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Abstract

Redefined Zagreb indices are new graph invariants, which is the

degree based topological index ReZG1(G) =
∑

uv∈E(G)
du+dv
dudv

,

ReZG2(G) =
∑

uv∈E(G)
dudv
du+dv

and ReZG3(G) =
∑

uv∈E(G)(dudv)

(du + dv). Eliasi and Taeri introduced four new operations based on

graphs S(G), R(G), Q(G) and T (G), which are also known as F-

sum of graphs, where F= S, Q, R and T . In this paper, we establish

bounds of the redefined Zagreb indices for for F-Sum of Graphs,

where F = Q or T .

.

Keywords and Phrases: Distance(in graphs), Redefined Za-

greb indices, Operations on graphs, Subdivision of graph, Total
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1 Basic definition, notation and pre-

liminary results

All the graphs in this paper are simple, finite and undirected.

In a graph G, V (G) and E(G) are the sets of vertices and edges
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respectively. Let dG(u) denotes the degree of a vertex u and

dG(u, v) be the distance between two vertices u and v in G.

Topological indices have been found to be useful in establishing

relation between the structure and the properties of molecules.

Topological indices mainly used in Quantitative Structure Prop-

erty Relationship (QSPR) and Quantitative Structure Activity

Relationships (QSAR)[1]. Some topological indices are degree

based and some are distance based.

Wiener index [2, 3, 4] is a distance based topological index, de-

noted by W(G) and defined as the sum of distances over all

unordered vertex pairs in G.

W (G) =
∑

{u,v}∈V (G)

dG(u, v)

The Zagreb indices were introduced more than thirty years ago

by Gutman and Trinajstić [7]. After ten years, Balaban et.al

named them Zagreb group index, presented byM1 andM2. Later

it was abbreviated to Zagreb index [8], where M1 and M2 rep-

resents first Zagreb index and second Zagreb index respectively.

If du and dv are the degrees of vertices u, v for simple graph G.

Then first Zagreb index [8, 9] is defined as

M1(G) =
∑

v∈V (G)

(dG(v))2

=
∑

uv∈E(G)

dG(u) + dG(v)

Second Zagreb index is defined as

M2(G) =
∑

uv∈E(G)

dG(u)dG(v)
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In 2013, Ranjini [16] introduced redefined Zagreb indices i.e.,

redefined first, second and third Zagreb indices of a graph G.

These are presented as

ReZG1(G) =
∑

uv∈E(G)

dG(u) + dG(v)

dG(u)dG(v)

ReZG2(G) =
∑

uv∈E(G)

dG(u)dG(v)

dG(u) + dG(v)

and

ReZG3(G) =
∑

uv∈E(G)

(dG(u)dG(v))(dG(u) + dG(v))

Since last thirty years, many scholars and researchers have been

working on composite graphs. There are various graph opera-

tions which are applied directly on simple graphs to study their

properties under these operations. Many authors computed sev-

eral topological indices for these composite graphs [3, 4, 6, 8, 9,

10, 11, 12, 13, 14, 15, 17, 18, 20], e.g. composition, disjunc-

tion, Cartesian product, corona product, indu-bala product and

wreath product of two graphs.

Firstly we recall Cartesian product G�K, of graphs G and K.

For the vertex set V (G)× V (K) in which (p, q)(r, s) is an edge

of G�K if [p = r and qs ∈ E(K)] or [q = s and pr ∈ E(G)].

If dG�K((p, q), (r, s)) is the distance between any pair of vertices

in G�K then

dG�K((p, q), (r, s)) = dG(p, r) + dK(q, s)
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and degree of a vertex (p, q) of G�K

dG�K(p, q) = dG(p) + dK(q)

In 2009, Eliasi et.al [4] used the notion of F-sums also known as

four graph operations, which is actually the Cartesian product

of F (G1) and G2. F-sum of two graphs G1 and G2 is denoted

by G1 +F G2, where F be one of S, R, Q, T graph operation.

These operations i.e. S, R, Q, T are defined as

1. Subdivision S(G) of a graph is acquired by embedding a

vertex referred as the white vertex into each edge of G.

2. Two black vertices are related in S(G) if they are adjacent

in G. So R(G) is obtained from S(G) by joining each pair

of related black vertices.

3. Similarly two white vertices are related in S(G) if their

corresponding edges are adjacent in G. Q(G) is obtained

by joining each pair of related white vertices.

4. Two graphs G and K having same vertex set V and edge

set E(G)∪E(K) is called the union of G and K, denoted

by G∪H. In particular case total graph T (G) is the union

of R(G) and Q(G).

Many authors computed several topological indices for these four

graph operations. Eliasi et.al [4] computed the wiener index of
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Figure 1: F (G1) for F= Q, T

these graph operations. In [5] Mingqiang An. et.al provided two

upper bounds for the degree distance of F-sums of graphs. They

used the results in [4] to find the distance between the vertices of

F-sums of graphs. M. Imran et.al [12, 13] considered forgotten

index and sum-connectivity index for these four graph opera-

tions and explored new results. They executed the exact value of

forgotten index and sharp bounds of sum-connectivity index for

each of these operations. M.H. Khalifeh et.al [8] worked on first

and second Zagreb indices and they computed exact expressions

for first and second Zagreb index for Cartesian product, com-

position, join, disjunction and symmetric difference of graphs.

D. Sarala et.al [9] studied F-sums of graphs and find out exact

formulas for first and second Zagreb indices. B. Basavangoud

et.al [10] studied hyper-Zagreb coindex and hyper-Zagreb index

for different graph operations. They calculated exact formula of
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hyper-Zagreb index for these four graph operations. Note that

G
1

G
2

G
1
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Q
G
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1
+

T
G

2

Figure 2: F-sums of G1 and G2 for F= Q, T

for F-sum of graph G1 and G2, take |V2| = n2 copies of the graph

F (G1) and label them by the vertices of graph G2. There are

two situations for the vertices of G1 +F G2: vertices V1 referred

to as black vertices and E1 referred as white vertices . Now we

join only black vertices with same name in F (G1) in which their

corresponding labels are adjacent in G2.

Lemma 1.1. Let G be a graph. Then:

(a) If u1 ∈ V (G), then we have

dF (G)(u1) = k · dG(u1),

where

k =

{
1 ; F= S or Q
2 ; F= R or T.
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(b) If u1 = ú1
´́u1 ∈ E(G), then we have

dS(G)(u1) = dR(G)(u1) = 2,

dQ(G)(u1) = dT (G)(u1) = dL(G)(u1) + 2,

where

dL(G)(u1) = dG(ú1) + dG( ´́u1).

2 Redefined Zagreb indices for F-Sum

of Graphs, when F = Q or T

In this section, we established the bounds for redefined Zagreb

indices in terms of Zagreb index for certain graph operations.

2.1 First Redefined Zagreb Index for F-sum
of graphs, where F= Q or T

.

First, we establish the results for the first redefined Zagreb index

of G1 +F G2 in terms of ∆G maximum degree, δG minimum

degree and Zagreb index of graph G.

Theorem 2.2. Let G1 and G2 be two connected graphs with or-

der n1, n2, size m1,m2, maximum degree ∆1, ∆2 and minimum

degree δ1, δ2 respectively. Then first redefined Zagreb index for

F-sum of graphs is

γ1 ≤ ReZG1(G1 +Q G2) ≤ γ2
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where

γ1 =
4m1m2 + n1M1(G2)

(∆1 +∆2)2
+

4m1m2 + 3n2M1(G1)

4∆1(∆1 +∆2)
+

4n2δ1(
1
2
M1(G1)−m1)

4(∆1)2

and

γ2 =
4m1m2 + n1M1(G2)

(δ1 + δ22)
+

4m1m2 + 3n2M1(G1)

4δ1(δ1 + δ2)
+

4n2∆1(
1
2
M1(G1)−m1)

4(δ1)2

equality holds if and only if G2 is a regular graph.

Proof. By the definition of first redefined Zagreb index, we have

ReZG1(G1 +Q G2) =
∑

(ui,vk)(uj ,vl)∈E(G1+QG2)

dG1+QG2 (u) + dG1+QG2 (v)

dG1+QG2
(u)dG1+QG2

(v)

=
∑

ui=uj∈V1

∑
vkvl∈E2

dG1+QG2
(ui, vk) + dG1+QG2

(uj , vl)

dG1+QG2
(ui, vk)dG1+QG2

(uj , vl)

+
∑

vk=vl∈V2

∑
uiuj∈E(Q(G1))

dG1+QG2
(ui, vk) + dG1+QG2

(uj , vl)

dG1+QG2
(ui, vk)dG1+QG2

(uj , vl)

Note that dG1(u) ≤ ∆1 and dG1(u) ≥ δ1, equality holds if and

only if G1 is a regular graph, and similarly dG2(v) ≤ ∆2 and

dG2(v) ≥ δ2, equality holds if and only if G2 is a regular graph.

We get

∑
ui=uj∈V1

∑
vkvl∈E2

dG1+QG2
(ui, vk) + dG1+QG2

(uj , vl)

dG1+QG2
(ui, vk)dG1+QG2

(uj , vl)

=
∑
u∈V1

∑
vkvl∈E2

[dQ(G1)(u) + dG2
(vk)] + [dQ(G1)(u) + dG2

(vl)]

[dQ(G1)(u) + dG2
(vk)][dQ(G1)(u) + dG2

(vl)]

≥
1

(∆1 +∆2)2

( ∑
u∈V1

∑
vkvl∈E2

(dG1
(u) + dG1

(u)) +
∑
u∈V1

∑
vkvl∈E2

(dG2
(vk) + dG2

(vl))

)

≥
1

(∆1 +∆2)2

(
m2(4m1) + n1M1(G2)

)
≥

4m1m2 + n1M1(G2)

(∆1 +∆2)2
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Since |E(Q(G))| = 2|E(G)| and ∆Q(G) = ∆G

∑
vk=vl∈V2

∑
uiuj∈E(Q(G1))

dG1+QG2
(ui, vk) + dG1+QG2

(uj , vl)

dG1+QG2
(ui, vk)dG1+QG2

(uj , vl)

=
∑
v∈V2

∑
uiuj∈E(Q(G1));ui∈V (G1),uj∈V (Q(G1))(G1)

dG1+QG2
(ui, vk) + dG1+QG2

(uj , vl)

dG1+QG2 (ui, vk)dG1+QG2 (uj , vl)

+
∑
v∈V2

∑
uiuj∈E(Q(G1));ui,uj∈V (Q(G1))(G1)

dG1+QG2
(ui, vk) + dG1+QG2

(uj , vl)

dG1+QG2
(ui, vk)dG1+QG2

(uj , vl)

Now,

∑
v∈V2

∑
uiuj∈E(Q(G1));ui∈V (G1),uj∈V (Q(G1))(G1)

dG1+QG2 (ui, vk) + dG1+QG2 (uj , vl)

dG1+QG2
(ui, vk)dG1+QG2

(uj , vl)

=
∑
v∈V2

∑
uiuj∈E(Q(G1));ui∈V (G1),uj∈V (Q(G1))(G1)

dQ(G1)(ui) + dG2
(vk) + dQ(G1)(uj)

dQ(G1)(ui) + dG2
(vk)(dQ(G1)(uj))

≥
1

4∆1(∆1 +∆2)

( ∑
v∈V2

∑
uiuj∈E(Q(G1));ui∈V (G1),uj∈V (Q(G1))(G1)

(dQ(G1)(uj))

+ n2M1(G1) + 4m1m2

)
≥

4m1m2 + n2M1(G1) + 2n2M1(G1)

4∆1(∆1 +∆2)

≥
4m1m2 + 3n2M1(G1)

4∆1(∆1 +∆2)

and

∑
v∈V2

∑
uiuj∈E(Q(G1));ui,uj∈V (Q(G1))(G1)

dG1+QG2
(ui, vk) + dG1+QG2

(uj , vl)

dG1+QG2 (ui, vk)dG1+QG2 (uj , vl)

=
∑
v∈V2

∑
uiuj∈E(Q(G1));ui,uj∈V (Q(G1))(G1)

dQ(G1)(ui) + dQ(G1)(uj)

(dQ(G1)(ui))(dQ(G1)(uj))

where ui is the common vertex for w1 and w2 in Q(G1), e =

w1w2 ∈ E(G1). Seems like, ui inserted in edge w1w2 and uj

inserted in edge w2w3 of G1. So we have,

=
∑
v∈V2

∑
w1w2∈E(G),w2w3∈E(G1)

dG1
(w1) + dG1

(w2) + dG1
(w2) + dG1

(w3)

[dG1
(w1) + dG1

(w2)][dG1
(w2) + dG1

(w3)]

≥
4n2δ1(

1
2
M1(G1)−m1)

4(∆1)2
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By using these values, we get the required equation

ReZG1(G1+QG2
) ≥

4m1m2 + n1M1(G2)

(∆1 +∆2)2
+

4m1m2 + 3n2M1(G1)

4∆1(∆1 +∆2)

+
4n2δ1(

1
2
M1(G1)−m1)

4(∆1)2
.

Similarly we can compute

ReZG1(G1+QG2 ) ≤
4m1m2 + n1M1(G2)

(δ1 + δ2)2
+

4m1m2 + 3n2M1(G1)

4δ1(δ1 + δ2)

+
4n2∆1(

1
2
M1(G1)−m1)

4(δ1)2

Theorem 2.3. Let G1 and G2 be two connected graphs with or-

der n1, n2, size m1,m2, maximum degree ∆1, ∆2 and minimum

degree δ1, δ2 respectively. Then first redefined Zagreb index for

F-sum of graphs is

γ1 ≤ ReZG1(G1 +T G2) ≤ γ2

where

γ1 =
4m1m2 + 4n2M1(G1)

4∆1(∆1 +∆2)
+

4n2δ1(
1
2
M1(G1)−m1)

4∆1
2

+
12m1m2 + n1M1(G2) + n2M1(G1)

2∆1∆2(2∆1 +∆2)

and

γ2 =
4m1m2 + 4n2M1(G1)

4δ1(δ1 + δ2)
+

4n2∆1(
1
2
M1(G1)−m1)

4δ1
2

+
12m1m2 + n1M1(G2) + n2M1(G1

2δ1δ2(2δ1 + δ2)

equality holds if and only if G2 is a regular graph.
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Proof. By the definition of first redefined Zagreb index, we have

ReZG1(G1 +T G2) =
∑

(ui,vk)(uj ,vl)∈E(G1+TG2)

dG1+TG2
(u) + dG1+TG2

(v)

dG1+TG2
(u)dG1+TG2

(v)

=
∑

ui=uj∈V1

∑
vkvl∈E2

dG1+TG2
(ui, vk) + dG1+TG2

(uj , vl)

dG1+TG2
(ui, vk)dG1+TG2

(uj , vl)

+
∑

vk=vl∈V2

∑
uiuj∈E(T (G1))

dG1+TG2
(ui, vk) + dG1+TG2

(uj , vl)

dG1+TG2
(ui, vk)dG1+TG2

(uj , vl)

Note that dG1(u) ≤ ∆1 and dG1(u) ≥ δ1, equality holds if and

only if G1 is a regular graph, and similarly dG2(v) ≤ ∆2 and

dG2(v) ≥ δ2, equality holds if and only if G2 is a regular graph.

We get ∑
ui=uj∈V1

∑
vkvl∈E2

dG1+TG2
(ui, vk) + dG1+TG2

(uj , vl)

dG1+TG2
(ui, vk)dG1+TG2

(uj , vl)

=
∑
u∈V1

∑
vkvl∈E2

[dT (G1)(u) + dG2 (vk)] + [dT (G1)(u) + dG2 (vl)]

[dT (G1)(u) + dG2
(vk)][dT (G1)(u) + dG2

(vl)]

=
∑

ui=uj∈V1

∑
vkvl∈E2

[2dG1 (u) + dG2 (vk)] + [2dG1 (u) + dG2 (vl)]

[2dG1 (u) + dG2 (vk)][2dG1 (u) + dG2 (vl)]

≥
1

2∆1∆2(2∆1 +∆2)

(
2

∑
ui=uj∈V1

∑
vkvl∈E2

(dG1 (u) + dG1 (u))

+
∑
u∈V1

∑
vkvl∈E2

(dG2 (vk) + dG2 (vl))

)

≥
1

2∆1∆2(2∆1 +∆2)

(
4(m2)(2m1) + n1M1(G2)

)
≥

8m1m2 + n1M1(G2)

2∆1∆2(2∆1 +∆2)

Since |E(T (G))| = 2|E(G)| and ∆T (G) = 2∆G∑
vk=vl∈V2

∑
uiuj∈E(T (G1))

dG1+TG2
(ui, vk) + dG1+TG2

(uj , vl)

dG1+TG2
(ui, vk)dG1+TG2

(uj , vl)

=
∑
v∈V2

∑
uiuj∈E(T (G1));ui,uj∈V (G1)

dG1+TG2
(ui, vk) + dG1+TG2

(uj , vl)

dG1+TG2 (ui, vk)dG1+TG2 (uj , vl)

+
∑
v∈V2

∑
uiuj∈E(T (G1));ui∈V (G1),uj∈V (T (G1))−V (G1)

dG1+TG2 (ui, vk) + dG1+TG2 (uj , vl)

dG1+TG2 (ui, vk)dG1+TG2 (uj , vl)

+
∑
v∈V2

∑
uiuj∈E(T (G1));ui,uj∈V (T (G1))−V (G1)

dG1+TG2 (ui, vk) + dG1+TG2 (uj , vl)

dG1+TG2
(ui, vk)dG1+TG2

(uj , vl)
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Note that ui, uj ∈ V (G1) and uiuj ∈ E(R(G1)) if and only if

uiuj ∈ E(G1), we have

∑
v∈V2

∑
uiuj∈E(T (G1));ui,uj∈V (G1)

dG1+TG2 (ui, vk) + dG1+TG2 (uj , vl)

dG1+TG2
(ui, vk)dG1+TG2

(uj , vl)

≥
1

2∆1∆2(2∆1 +∆2)

( ∑
v∈V2

∑
uiuj∈E(T (G1));ui,uj∈V (G1)

(dT (G1)(ui) + dG2 (v))

+
∑
v∈V2

∑
uiuj∈E(T (G1));ui,uj∈V (G1)

(dT (G1)(uj) + dG2
(v))

)

≥
1

2∆1∆2(2∆1 +∆2)

( ∑
v∈V2

∑
uiuj∈E(T (G1));ui,uj∈V (G1)

(2dG1
(ui) + 2dG1

(uj))

+
∑
v∈V2

∑
uiuj∈E(T (G1));ui,uj∈V (G1)

(dG2
(v) + dG2

(v))

)

≥
1

2∆1∆2(2∆1 +∆2)

(
n2(2M1(G1)) + 2m1(2m2)

)
≥

4m1m2 + 2n2M1(G1)

2∆1∆2(2∆1 +∆2)

Since dG1+TG2(u, v) = dG1+QG2(u, v) for u ∈ V (T (G1)− V (G1))

and v ∈ V (G2), we get the following equation by using the proof

of Theorem2.2, so we have required equation as

ReZG1(G1 +T G2) ≥
4m1m2 + 4n2M1(G1)

4∆1(∆1 +∆2)
+

4n2δ1(
1
2
M1(G1)−m1)

4∆1
2

+
12m1m2 + n1M1(G2) + n2M1(G1)

2∆1∆2(2∆1 +∆2)

and

ReZG1(G1 +T G2) ≤
4m1m2 + 4n2M1(G1)

4δ1(δ1 + δ2)
+

4n2∆1(
1
2
M1(G1)−m1)

4δ1
2

+
12m1m2 + n1M1(G2) + n2M1(G1

2δ1δ2(2δ1 + δ2)
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2.4 Second Redefined Zagreb Index for F-sum
of graphs, where F= Q or T

.

In this section, we establish the results for the second redefined

Zagreb index of G1 +F G2 in terms of ∆G maximum degree, δG

minimum degree and Zagreb index of graph G.

Theorem 2.5. Let G1 and G2 be two connected graphs with or-

der n1, n2, size m1,m2, maximum degree ∆1, ∆2 and minimum

degree δ1, δ2 respectively. Then second redefined Zagreb index

for F-sum of graphs is

γ1 ≤ ReZG2(G1 +Q G2) ≤ γ2 (1)

where

γ1 =
m2M1(G1) + 2m1M1(G2) + n1M2(G2)

2(∆1 +∆2)
+

4m2M1(G1) + 8m1n2δ21
4∆1(∆1 +∆2)

+
4n2δ1

2( 1
2
M1(G1)−m1)

4∆1

γ1 =
m2M1(G1) + 2m1M1(G2) + n1M2(G2)

2(δ1 + δ2)
+

4m2M1(G1) + 8m1n2∆2
1

4δ1(δ1 + δ2)

+
4n2∆1

2( 1
2
M1(G1)−m1)

4δ1

(2)

equality holds if and only if G2 is a regular graph.

Proof. By the definition of second redefined Zagreb index we
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have

ReZG2(G1 +Q G2) =
∑

(ui,vk)(uj ,vl)∈E(G1+QG2)

dG1+QG2
(u)dG1+QG2

(v)

dG1+QG2 (u) + dG1+QG2 (v)

=
∑

ui=uj∈V1

∑
vkvl∈E2

dG1+QG2
(ui, vk)dG1+QG2

(uj , vl)

dG1+QG2
(ui, vk) + dG1+QG2

(uj , vl)

+
∑

vk=vl∈V2

∑
uiuj∈E(Q(G1))

dG1+QG2 (ui, vk)dG1+QG2 (uj , vl)

dG1+QG2
(ui, vk) + dG1+QG2

(uj , vl)

Note that dG1(u) ≤ ∆1 and dG1(u) ≥ δ1, equality holds if and

only if G1 is a regular graph, and similarly dG2(v) ≤ ∆2 and

dG2(v) ≥ δ2, equality holds if and only if G2 is a regular graph.

We get

∑
ui=uj∈V1

∑
vkvl∈E2

dG1+QG2 (ui, vk)dG1+QG2 (uj , vl)

dG1+QG2
(ui, vk) + dG1+QG2

(uj , vl)

=
∑
u∈V1

∑
vkvl∈E2

[dQ(G1)(u) + dG2
(vk)][dQ(G1)(u) + dG2

(vl)]

[dQ(G1)(u) + dG2
(vk)] + [dQ(G1)(u) + dG2

(vl)]

≥
1

2(∆1 +∆2)

( ∑
u∈V1

∑
vkvl∈E2

(dG1 (u) + dG2 (vk))(dG1 (u) + dG2 (vl))

)

≥
1

2(∆1 +∆2)

(
m2M1(G1) + 2m1M1(G2) + n1M2(G2)

)
≥

m2M1(G1) + 2m1M1(G2) + n1M2(G2)

2(∆1 +∆2)

Since |E(Q(G))| = 2|E(G)| and ∆Q(G) = ∆G

∑
vk=vl∈V2

∑
uiuj∈E(Q(G1))

dG1+QG2
(ui, vk)dG1+QG2

(uj , vl)

dG1+QG2 (ui, vk) + dG1+QG2 (uj , vl)

=
∑
v∈V2

∑
uiuj∈E(Q(G1));ui∈V (G1),uj∈V (Q(G1))(G1)

dG1+QG2 (ui, vk)dG1+QG2 (uj , vl)

dG1+QG2
(ui, vk) + dG1+QG2

(uj , vl)

+
∑
v∈V2

∑
uiuj∈E(Q(G1));ui,uj∈V (Q(G1))(G1)

dG1+QG2
(ui, vk)dG1+QG2

(uj , vl)

dG1+QG2
(ui, vk) + dG1+QG2

(uj , vl)
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Now,

∑
v∈V2

∑
uiuj∈E(Q(G1));ui∈V (G1),uj∈V (Q(G1))(G1)

dG1+QG2 (ui, vk)dG1+QG2 (uj , vl)

dG1+QG2
(ui, vk) + dG1+QG2

(uj , vl)

=
∑
v∈V2

∑
uiuj∈E(Q(G1));ui∈V (G1),uj∈V (Q(G1))(G1)

(dQ(G1)(ui) + dG2
(vk))(dQ(G1)(uj))

(dQ(G1)(ui) + dG2
(vk)) + (dQ(G1)(uj))

≥
1

4∆1(∆1 +∆2)

( ∑
v∈V2

∑
uiuj∈E(Q(G1));ui∈V (G1),uj∈V (Q(G1))(G1)

dG1
(ui)(dQ(G1)(uj))

+ 4m2M1(G1)

)
≥

4m2M1(G1) + 4n2δ21(2m1)

4∆1(∆1 +∆2)

≥
4m2M1(G1) + 8m1n2δ21

4∆1(∆1 +∆2)

and ∑
v∈V2

∑
uiuj∈E(Q(G1));ui,uj∈V (Q(G1))(G1)

dG1+QG2 (ui, vk)dG1+QG2 (uj , vl)

dG1+QG2
(ui, vk) + dG1+QG2

(uj , vl)

=
∑
v∈V2

∑
uiuj∈E(Q(G1));ui,uj∈V (Q(G1))(G1)

dQ(G1)(ui)dQ(G1)(uj)

(dQ(G1)(ui)) + (dQ(G1)(uj))

where ui inserted in edge w1w2 and uj inserted in edge w2w3 of

G1. So we have,

=
∑
v∈V2

∑
w1w2∈E(G),w2w3∈E(G1)

[dG1
(w1) + dG1

(w2)][dG1
(w2) + dG1

(w3)]

dG1
(w1) + dG1

(w2) + dG1
(w2) + dG1

(w3)

≥
4n2δ1

2( 1
2
M1(G1)−m1)

4∆1

By using these values, we get the required equation

ReZG2(G1 +Q G2) ≥
m2M1(G1) + 2m1M1(G2) + n1M2(G2)

2(∆1 +∆2)
+

4m2M1(G1) + 8m1n2δ21
4∆1(∆1 +∆2)

+
4n2δ1

2( 1
2
M1(G1)−m1)

4∆1
.

Similarly we can compute

ReZG2(G1 +S G2) ≤
m2M1(G1) + 2m1M1(G2) + n1M2(G2)

2(δ1 + δ2)
+

4m2M1(G1) + 8m1n2∆2
1

4δ1(δ1 + δ2)

+
4n2∆1

2( 1
2
M1(G1)−m1)

4δ1
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Theorem 2.6. Let G1 and G2 be two connected graphs with or-

der n1, n2, size m1,m2, maximum degree ∆1, ∆2 and minimum

degree δ1, δ2 respectively. Then second redefined Zagreb index

for F-sum of graphs is

γ1 ≤ ReZG2(G1 +T G2) ≤ γ2

where

γ1 =
4m2M1(G1) + 16m1n2δ21

4∆1(∆1 +∆2)
+

4n2δ21(
1
2
M1(G1)−m1)

4∆1

8m2M1(G1) + 5m1M1(G2) + n1M2(G2) + 4n2M2(G1)

2(2∆1 +∆2)

and

γ2 =
4m2M1(G1) + 16m1n2∆2

1

4δ1(δ1 + δ2)
+

4n2∆2
1(

1
2
M1(G1)−m1)

4δ1

8m2M1(G1) + 5m1M1(G2) + n1M2(G2) + 4n2M2(G1)

2(2∆1 +∆2)

equality holds if and only if G2 is a regular graph.

Proof. By the definition of second redefined Zagreb index, we

have

ReZG2(G1 +T G2) =
∑

(ui,vk)(uj ,vl)∈E(G1+TG2)

dG1+TG2
(u)dG1+TG2

(v)

dG1+TG2
(u) + dG1+TG2

(v)

=
∑

ui=uj∈V1

∑
vkvl∈E2

dG1+TG2
(ui, vk)dG1+TG2

(uj , vl)

dG1+TG2 (ui, vk) + dG1+TG2 (uj , vl)

+
∑

vk=vl∈V2

∑
uiuj∈E(T (G1))

dG1+TG2
(ui, vk)dG1+TG2

(uj , vl)

dG1+TG2
(ui, vk) + dG1+TG2

(uj , vl)

Note that dG1(u) ≤ ∆1 and dG1(u) ≥ δ1, equality holds if and

only if G1 is a regular graph, and similarly dG2(v) ≤ ∆2 and

dG2(v) ≥ δ2, equality holds if and only if G2 is a regular graph.
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We get

∑
ui=uj∈V1

∑
vkvl∈E2

dG1+TG2
(ui, vk)dG1+TG2

(uj , vl)

dG1+TG2 (ui, vk) + dG1+TG2 (uj , vl)

=
∑
u∈V1

∑
vkvl∈E2

[dT (G1)(u) + dG2
(vk)][dT (G1)(u) + dG2

(vl)]

[dT (G1)(u) + dG2
(vk)] + [dT (G1)(u) + dG2

(vl)]

=
∑

ui=uj∈V1

∑
vkvl∈E2

[2dG1
(u) + dG2

(vk)][2dG1
(u) + dG2

(vl)]

[2dG1
(u) + dG2

(vk)] + [2dG1
(u) + dG2

(vl)]

≥
1

2(2∆1 +∆2)

(
4

∑
u∈V1

∑
vkvl∈E2

d2G1
(u) + 2

∑
u∈V1

∑
vkvl∈E2

dG1
(u)(dG2

(vk) + dG2
(vl))

+
∑
u∈V1

∑
vkvl∈E2

(dG2
(vk)dG2

(vl))

)

≥
4m2M1(G1) + 4m1M1(G2) + n1M2(G2)

2(2∆1 +∆2)

Since |E(T (G))| = 2|E(G)| and ∆T (G) = 2∆G

∑
vk=vl∈V2

∑
uiuj∈E(T (G1))

dG1+TG2
(ui, vk) + dG1+TG2

(uj , vl)

dG1+TG2 (ui, vk)dG1+TG2 (uj , vl)

=
∑
v∈V2

∑
uiuj∈E(T (G1));ui,uj∈V (G1)

dG1+TG2 (ui, vk) + dG1+TG2 (uj , vl)

dG1+TG2 (ui, vk)dG1+TG2 (uj , vl)

+
∑
v∈V2

∑
uiuj∈E(T (G1));ui∈V (G1),uj∈V (T (G1))−V (G1)

dG1+TG2
(ui, vk) + dG1+TG2

(uj , vl)

dG1+TG2 (ui, vk)dG1+TG2 (uj , vl)

+
∑
v∈V2

∑
uiuj∈E(T (G1));ui,uj∈V (T (G1))−V (G1)

dG1+TG2
(ui, vk) + dG1+TG2

(uj , vl)

dG1+TG2 (ui, vk)dG1+TG2 (uj , vl)

+
∑
v∈V2

∑
uiuj∈E(T (G1));ui,uj∈V (T (G1))−V (G1)

dG1+TG2 (ui, vk) + dG1+TG2 (uj , vl)

dG1+TG2
(ui, vk)dG1+TG2

(uj , vl)

Note that ui, uj ∈ V (G1) and uiuj ∈ E(T (G1)) if and only if
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uiuj ∈ E(G1), we have

∑
v∈V2

∑
uiuj∈E(T (G1));ui,uj∈V (G1)

dG1+TG2
(ui, vk)dG1+TG2

(uj , vl)

dG1+TG2
(ui, vk) + dG1+TG2

(uj , vl)

≥
1

2(2∆1 +∆2)

( ∑
v∈V2

∑
uiuj∈E(T (G1));ui,uj∈V (G1)

(dT (G1)(ui)

+ dG2
(v))(dT (G1)(uj) + dG2

(v))

)
≥

1

2(2∆1 +∆2)

(
2

∑
v∈V2

∑
uiuj∈E(T (G1));ui,uj∈V (G1)

(dG2
(v))(dG1

(ui) + dG1
(uj))

+
∑
v∈V2

∑
uiuj∈E(T (G1));ui,uj∈V (G1)

(4dG1
(ui)dG1

(uj) + d2G2
(v))

)

≥
1

2(2∆1 +∆2)

(
4m2M1(G1) + n2(4M2(G1)) +m1(M1(G2))

)
≥

4m2M1(G1) + 4n2M2(G1) +m1M1(G2)

2(2∆1 +∆2)

Since dG1+TG2(u, v) = dG1+QG2(u, v) for u ∈ V (T (G1)− V (G1))

and v ∈ V (G2), we get the following equation by using the proof

of Theorem2.5

ReZG2(G1 +T G2) ≥
4m2M1(G1) + 16m1n2δ21

4∆1(∆1 +∆2)
+

4n2δ21(
1
2
M1(G1)−m1)

4∆1

8m2M1(G1) + 5m1M1(G2) + n1M2(G2) + 4n2M2(G1)

2(2∆1 +∆2)

and

ReZG2(G1 +T G2) ≤
4m2M1(G1) + 16m1n2∆2

1

4δ1(δ1 + δ2)
+

4n2∆2
1(

1
2
M1(G1)−m1)

4δ1

8m2M1(G1) + 5m1M1(G2) + n1M2(G2) + 4n2M2(G1)

2(2∆1 +∆2)

2.7 Third Redefined Zagreb Index for F-sum
of graphs, where F= Q or T

.

In this section, we establish the results for the third redefined
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Zagreb index of G1 +F G2 in terms of ∆G maximum degree, δG

minimum degree and Zagreb index of graph G.

Theorem 2.8. Let G1 and G2 be two connected graphs with or-

der n1, n2, size m1,m2, maximum degree ∆1, ∆2 and minimum

degree δ1, δ2 respectively. Then third redefined Zagreb index for

F-sum of graphs is

γ1 ≤ ReZG3(G1 +Q G2) ≤ γ2

where

γ1 =2(δ1 + δ2)
3 + 8m1n2δ1(δ1 + δ2)(5δ1 + δ2) + 16n2δ

3
1(

1

2
M1(G1)−m1)

γ2 =2(∆1 +∆2)
3 + 8m1n2∆1(∆1 +∆2)(5∆1 +∆2) + 16n2∆

3
1(

1

2
M1(G1)−m1)

(3)

equality holds if and only if G2 is a regular graph.

Proof. By the definition of third redefined Zagreb index we have

ReZG3(G1 +Q G2) =
∑

(ui,vk)(uj ,vl)∈E(G1+QG2)

[dG1+QG2
(u)dG1+QG2

(v)][dG1+QG2 (u)

+ dG1+QG2
(v)]

=
∑

ui=uj∈V1

∑
vkvl∈E2

[dG1+QG2 (ui, vk)dG1+QG2 (uj , vl)]

[dG1+QG2
(ui, vk) + dG1+QG2

(uj , vl)]

+
∑

vk=vl∈V2

∑
uiuj∈E(Q(G1))

[dG1+QG2
(ui, vk)dG1+QG2

(uj , vl)]

[dG1+QG2
(ui, vk) + dG1+QG2

(uj , vl)]

Note that dG1(u) ≤ ∆1 and dG1(u) ≥ δ1, equality holds if and

only if G1 is a regular graph, and similarly dG2(v) ≤ ∆2 and

dG2(v) ≥ δ2, equality holds if and only if G2 is a regular graph.
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We get∑
ui=uj∈V1

∑
vkvl∈E2

[dG1+QG2
(ui, vk)dG1+QG2

(uj , vl)][dG1+QG2
(ui, vk) + dG1+QG2

(uj , vl)]

=
∑
u∈V1

∑
vkvl∈E2

[(dQ(G1)(u) + dG2
(vk))(dQ(G1)(u) + dG2

(vl))]

[(dQ(G1)(u) + dG2 (vk)) + (dQ(G1)(u) + dG2 (vl))]

≤ 2(∆1 +∆2)

( ∑
u∈V1

∑
vkvl∈E2

(dG1 (u) + dG2 (vk))(dG1 (u) + dG2 (vl))

)
≤ 2n1m2(∆1 +∆2)(∆1 +∆2)

2

≤ 2(∆1 +∆2)
3

Since |E(Q(G))| = 2|E(G)| and ∆Q(G) = ∆G∑
vk=vl∈V2

∑
uiuj∈E(Q(G1))

[dG1+QG2
(ui, vk)dG1+QG2

(uj , vl)][dG1+QG2
(ui, vk)

+ dG1+QG2
(uj , vl)]

=
∑
v∈V2

∑
uiuj∈E(Q(G1));ui∈V (G1),uj∈V (Q(G1))(G1)

[dG1+QG2
(ui, vk)dG1+QG2

(uj , vl)]

[dG1+QG2
(ui, vk) + dG1+QG2

(uj , vl)]

+
∑
v∈V2

∑
uiuj∈E(Q(G1));ui,uj∈V (Q(G1))(G1)

[dG1+QG2 (ui, vk)dG1+QG2 (uj , vl)]

[dG1+QG2
(ui, vk) + dG1+QG2 (uj , vl)]

Now,∑
v∈V2

∑
uiuj∈E(Q(G1));ui∈V (G1),uj∈V (Q(G1))(G1)

[dG1+QG2
(ui, vk)dG1+QG2

(uj , vl)]

[dG1+QG2 (ui, vk) + dG1+QG2 (uj , vl)]

=
∑
v∈V2

∑
uiuj∈E(Q(G1));ui∈V (G1),uj∈V (Q(G1))(G1)

[(dQ(G1)(ui) + dG2
(vk))(dQ(G1)(uj))]

[(dQ(G1)(ui) + dG2
(vk)) + (dQ(G1)(uj))]

≤ [4n2∆1(2m1)(∆1 +∆2)][(∆1 +∆2) + 4∆1]

≤ [4n2∆1(2m1)(∆1 +∆2)][(5∆1 +∆2)]

≤ 8m1n2∆1(∆1 +∆2)(5∆1 +∆2)

and∑
v∈V2

∑
uiuj∈E(Q(G1));ui,uj∈V (Q(G1))(G1)

[dG1+QG2 (ui, vk)dG1+QG2 (uj , vl)]

[dG1+QG2 (ui, vk) + dG1+QG2 (uj , vl)]

=
∑
v∈V2

∑
uiuj∈E(Q(G1));ui,uj∈V (Q(G1))(G1)

[dQ(G1)(ui)dQ(G1)(uj)][(dQ(G1)(ui))

+ (dQ(G1)(uj))]
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Where ui inserted in edge w1w2 and uj inserted in edge w2w3 of

G1. So we have,

=
∑
v∈V2

∑
w1w2∈E(G),w2w3∈E(G1)

[(dG1
(w1) + dG1

(w2))(dG1
(w2) + dG1

(w3))]

[dG1
(w1) + dG1

(w2) + dG1
(w2) + dG1

(w3)]

≤ 16n2∆
3
1(

1

2
M1(G1)−m1)

By using these values, we get the required equation

ReZG3(G1+QG2
) ≤2(∆1 +∆2)

3 + 8m1n2∆1(∆1 +∆2)(5∆1 +∆2)

+ 16n2∆
3
1(

1

2
M1(G1)−m1).

Similarly we can compute

ReZG3(G1+QG2
) ≥ 2(δ1 + δ2)

3 + 8m1n2δ1(δ1 + δ2)(5δ1 + δ2) + 16n2δ
3
1(

1

2
M1(G1)−m1)

Theorem 2.9. Let G1 and G2 be two connected graphs with or-

der n1, n2, size m1,m2, maximum degree ∆1, ∆2 and minimum

degree δ1, δ2 respectively. Then third redefined Zagreb index for

F-sum of graphs G is

γ1 ≤ ReZG3(G1 +T G2) ≤ γ2

where

γ1 =2(m1n2 + n1m2)(2∆1 +∆2)
3 + 16n2∆

3
1(

1

2
M1(G1)−m1)

+ 8m1n2∆1(2∆1 +∆2)(6∆1 +∆2)

and

γ2 =2(m1n2 + n1m2)(2δ1 + δ2)
3 + 16n2δ

3
1(

1

2
M1(G1)−m1)

+ 8m1n2δ1(2δ1 + δ2)(6δ1 + δ2)

equality holds if and only if G2 is a regular graph.
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Proof. By the definition of third redefined Zagreb index, we have

ReZG3(G1 +T G2) =
∑

(ui,vk)(uj ,vl)∈E(G1+TG2)

[dG1+TG2
(u) + dG1+TG2

(v)]

[dG1+TG2 (u)dG1+TG2 (v)]

=
∑

ui=uj∈V1

∑
vkvl∈E2

[dG1+TG2 (ui, vk) + dG1+TG2 (uj , vl)]

[dG1+TG2
(ui, vk)dG1+TG2

(uj , vl)]

+
∑

vk=vl∈V2

∑
uiuj∈E(T (G1))

[dG1+TG2
(ui, vk) + dG1+TG2

(uj , vl)]

[dG1+TG2
(ui, vk)dG1+TG2

(uj , vl)]

Note that dG1(u) ≤ ∆1 and dG1(u) ≥ δ1, equality holds if and

only if G1 is a regular graph, and similarly dG2(v) ≤ ∆2 and

dG2(v) ≥ δ2, equality holds if and only if G2 is a regular graph.

We get ∑
ui=uj∈V1

∑
vkvl∈E2

[dG1+TG2 (ui, vk) + dG1+TG2 (uj , vl)]

[dG1+TG2
(ui, vk)dG1+TG2

(uj , vl)]

=
∑
u∈V1

∑
vkvl∈E2

[(dT (G1)(u) + dG2
(vk)) + (dT (G1)(u) + dG2

(vl))]

[(dT (G1)(u) + dG2 (vk))(dT (G1)(u) + dG2 (vl))]

=
∑

ui=uj∈V1

∑
vkvl∈E2

[(2dG1 (u) + dG2 (vk)) + (2dG1 (u) + dG2 (vl))]

[(2dG1
(u) + dG2

(vk))(2dG1
(u) + dG2

(vl))]

≤ n1m2

(
2(2∆1 +∆2)(2∆1 +∆2)

2

)
≤ 2n1m2(2∆1 +∆2)

3

Since |E(T (G))| = 2|E(G)| and ∆T (G) = 2∆G∑
vk=vl∈V2

∑
uiuj∈E(T (G1))

[dG1+TG2
(ui, vk) + dG1+TG2

(uj , vl)]

[dG1+TG2
(ui, vk)dG1+TG2

(uj , vl)]

=
∑
v∈V2

∑
uiuj∈E(T (G1));ui,uj∈V (G1)

[dG1+TG2
(ui, vk) + dG1+TG2

(uj , vl)]

[dG1+TG2
(ui, vk)dG1+TG2

(uj , vl)]

+
∑
v∈V2

∑
uiuj∈E(T (G1));ui∈V (G1),uj∈V (T (G1))−V (G1)

[dG1+TG2
(ui, vk) + dG1+TG2

(uj , vl)]

[dG1+TG2
(ui, vk)dG1+TG2

(uj , vl)]
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Note that ui, uj ∈ V (G1) and uiuj ∈ E(T (G1)) if and only if

uiuj ∈ E(G1), we have
∑
v∈V2

∑
uiuj∈E(T (G1));ui,uj∈V (G1)

[dG1+TG2
(ui, vk) + dG1+TG2

(uj , vl)]

[dG1+TG2
(ui, vk)dG1+TG2

(uj , vl)]

≥
∑
v∈V2

∑
uiuj∈E(T (G1));ui,uj∈V (G1)

[(dT (G1)(ui) + dG2
(v)) + (dT (G1)(uj) + dG2

(v))]

[(dT (G1)(ui) + dG2
(v))(dT (G1)(uj) + dG2

(v))]

≥ 2m1n2(2∆1 +∆2)
3

Since dG1+TG2(u, v) = dG1+QG2(u, v) for u ∈ V (T (G1)− V (G1))

and v ∈ V (G2), we get the following equation by using the proof

of Theorem2.8

ReZG2(G1 +T G2) ≤2(m1n2 + n1m2)(2∆1 +∆2)
3 + 16n2∆

3
1(

1

2
M1(G1)−m1)

+ 8m1n2∆1(2∆1 +∆2)(6∆1 +∆2)

and

ReZG2(G1 +T G2) ≥2(m1n2 + n1m2)(2δ1 + δ2)
3 + 16n2δ

3
1(

1

2
M1(G1)−m1)

+ 8m1n2δ1(2δ1 + δ2)(6δ1 + δ2)
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