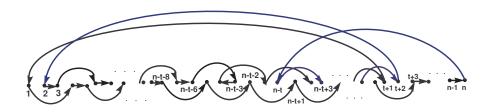


Figure 9: A hamiltonian cycle in $T_{n=s+t-1}(1,3;1,t)$, where $s \cong 2 \mod 4$

Note that (n-2, n-1) is an edge in both of the hamiltonian cycles in Case 1. Suppose $T_n\langle 1,3;1,t\rangle$, with n=(s+t-1)+r(t-1), has a hamiltonian cycle containing the edge (n-2, n-1), for some non-negative integer r. By Lemma 1, $T_{n+t-1}\langle 1,3;1,t\rangle$ enjoys the same property.

Case 2. Let $t - s \cong 4 \mod 6$ and $s \neq 8$.

(i) If $s \cong 0 \mod 4$ and $s \neq 8$, then a hamiltonian cycle in $T_{n=s+t-1}\langle 1,3;1,t \rangle$ is $(P_{1\to s-11},s-8,s-5,\ldots,t+3,t+4,\ldots,s+t-4,s+t-1,s+t-2,s+t-3,s-3,s,\ldots,t+2,2,P_{3\to s-9},s-6,s-7,s-4,\ldots,t+1,1)$, see Figure 10.

(ii) If $s \cong 2 \mod 4$, then a hamiltonian cycle in $T_{n=s+t-1}\langle 1,3;1,t\rangle$ is $(P_{1\to s-5},s-2,s+1,\ldots,t+3,t+4,\ldots,s+t-4,s+t-1,s+t-2,s+t-3,s-3,s,\ldots,t+2,2,P_{3\to s-7},s-4,s-1,\ldots,t+1,1)$, see Figure 11.

Since (s+t-1,s+t-2) is an edge in both of the hamiltonian cycles in Case 2, in $T_{s+t-1}\langle 1,3;1,t\rangle$, we transform each of this hamiltonian cycle to a hamiltonian cycle in $T_{(s+t-1)+t-1=s+2t-2}\langle 1,3;1,t\rangle$, by replacing the edge (s+t-1,s+t-2) with the path $(s+t-1,s+t,\ldots,s+2t-4,s+2t-3,s+2t-2,s+t-2)$, which contains the edge

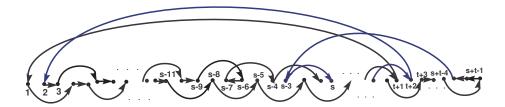


Figure 10: A hamiltonian cycle in $T_{s+t-1}\langle 1,3;1,t\rangle$, where $s\cong 0\ mod\ 4,\ s\neq 8$

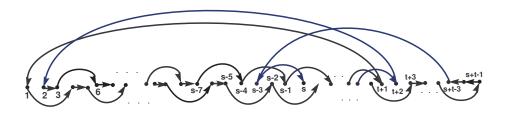


Figure 11: A hamiltonian cycle in $T_{s+t-1}(1,3;1,t)$, where $s \cong 2 \mod 4$

(s+2t-4,s+2t-3), see Figure 12. Suppose $T_n\langle 1,3;1,t\rangle$, with n=(s+t-1)+r(t-1), has a hamiltonian cycle containing the edge (n-2,n-1), for some non-negative integer r. By Lemma 1, $T_{n+t-1}\langle 1,3;1,t\rangle$ enjoys the same property.

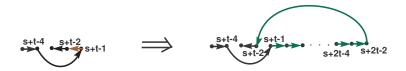


Figure 12: Transformation of the edge (s+t-1,s+t-2) to the path $(s+t-1,s+t,\ldots,s+2t-4,s+2t-3,s+2t-2,s+t-2)$

Case 3. Let $t - s \cong 2 \mod 6$ and $n \neq s + t - 1$.

In this case, the smallest possible value for n different from s+t-1, will be (s+t-1)+(t-1), i.e., n=s+2t-2, which is an even number.

(i) If $s \cong 0 \mod 4$.

For s=8, a hamiltonian cycle in $T_{s+2t-2=2t+6}\langle 1,3;1,t\rangle$ is $(2t+6,2t+5,2t+4,t+4,t+3,3,2,1,4,5,\ldots,t+2,t+5,t+6,\ldots,2t+3,2t+6)$, see Figure 13.

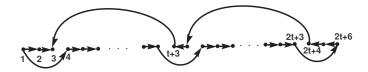


Figure 13: A hamiltonian cycle in $T_{2t+6}\langle 1, 3; 1, t \rangle$

For $s \neq 8$, a hamiltonian cycle in $T_{s+2t-2}\langle 1,3;1,t\rangle$ is $(P_{1\to s-7},s-3,s,\ldots,t+3,t+4,\ldots,s+t-6,s+t-3,s+t-2,\ldots,s+2t-5,s+2t-2,s+2t-3,s+2t-4,s+t-4,s+t-5,s-5,s-2,\ldots,t+2,2,P_{3\to s-9},s-6,s-3,\ldots,t+1,1)$, see Figure 14.

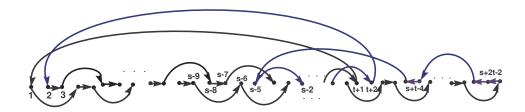


Figure 14: A hamiltonian cycle in $T_{s+2t-2}\langle 1,3;1,t\rangle$, where $s\cong 0\ mod\ 4$ and $s\neq 8$

(ii) If $s \cong 2 \mod 4$.

For $s \neq 10$, a hamiltonian cycle in $T_{s+2t-2}\langle 1,3;1,t \rangle$ is $(P_{1\rightarrow s-13},s-10,s-7,\ldots,t+3,t+4,\ldots,s+t-6,s+t-3,s+t-2,\ldots,s+2t-5,s+2t-2,s+2t-3,s+2t-4,s+t-4,s+t-5,s-5,s-2,\ldots,t+2,2,P_{3\rightarrow s-11},s-8,s-9,s-6,s-3,\ldots,t+1,1),$ see Figure 15.

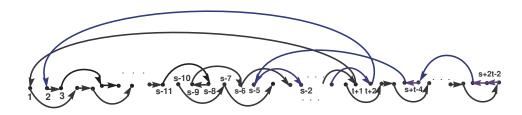


Figure 15: A hamiltonian cycle in $T_{s+2t-2}\langle 1,3;1,t\rangle$, where $s\cong 2\ mod\ 4$ and $s\neq 8$

For s=10. If $t\cong 0 \mod 4$, then a hamiltonian cycle in $T_{s+2t-2=2t+8}\langle 1,3;1,t\rangle$ is $(1,2,5,8,\ldots,t+2,P_{t+5\to 2t+1},2t+4,2t+5,2t+8,2t+7,2t+6,t+6,P_{t+7\to 2t+3},t+3,t+4,4,P_{3\to t-5},t-2,t-3,t,t+1,1)$, see Figure 16. And if $t\cong 2 \mod 4$, then a hamiltonian cycle in $T_{2t+8}\langle 1,3;1,t\rangle$ is $(1,2,P_{5\to t-1},t+2,P_{t+5\to 2t-5},2t-2,2t+1,2t+4,2t+5,2t+8,2t+7,2t+6,t+6,P_{t+7\to 2t-3},2t,2t-1,2t+2,2t+3,t+3,t+4,4,P_{3\to t+1},1)$, see Figure 17.

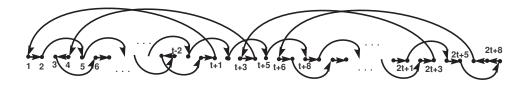


Figure 16: A hamiltonian cycle in $T_{2t+8}\langle 1,3;1,t\rangle$, where $t\cong 0 \mod 4$

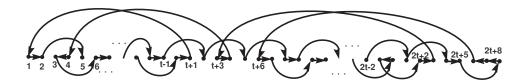


Figure 17: A hamiltonian cycle in $T_{2t+8}\langle 1,3;1,t\rangle$, where $t\cong 2 \mod 4$

Since (s+2t-2,s+2t-3) is an edge in all the hamiltonian cycles, in Case 3, in $T_{s+2t-2}\langle 1,3;1,t\rangle$, we transform each of this hamiltonian cycle to a hamiltonian cycle in $T_{(s+2t-2)+t-1=s+3t-3}\langle 1,3;1,t\rangle$, by replacing the edge (s+2t-2,s+2t-3) with the path $(s+2t-2,s+2t-1,\ldots,s+3t-5,s+3t-4,s+3t-3,s+2t-3)$, which contains the edge (s+3t-4,s+3t-3). Suppose $T_n\langle 1,3;1,t\rangle$, with n=(s+3t-3)+r(t-1), has a hamiltonian cycle containing the edge (n-2,n-1), for some non-negative integer r. By Lemma 1, $T_{n+t-1}\langle 1,3;1,t\rangle$ enjoys the same property.

This finishes the proof. \Box

In Theorem 3, it was proved that, for even $t \geq 10$, and $n \cong s \mod(t-1)$ where $s \in \{8, 10, 12, \ldots, t-2\}$, $T_n\langle 1, 3; 1, t \rangle$ is hamiltonian if $t-s \cong 4 \mod 6$ and $s \neq 8$. Here we will discuss the case with s=8.

Theorem 4. For even $t \geq 10$, $n \cong 8 \mod(t-1)$, and $t-8 \cong 4 \mod 6$. $T_n\langle 1,3;1,t \rangle$ is hamiltonian for all n different from t+7.

Proof. For even $t \ge 10$, let $n \cong 8 \mod (t-1)$ and $t-8 \cong 4 \mod 6 \Rightarrow t \cong 0 \mod 6$. Assume $n \ne t+7$. Then the smallest possible value for n is t+7+(t-1), i.e., n=2t+6. A hamiltonian cycle in $T_{2t+6}\langle 1,3;1,t\rangle$ is (2t+6,2t+5,2t+4,t+4,t+1)

 $3,3,2,1,4,5,\ldots,t+2,t+5,t+6,\ldots,2t+3,2t+6)$. Since (2t+6,2t+5) is an edge in this hamiltonian cycle in $T_{2t+6}\langle 1,3;1,t\rangle$, we transform this hamiltonian cycle to a hamiltonian cycle in $T_{n=(2t+6)+t-1=3t+5}\langle 1,3;1,t\rangle$, by replacing the edge (2t+6,t+5) with the path $(2t+6,2t+7,\ldots,3t+3,3t+4,n=3t+5,2t+5)$, which contains the edge (n-2,n-1)=(3t+3,3t+4), see Figure 18. Suppose $T_n\langle 1,3;1,t\rangle$, with n=(3t+5)+r(t-1), has a hamiltonian cycle containing the edge (n-2,n-1), for some non-negative integer r. By Lemma 1, $T_{n+t-1}\langle 1,3;1,t\rangle$ enjoys the same property. This finishes the proof.

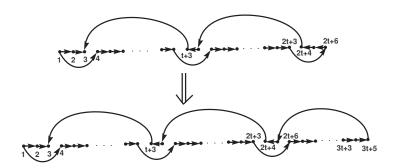


Figure 18: A hamiltonian cycle in $T_{2t+6}\langle 1,3;1,t\rangle$ and then its transformation to a hamiltonian cycle in $T_{3t+5}\langle 1,3;1,t\rangle$

Conjectures:

- 1. Let $t \geq 10$ and $t \cong 0 \mod 6$. Then $T_{t+7}(1,3;1,t)$ is non-hamiltonian.
- 2. Let $t \ge 10$ and $t s \cong 2 \mod 6$, where $s \in \{8, 10, 12, \dots, t 2\}$. Then $T_n(1, 3; 1, t)$ is non-hamiltonian if n = s + t 1.

Concluding Remark: An affirmative resolution of the conjecture above for $T_n\langle 1, 3; 1, t \rangle$ would complete the study of hamiltonicity of $T_n\langle 1, 3; 1, t \rangle$.

Acknowledgement . Thanks are due to the referee, who helped us to better organize the paper.

References

- [1] A. Ahmad, M. Baca and M. F. Nadeem, On Edge Irregularity Strength of Toeplitz Graphs, *UUPB. Sci. Bull. ser. A.* **78(4)** (2016), 155-162.
- [2] A. Ahmad, F. Nadeem and A. Gupta, On super edge-magic deficiency of certain Toeplitz graphs, *Hacet J Math Stat.* **47(3)** (2018), 513-519.
- [3] S. Akbari, S. Hossein Ghorban, S. Malik and S. Qajar, Conditions for regularity and for 2-connectivity of Toeplitz graphs, *Util. Math.* **110** (2019), 305-314.

- [4] L. Aslam, S. Sarwar, M. J. Yousaf and S. Waqar, Cycle discrepancy of cubic toeplitz graphs, *Pakistan J. Eng. Appl. Sci.* **22** (2018), 14-19.
- [5] S. Bau, A generalization of the concept of Toeplitz graphs, *Mong. Math. J.* **15** (2011) 54-61.
- [6] M. Baca, Y. Bashir, F. Nadeem and A. Shabbir, On Super Edge-Antimagic Total Labeling of Toeplitz Graphs, Springer Proceedings in Mathematics and Statistics. 98 (2015), 1-10.
- [7] R. van Dal, G. Tijssen, Z. Tuza, J.A.A. van der Veen, Ch. Zamfirescu and T. Zamfirescu, Hamiltonian properties of Toeplitz graphs, *Discrete Math.* **159** (1996), 69-81.
- [8] R. Euler, Coloring infinite, planar Toeplitz graphs, *Tech. Report*, *LIBr* November (1998).
- [9] R. Euler, Characterizing bipartite Toeplitz graphs, *Theor. Comput. Sci.* **263** (2001), 47-58.
- [10] R. Euler, Coloring planar Toeplitz graphs and the stable setpolytope, *Discrete Math.* **276** (2004), 183-200.
- [11] R. Euler and T. Zamfirescu, On planar Toeplitz graphs, *Graphs and Combinatorics*. **29** (2013), 1311-1327.
- [12] R. Euler, H. LeVerge and T. Zamfirescu, A characterization of infinite, bipartite Toeplitz graphs, in: Ku Tung-Hsin (Ed.), *Combinatorics and Graph Theory.* 1 (1995), Academia Sinica, World Scientific, Singapore, 119-130.
- [13] C. Heuberger, On hamiltonian Toeplitz graphs, Discrete Math. 245 (2002), 107-125.
- [14] S. Hossein Ghorban, Toeplitz Graph Decomposition, *Transactions on Combinatorics*. **1(4)** (2012), 35-41.
- [15] J.B. Liu, M.F. Nadeem, H.M.A Siddiqui and W. Nazir, Computing Metric Dimension of Certain Families of Toeplitz Graphs, *IEEE Access.* 7 (2019), 126734-126741.
- [16] S. Malik, Hamiltonicity in Directed Toeplitz Graphs of Maximum (out or in) Degree 4, *Util. Math.* **89**(2012), 33-68.
- [17] S. Malik, Hamiltonian Cycles in Directed Toeplitz Graphs-Part 2, Ars Comb. 116 (2014), 303-319.
- [18] S. Malik, Hamiltonian Cycles in Directed Toeplitz Graphs $T_n\langle 1,2;t_1,t_2\rangle$, Util. Math. 99(2016), 3-17.
- [19] S. Malik, Hamiltonicity in Directed Toeplitz Graphs $T_n\langle 1, 2, t_1, t_2 \rangle$, Australas. J. Combin. **78(3)** (2020), 434-449.
- [20] S. Malik, Hamiltonicity in Directed Toeplitz Graphs $T_n\langle 1, 3, 4; t \rangle$, Bull. Math. Soc. Sci. Math. Roumanie. Tome **64** (112), No. 4 (2021), 317-327.

[21] S. Malik and A.M. Qureshi, Hamiltonian Cycles in Directed Toeplitz Graphs, *Ars Comb.* CIX April (2013), 511-526.

- [22] S. Malik and T. Zamfirescu, Hamiltonian Connectedness in Directed Toeplitz Graphs, Bull. Math. Soc. Sci. Math. Roumanie. 53(101) (2010), 145-156.
- [23] M.F. Nadeem, A. Shabbir and T. Zamfirescu, Hamiltonian Connectedness of Toeplitz Graphs, Mathematics in the 21st Century, Springer Proceedings in Mathematics and Statistics. 98 (2015), 135-149.
- [24] S. Nicoloso and U. Pietropaoli, On the chromatic number of Toeplitz graphs, *Discrete Applied Mathematics*. **164(1)** (2014), 286-296.
- [25] H. Zafar, N. Akhter, M. K. Jamil and F. Nadeem, Hamltonian Connectedness and Toeplitz Graphs, American Scientific Research Journal for Engineering, Technology, and Sciences. 33(1) (2017), 255-268.

Received: Revised: Accepted:

> (1) Faculty of Mathematics Forman Christian College (A Chartered University) Lahore, Pakistan E-mail: shabnam.malik@gmail.com