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Abstract
Let 1 < t1 < ta < -+- < tg < n. A Toeplitz graph G = (V, E)
denoted by Ty, (t1, ..., tr) is a graph where V. ={1,...,n} and E =

{@@,7) | | — 7| € {t1,...,tx}}. In this paper, we classify all regular
Toeplitz graphs. Here, we present some conditions under which a
Toeplitz graph has no cut-edge and cut-vertex.
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1. Introduction

A Toeplitz matriz is named after Otto Toeplitz (1881-1940) which is
an n X n matrix A = (a;;) such that for each ¢ and j, 1 < 4,5 < n —1,
aij = a(i41)(j+1)- Toeplitz (0, 1)-matrices are precisely those matrices that
all diagonals parallel to main diagonal has constant values. Thus, Toeplitz
matrices are determined by its first row and column. Let n,ty,...,t; be
distinct positive integers such that 1 <t; <ty < -+ < tp < n. A Toeplitz
graph is denoted by T,,(t1,...,tx) = (V, E) where n is the number of ver-
tices, V.= {1,...,n} and E = {{i,5} | |¢ — j| € {¢t1,...,tx}}. The name
of this class of graphs is due to the fact that their adjacency matrices is a



3 6 2
Figure 1: The Toeplitz graph 77 < 3,4,5 >

Toeplitz (0, 1)-matrix. For example, see the graph T7 < 3,4,5 >, shown in
Figure 1. Moreover, the number of edges in the Toeplitz graph T, (t1, . . ., tx)
is equal to Zle(n —t;), see [2].

Properties of Toeplitz graphs, such as biparticity, planarity, colourabil-
ity and Hamiltonicity have been studied in [1]-[12].

Let G be a graph with the vertex set V(G) and the edge set F(G). We
denote the degree of v in G by d(v) and minimum degree of G is denoted
by §(G). A graph G is r-regular if d(v) = r, for all v € V(G). The set of
neighbors of v in graph G is denoted by N¢(v) or simply N(v). For a set
S C V, its open neighborhood is N(S) = Uves N(v). If G is a graph and
S C V(G), the induced subgraph on S is denoted by G[S]. The cycle of
order n is denoted by C,,. A graph G is said to be k-vertez-connected (or
k-connected) if the graph remains connected after deleting any fewer than
k vertices from the graph. A cut verter of a graph G is a vertex v whose
deletion along with incident edges results in a graph with more components
than the original graph. A graph is k-edge-connected if it remains connected
whenever any fewer than k edges are removed. A cut edge of a graph G
is an edge e whose deletion results in a graph with more components than
the original graph.

2. Vertex Degrees in Toeplitz Graphs

In this section we present a result on the degree of vertices of Toeplitz
graphs, and some results on the minimum degree of Toeplitz graph and
characterize r-regular Toeplitz graphs.

Lemma 1 Let G =T, <t >. For even integer n and each i € V(G),
d(i) = d(n —i+1). For odd integer n, d(i) = d(n — i + 1) for every
ie VIG\{[51}-

Proof. Case 1. Let t = [ 5 ].

For even n, we have E(G) = {(i, t+14); 1 < i < ¢}, which clearly shows that
d(i) = 1for each i € V(G). Hence, for every vertex i in G, d(i) = d(n—i+1).
For odd n, we have E(G) = {(i, t+1i); 1 <i <t} U (t + 1,n). Here, since
t+1 is the only vertex with degree two, d(i) = 1, for every i € V(G)\{[ 5]}
Hence d(i) = d(n — i+ 1), for every i € V(G) \ [5].

Case 2. Let t > [ ].



In this case we have F(G) = {(i, t+1i); 1 <i < n—t}, which clearly shows
that

1, forie{l,2,....n—t}U{t+1,t4+2,...,nk
d(i) =

0, forie{n—t+1ln—t+2,... t}
and it can be easily seen that for even n, d(i) = d(n — i + 1), for each
i € V(G). Also for odd n, d(i) = d(n —i+ 1), for all i € V(G)\{[5]},
because d([5]) =d(n—[5]+1) =d([ 5] +1) =d([5]) and there are odd
number of vertices with degree zero.

Case 3. Let t < [5].

In this case G consists of the paths {(i,i+¢,i+2t,...,m);1 < i < t}, where
m is the greatest integer less than or equal to n such that m = ¢ (mod ¢).
So d(i) € {1,2}, for 1 < i < n. Now, by induction on i, 1 < i < [§],
we will show that d(i) = d(n — i+ 1). For ¢ = 1 the result is true, be-
cause d(1) = 1 = d(n). Suppose that the result holds for i = k, i.e.,
d(k) =d(n —k+1). We will now show that d(k + 1) = d(n — k). To the
contrary, suppose d(k + 1) # d(n — k). Then, without loss of generality,
d(k+1) =2and d(n—k) = 1. Since d(k+1) = land t < [ 5], (k+1)+t <n
and (k+ 1) —t < 1. Together, these imply k+t <n—1. And k—t <0
and therefore d(k) = 1. By induction hypothesis, d(n — k + 1) = 1. It now
follows that (n —k+1) —t=n+1—(k+t¢) > 1 and (using the fact that
kE+t<mn) (n—k+1)+t>n. Together, these imply n — (k+t) > 0 and
(n—k)+t>n—1. Since d(n — k) = 2, it must be the case that n > k +¢
and (n — k) +t = n. Thus n > 2t, contradicting that ¢ < [n/2], proving
the Lemma.” O

Proposition 1 Let G =T, <ti,...,ty >. If n is even, then d(i) = d(n —
i+1) for eachi € V(G). Also, ifn is odd , then for each i € V(G)\{[ %]},
d(@) =d(n—i+1).

Proof. We prove the proposition by induction on k. Lemma[l]shows that
the result is true for £k = 1. Suppose that the result is true for k = s, i.e.,
for T,, < ty,ta,...,ts >. Now we show that the result is true for k = s + 1.
We can easily see that

T <ti,...,tsp1>=T, <t; >UT, <tg,ts,...,ts41 >

By induction hypothesis the result is true for both T;, < t; > and T, <
to,t3, ..., leq1 >. Clearly, E(Tn <t >) n E(Tn < to,l3,...,ts41 >) =,
which implies that the result is true for T,, < t; > UT,, < ta,ts,...,ts41 >,
which completes the proof. O



Lemma 2 For Toeplitz graph G =T, < t1,...,tx >, 6(G) = 0 if and only
if t1 > [24].

Proof. First assume that §(G) = 0. Let ¢ € V(G) and d(i) = 0. Clearly,
i+t >n+1. Thus 2ty >n+1 and so t; > (”THW

Conversely, suppose that t; > f%ﬂ] If n is even, then d(%) = 0 and if n
is odd then d(21) = 0. Hence 6(G) = 0. O

Lemma 3 Let G =T, < ty,...,ty > and n > 2. Then §(G) = 1 if and
only if n <t +t2 and t; < [2H1].

Proof. First assume that §(G) = 1. Therefore, there exists ¢ € V(G) such
that d(i) = 1. So either {i,i —t1} or {i,i +t1} € E(G). Without loss of
generality, {i,i — t1} € E(G). Since {i,i —t2},{i,i + t1} ¢ E(G), i < ta
and n+1<i+t. Thusn+ 1<t +t5. By Lemma < [,

Conversely, suppose that n < t1 +ts and t; < [%‘H] The later one implies
that 6(G) > 1. Now, we show that G has at least one vertex of degree 1.
If n is even, then by assumption, we have 2¢t; < n and so {t1,2t;} € E(G).
On the other hand, clearly for integer s, 1 < s < k, {t1,t; — ts} ¢ E(G).
Since n < 1 + tg, for integer v, 2 < r < k, {t1,t1 + ¢} ¢ E(G). Thus

d(t1) = 1. Similarly, if n is odd and t; < 2FL, then d(t;) = 1. O

Now, we have the following corollary.

Corollary 1 Suppose that G = Ty, (t1,...,t;) and n > 2. Then §(G) > 2
if and only if n > t1 +ty and t; < [%E1].

Theorem 1.[7] A Toeplitz graph T,, < ty,...,tx > witht; +tx < n+1
and ged(tq, ..., tx) = 1 is a connected graph.

For k = 2, Theorem [l] states G = T}, 4, (t1,t2) is connected if ged(ty,t2) =
1, in Proposition 2| we show the graph is d-connected if ged(t1,t2) = d.

Proposition 2 If G = T, 441, (t1,t2) and ged(t1,t2) = d, then G is the
union of disjoint cycles, Go,G1,...,Gq_1, and

t1 +t2
),

V(Gi) ={dj—i[1<j<

B(G:) = {{djs — i di2 — i} | {j1,32} € E(Tusa (3, 2)},

fori=0,1,...,.d—1.



Proof. Let H = GoUG{ U---UGg_1. We claim that H is a subgraph
of G. Sinced > 1, foreach 0 <i<d—-1land1l < j < %,wehave
1 <dj—i < t;+te. Thus V(H) C V(G). Now, we show that E(G;) C E(G).
Consider the edge {dj; —i, dj2 —i} € E(G;). Since |j1 — j2| € {%, %2} and
|dj1 — i — (dj2 — )| € {t1,t2}, therefore {dj; — i, djo — i} € E(G). Hence
E(H) C E(G) and we have H C G. Now, we prove that F(G) C E(H).
Suppose that {r, s} € E(G). Let r = —iy (mod d) and s = —iy (mod d) for
0 <'i1,i2 < d—1. Since {r, s} € E(G), [r—s| € {t1,t2}. So |r—s| = 0 (mod
d). Therefore, |iy —iz] = 0 (mod d). Since 0 < dy,ip < d — 1, i3 = ia.
Assume that iy =iy = i. Thus, r = dj; —i and s = djy —i. So j; = =
and jo, = %i. Since r,s < t1 + 13,0 < é < 1 and j1,j2 < tl'th. Hence,
{r,s} € E(H), and we have E(G) C E(H). Let z € V(G,) N V(Gp) and
0 <a<b<d-—1. Therefore for some j; and jo, 1 < ji,jo < %,
x=dj;s —aand x = djs —b. So a =0 (mod d). Since 0 < a,b < d-—1,
a = b. Therefore, V(G,) NV (Gp) = @, for a and b, 0 < a < b < d-—1.
Hence,

d—1
1+t
V) =Y IV(@) =d = =t + 6= V().
=0

Hence G = H. O
Now, we have the following corollary.

Corollary 2 If G = T, (t1,t2) and n <ty + ta, then G is a disjoint union
of paths and cycles.

Now, we consider the Toeplitz graphs with n > t; + t5 vertices.

Proposition 3 If G = T, {t1,t2), n > t1 + t2 and gcd(t1,t2) = d, then G

is the disjoint union of G[V;], 0 < i < d— 1, where

t1 +to
d

}

Vi= {k(ti+t) +dj—i<n|0<k<|—Jand1<j<
t1 + to

for eachi, 0 <i<d-—1.

Proof. Let V;={k(ti+t2)+dj—i<n|0<k< Lﬁj and 1 < j <
bdtt2}: where d = ged(ty,t2) and 0 < i < d — 1.

Assume that V, NV, # @, for 0 <a <b<d—1. Then let z € V, NV}. So
xr = kl(tl + tz) + djl —a = kg(tl + tg) + djg — b for some kq, ko, J1 and J2
such that 0 < kq, ke < [ﬁj, 1<41,j40 < % So a = b (mod d). Since
0<a,b<d-—1, a=>. Hence a contradiction.

Now, suppose that {r,s} € E(G) and s < r. Let r = ky(t1 + t2) + dj1 —



il and s = kz(tl + tz) + djg - i27 where 0 S i1,i2 S d—1. So (/Cl —
k2)(t1 +t2) +d(j1 — j2) — (i1 — i2) € {t1,t2}. Since ged(t1,t2) = d, i1 =2
(mod d). Since 0 < 41,45 < d — 1, 493 = iy and consequently {r,s} €
E(G[V;,]). Thus G[Vo,...,G[V4-1] are mutually disjoint subgraphs and
E(G) C UZ  E(G[Vi]).

It is straightforward to check that V(G) = Uf;OlVi. Therefore, the proof is
complete. O

Corollary 3 Let G = Ty,—1(t1,...,tk). If n > t1 + tg, then {n —t1,n —
ta,...,n—tr} C V(G) is contained in one of the components of G.

Proof. First, we prove that n —¢; and n — t5 are in the same component
of T,,—_1{t1,t2). Consider the notations given in the Proposition [3| Suppose
that n —t; € V;, and n — to € V;,. Let d = ged(t1,t2). By Proposition
n—t1 = kl (t1+t2)+dj1—’i1 and n—tg = kg(t1+t2)+dj2—i2 for some kl, kQ, jl
and 7o such that 0 < ki, ke < \_%J, 1<j1,72 < tl'th and 0 < iq,42 < d.
Since d = ged(ty,ta), 91 = i2 (modd). Since 0 < i1,i2 < d — 1, we have
i1 = i3 and n —t; and n — ty are in the same component of T,,_1 (t1,t2) and
consequently in the same component of G. In the same way, n—¢; and n—t;
are in the same component of G. Therefore, the set {n—t1,n—ts,...,n—t}

is contained in one of the components of G. (]

Theorem 2 (i) For even k, the Toeplitz graph G = Tp(t1,...,tx) is r-
reqular if and only if r =k, n=1t; + tg—i41, for each i, 1 <i < g

(i1) For odd k, the Toeplitz graph G = T, (t1,...,t) is r-regular if and only
ifr =%k, n=1t +th_iy1, for each i, 1 <i < LgJ Then n is even and

ther = 2.
5 2

Proof. First, suppose that T),(t1,. .., ) is an r-regular graph. Obviously,
r < k. Suppose that r < k. By the definition of Toeplitz graph, t,+1 < n.
So tr+1+1 S V(G) and also, {17 tr+1+17tr, Ce 7tr+1+17t1} - N(tr+1+1).
Therefore, d(t,4+1+1) > r+ 1, a contradiction. Thus r = k. We claim that
n = t1 +t. First, assume that n < t; +t;. Thus d(¢;) < 7, a contradiction.
Next, suppose that n > t; + t. Since t1 +tx +1 < n, d(t1 +1) > r+ 1.
Which is a contradiction. Hence n = t; + t;. By induction on k, we
prove the rest. The theorem is true for £ = 2. Now, we show that the
assertion holds for k = 3. Clearly, T,,(t1,ta,t3) = T),{t1,t3) U T, (t2). Note
that T,,(t1,t3) and T, (t2) are edge disjoint. By Proposition |2} T),(t1,t3)
is a disjoint union of cycles. Also, T, (t1,t2,t3) is a 3-regular graph. As a
result, T, (t2) is a perfect matching. So n is even and to = 4. Suppose that
the assertion holds for T, (t1,...,ts), and each s, s < k. It is easy to see
that Ty, (t1, ..., tr) = Tp(t1,tg) U T, (ta, ..., tk—1) which are edges disjoint.
By Proposition [2| T, (t1,t;) is a 2-regular graph. So T, (to,...,tx—1) is a
(k — 2)-regular graph. Now, by induction hypothesis the proof of one side



is complete. For the other side, first suppose that p € V(T},{t1,...,tx))
and p < t;. Since t1 +tx =n, N(p) = {p+t1,...,p+tx}. So d(p) = k.
Next, assume that t;_; < p < t;, for some i, 1 < ¢ < k. Now, we have
N(p) ={p—t1,...,p—ti—1,p+t1,...,p+tr_ip1} because t; +tx_; 11 = n.
Therefore, for p, t;—1 < p < t;, d(p) = k. Finally, suppose that ¢, < p < n.
Clearly, N(p) = {p — t1,...,» — tg}. Thus T,,(t1,...,tx) is a k-regular
graph. U

3. The Edge-cut and Vertex-cut in Toeplitz
Graphs

In this section, we prove a necessary condition for a Toeplitz graph to be
2-edge connected.

Lemma 4 T, (t1,t2) has no cut vertex if and only if n > t1 + ts.

Proof. Suppose that n > t; + to. The proof is by induction on n. If
n = t; + t2, then by Proposition [2| T, (¢1,t2) is the disjoint union of d
cycles, where d = ged(t1,t2). Since cycles have no cut vertex, the assertion
is true for n = t; +t5. Clearly, the graph T, (1, t2) is constructed by adding
the vertex n to T;,—1(t1, t2) and jointing n to two vertices n —t; and n — to.
Since n — 1 > t; + ta, the induction hypothesis shows that T,,_1(t1,¢2) has
no cut vertex. By Corollary[3} n —t; and n —t5 are in the same component
of T,,—1(t1,t2), thus T, (t1,t2) has no cut vertex.

Conversely, suppose that T, (t1,¢2) has no cut vertex. On contrary,
suppose that n < t1 4+ to but then T,,(¢1, t2) will have a cut vertex because
by Corollary [2| at least one of its components is a path which completes
the proof. O

By Lemma [4] and Proposition [3} we have the following corollary.

Corollary 4 If ged(ty,t2) = 1 and t1 + ta < n, then T, < t1,ts > is
2-connected.

Proposition 4 Let ged(ty,ty) =1 and t1 +tp < n, then T, < ty,... tx >
s 2-connected.

Proof. Since t; + t; < n, by Lemma [4] T}, < t1,%r > has no cut vertex.
Since ged(t1,t;) = 1 so ged(ty,...,t,) = 1 and t; + tx < n which implies
t1 +ty < n+ 1, by corollary [d T,, < t1,...,t, > is connected. T, <
t1,...,tx > has more edges than T,, < t1,t >, so T, < t1,...,tx > has no
cut vertex, i.e., T, < t1,...,tr > is 2-connected. O

Theorem 3 Let ng be a positive. If Ty, (t1,...,tk) has no cut edge, then
T (t1,...,tg), n > ng, has no cut edge as well.



Proof. The proof is by induction on n. For n = ng, there is nothing
to prove. Thus assume that n > ng and G = T,(t1,...,tx). Suppose
that the assertion holds for n — 1, and n > ng. By induction hypothesis,
Th—1{t1,...,tr) as a subgraph of T}, {t1,...,tx) has no cut edge. Therefore,
the common edges of T,,_1(t1,...,tx) and T, (t1,...,tx) are not cut edge.
So it is sufficient to prove that none of the edges {n,n —t;}, 1 < i <k,
is a cut edge. By Corollary 3| n — t1,n — ta,...,n — t; are in the same
component of G = T, (t1,...,t;) and we are done. O

Theorem 4 If 3ty + 2t <n, then G =T, <ty,...,tr > has no cut edge.

Proof. We show that H = T,,_¢, 4, < t1,...,tx > has no cut edge.
Assume that 1 <i <n —t; — tg. Clearly,

Nu(i)={i—t[1 <r <kt <ifU{i+t]1<r<kjit+t, <n—t+t}.

Let r, 1 <r <k. Ift; <i—t,, then the cycle (i,i—t,.,i —t, —t1,i—1t1,7) is
a subgraph of T, _;, 4, < t1,...,tr > which contains the edge {i —t,,i}. If
0 <i—t, <ty,theni+t; < 2t1+tr < n—t1—tg, because 3t1+2t < n. Now,
the cycle (i,i—t,,i—t.+t1,i+1t1,1) is a subgraph of Ty, —¢, < t1,...,t5 >
which contains the edge {i—t,,i}. If i+t, < n—t;—t, and ¢t; < ¢, then the
cycle (i, + tr,i +t, —t1,7 —t1,1) is a subgraph of T),_y, 4, < t1,...,15 >
which contains the edge {i,i + ¢,}. Since 3t; + 2t, < n, i +t, < 2t; +
ty, <nm—t; —tg. Soif i+t < n—1t; —t, and t; > 4, then the cycle
(i, +tr, i+t +t1,i+t1,1) is a subgraph of T,,_¢, ¢, < t1,...,tx > which
contains the edge {i,i+t,}. Thus T),_¢, 1, < t1,...,t; > has no cut edge.
Now, by Theorem 8] G = T}, < ti,...,t; > has no cut edge and the proof
is complete. O

The following results were proved about the connectivity of Toeplitz graphs.

Remark 1 There is a Toeplitz graph T;, < t1,...,t; > such that ged(ty,...,t;) =
1 and t; + tx < n + 1 which is connected but it is not 2-edge connected.
For example T7 < 3,5 >.

Theorem 5 If ged(t,tx) = 1 and t1 + tx, < n, then T,, < t1,...,tx > is
2-edge connected.

Proof. By Corollary @ T,, < t1,...,t; > is a connected graph. Since
ged(ty, t) = 1, by Proposition [2| Ty, 44, < t1,t, > is a cycle. So Ty, 4¢, <
t1,tr > is 2-edge connected. Now, Theorem shows that T,, < t1,t; > has
no cut edge. Thus the Toeplitz graph T,, < t1,...,tx > is 2-edge connected.
O
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