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Abstract. A directed Toeplitz graph is a digraph with a Toeplitz
adjacency matrix. In this paper we contribute to [6]. The paper
[6] investigates the hamiltonicity of the directed Toeplitz graphs
Tn〈s1, s2, . . . , sk; t1, t2, . . . , tl〉 with s2 = 2 and in particular those
with s3 = 3. In this paper we extend this investigation to s2 = 3
with s1 = t1 = 1.
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1 Introduction

We use [6] for terminology and notations not defined here, and consider
finite directed graphs without multiple edges and without loops, because
multiple edges and loops play no role in hamiltonicity investigations. Since
all graphs will be directed, we shall omit mentioning it.

Properties of Toeplitz graphs, such as bipartiteness, planarity and coloura-
bility, have been studied in [2], [3], [4]. Hamiltonian properties of undirected
Toeplitz graphs have been investigated in [1] and [5]. The paper [6] investi-
gates the hamiltonicity of the directed Toeplitz graphs with s2 = 2 and in
particular those with s3 = 3. In this paper we extend this investigation to
the cases (k = l = 1) and (s1 = t1 = 1 and s2 = 3).

Connectivity and hamiltonicity results obtained in the undirected case
for a Toeplitz graph have a direct impact on the directed case. So con-
nectedness of Tn〈s1,. . . ,sk;t1,. . . ,tl 〉 means precisely connectedness of Tn〈
s1,. . . ,sk,t1,. . . ,tl〉 (the first one is directed while the later is undirected).
Hamiltonicity of Tn〈 t1,t2,. . . ,ti〉 means hamiltonicity of Tn〈 t1,. . . ,ti;t1,. . .
,ti〉.
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2 Toeplitz graphs with k = l = 1

It is known that, if gcd(s1, s2) = 1 and n is a multiple of s1 + s2 then
Tn〈s1, s2; s1, s2〉 is hamiltonian (Theorem 10 in [1]). For k = l = 1 we obtain
a characterization of cycles among Toeplitz graphs.

Theorem 1. Tn〈s; t〉 is a cycle if and only if gcd (s, t) = 1 and s + t = n.

Proof. Firstly, suppose gcd(s, t) = 1 and s + t = n.
If s = t = 1, then the statement is true. Otherwise, assume without loss

of generality that s < t.
Let s + t = n. From [1] we know that Tn〈s; t〉 is connected. We show

that each vertex has indegree and outdegree one.
Indeed, let v ∈ V (Tn〈s; t〉).

(a) If v ≤ s, then its incident edges are (v + t, v), (v, v + s).
(b) If s + 1 ≤ v ≤ t, then its incident edges are (v − s, v), (v, v + s).
(c) If v ≥ t + 1, then its incident edges are (v − s, v), (v, v − t).

Thus, Tn〈s; t〉 is a cycle. (see Figure 1 for the case s = 6 and t = 11).
Conversely suppose Tn〈s; t〉 is a cycle, so is connected which shows that

gcd(s, t) = 1 (see [1]). The number of edges in Tn〈s; t〉 is (n− s)+(n− t) =
2n− (s + t) (see [1]), which must be n since Tn〈s; t〉 is a cycle. This implies
n = s + t.ut

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17

Fig. 1. The Toeplitz graph T17〈6; 11〉.
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3 Toeplitz graphs with s1 = t1 = 1 and s2 = 3

In this section we will present a few results on Toeplitz graphs with
s1 = t1 = 1 and s2 = 3. They will sometimes depend upon the parity of n.

Theorem 2. Tn〈1, 3; 1, 2〉 is hamiltonian for all n.

Proof.
Case 1. n ≡ 1 (mod 3).
From Theorem 1 in [6], Tn〈1, 3; 1, 2〉 is hamiltonian (with hamiltonian cycle
containing the edge (n− 1, n)).

Case 2. n ≡ 0, 2 (mod 3).
We take first representatives from each residue class. For n ∈ {6, 5}, Tn〈
1,3;1,2〉 has a hamiltonian cycle containing the edge (n− 1, n).

Indeed, T6〈 1,3;1,2〉 has a hamiltonian cycle (1, 2, 5, 6, 4, 3, 1) and T5〈
1,3;1,2〉 has a hamiltonian cycle (1, 4, 5, 3, 2, 1) (see Figures 2-3).

Suppose Tn〈1, 3; 1, 2〉 has a hamiltonian cycle containing the edge (n−
1, n). We prove that Tn+3〈1, 3; 1, 2〉 has the same property. Indeed, since
(n − 1, n) is an edge in a hamiltonian cycle of Tn〈1, 3; 1, 2〉, we transform
this cycle to a hamiltonian cycle in Tn+3〈1, 3; 1, 2〉, by replacing the edge
(n− 1, n) with the path (n− 1, n + 2, n + 3, n + 1, n). Hence Tn〈1, 3; 1, 2〉
is hamiltonian for all n. ut

1 2 3       4 5      6

Fig. 2. T6〈1, 3; 1, 2〉.

1 2 3        4 5 

Fig. 3. T5〈1, 3; 1, 2〉.
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Theorem 3. Tn〈1, 3; 1, 4〉 is hamiltonian for all n.

Proof.
Claim 1. For n ∈ {5, 7, 12}, Tn〈1, 3; 1, 4〉 has a hamiltonian cycle contain-
ing the edge (n− 2, n− 1).

Indeed, T5〈1, 3; 1, 4〉 has the hamiltonian cycle T5〈1; 4〉,
T7〈1, 3; 1, 4〉 has a hamiltonian cycle (1, 4, 5, 6, 7, 3, 2, 1), and T12〈1, 3; 1, 4〉
has a hamiltonian cycle (1, 4, 5, 6, 9, 10, 11, 12, 8, 7, 3, 2, 1) (see Figures
4-5).

1 2 3        4 5 6        7

Fig. 4. T7〈1, 3; 1, 4〉.

1 2 3        4 5 6        7 8        9      10       11        12

Fig. 5. T12〈1, 3; 1, 4〉.

Claim 2. For n ∈ {6, 9}, Tn〈1, 3; 1, 4〉 is hamiltonian.

Indeed, T6〈1, 3; 1, 4〉 has a hamiltonian cycle (1, 4, 3, 6, 2, 5, 1) (see Fig-
ure 6), and T9〈1, 3; 1, 4〉 has a hamiltonian cycle (1, 4, 5, 6, 9, 8, 7, 3, 2, 1)
(see Figure 7).
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1 2 3         4 5        6

Fig. 6. T6〈1, 3; 1, 4〉.

1 2 3        4 5 6        7 8         9

Fig. 7. T9〈1, 3; 1, 4〉.

Suppose Tn〈1, 3; 1, 4〉; n /∈ {6, 9}, has a hamiltonian cycle containing the
edge (n−2, n−1). We prove that Tn+3〈1, 3; 1, 4〉 has the same property. In-
deed, since (n−2, n−1) is an edge in a hamiltonian cycle of Tn〈1, 3; 1, 4〉, we
transform this cycle to a hamiltonian cycle in Tn+3〈1, 3; 1, 4〉, by replacing
the edge (n− 2, n− 1) with the path (n− 2, n + 1, n + 2, n + 3, n− 1).

By Claim 1, Tn〈1, 3; 1, 4〉 enjoys the above property for n ∈ {5, 7, 12}. It
follows that the property holds for n = 5, 7, 8 and all n ≥ 10. This together
with Claim 2 proves the theorem. ut

Theorem 4. Tn〈1, 3; 1, 6〉 is hamiltonian for all n.

Proof.
Claim 1. For n ∈ {7, 8, 9, 10, 16}, Tn〈1, 3; 1, 6〉 has a hamiltonian cycle
containing the edge (n− 2, n− 1).

Indeed T7〈1, 3; 1, 6〉 has the hamiltonian cycle (1, 2, 3, 4, 5, 6, 7, 1), T8〈
1, 3;1,6〉 has a hamiltonian cycle (1, 4, 5, 8, 2, 3, 6, 7, 1), T9〈 1,3;1,6〉 has
a hamiltonian cycle (1, 4, 5, 6, 7, 8, 9, 3, 2, 1), T10〈 1,3;1,6〉 has a hamilto-
nian cycle (1, 2, 3, 6, 5, 8, 9, 10, 4, 7, 1), and T16〈 1, 3; 1, 6〉 has a hamilto-
nian cycle (1, 4, 5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 10, 9, 3, 2, 1) (see Figures
8-12, respectively).
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1 2 3        4 5 6         7

Fig. 8. T7〈1, 3; 1, 6〉.

1 2 3        4 5 6        7 8

Fig. 9. T8〈1, 3; 1, 6〉.

1 2 3        4 5 6        7       8        9

Fig. 10. T9〈1, 3; 1, 6〉.

1 2 3      4 5  6        7 8       9     10      

Fig. 11. T10〈1, 3; 1, 6〉.

1 2 3        4 5 6        7 8       9        10      11      12      13       14      15      16

Fig. 12. T16〈1, 3; 1, 6〉.



On The Hamiltonicity of Toeplitz Digraphs 7

Claim 2. T11〈1, 3; 1, 6〉 is hamiltonian.

Indeed, T11〈1, 3; 1, 6〉 has a hamiltonian cycle (1, 4, 5, 6, 7, 8, 11, 10, 9, 3, 2, 1),
(see Figure 13).

1 2 3        4 5 6        7 8       9      10         11     

Fig. 13. T11〈1, 3; 1, 6〉.

Suppose Tn〈1, 3; 1, 6〉; n 6= 11, has a hamiltonian cycle containing the
edge (n−2, n−1). We prove that Tn+5〈1, 3; 1, 6〉 has the same property. In-
deed, since (n−2, n−1) is an edge in a hamiltonian cycle of Tn〈1, 3; 1, 6〉, we
transform this cycle to a hamiltonian cycle in Tn+5〈1, 3; 1, 6〉, by replacing
the edge (n− 2, n− 1) with the path (n− 2, n+1, n+2, n + 3, n + 4, n+
5, n− 1).

By Claim 1, Tn〈1, 3; 1, 6〉 enjoys the above property for n ∈ {7, 8, 9, 10, 16}.
It follows that the property holds for n = 7, 8, 9, 10 and all n ≥ 12. This
together with Claim 2 proves the theorem. ut

Theorem 5. Tn〈1, 3; 1, t2〉, where t2(≥ 8) is even, is hamiltonian if n ≡
0, 2, 4, 6, 5, 7, 9, ..., t2 − 3 (mod (t2 − 1)).

Proof. Put t2 = 2m, for some integer m ≥ 4.
Let

n ≡ n0 (mod (2m− 1)),

where
n0 = 0, 2, 4, 6, 5, 7, 9, . . . . 2m− 3.

Since n > 2m, we take representatives of each class between 2m+1 and
4m− 2.

Case 1. n ≡ 0 (mod (2m− 1)).
For n = 4m− 2, a hamiltonian cycle in Tn〈1, 3; 1, 2m〉 is

(1, 2, 3, . . . , n − 2m − 1, n − 2m + 2, n − 2m + 1, n − 2m + 4, n − 2m +
5, . . . , n− 2, n− 1, n, n− 2m, n− 2m + 3, 1).
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Case 2. n ≡ 2 (mod (2m− 1)).
For n = 2m + 1, a hamiltonian cycle in Tn〈1, 3; 1, 2m〉 is

(1, 2, 3, . . . , n− 2, n− 1, n, 1).

Case 3. n ≡ 4 (mod (2m− 1)).
For n = 2m + 3, a hamiltonian cycle in Tn〈1, 3; 1, 2m〉 is

(1, 4, 5, 6, . . . , n− 2, n− 1, n, 3, 2, 1).

Case 4. n ≡ 6 (mod (2m− 1)).
For n = 2m + 5, a hamiltonian cycle in Tn〈1, 3; 1, 2m〉 is

(1, 4, 5, 6, . . . , n− 3, n, n− 1, n− 2, 3, 2, 1).

Case 5. n ≡ (2m− 5) (mod (2m− 1)).
For n = 4m− 6, a hamiltonian cycle in Tn〈1, 3; 1, 2m〉 is

(1, 2, 3, . . . , n − 2m − 1, n − 2m + 2, n − 2m + 1, n − 2m + 4, n − 2m +
5, n − 2m + 8, , n − 2m + 9, . . . , n− 2, n− 1, n, n − 2m, n − 2m + 3, n −
2m + 6, n− 2m + 7, 1)

Case 6. n ≡ (2m− 3) (mod (2m− 1)).
For n = 4m− 4, a hamiltonian cycle in Tn〈1, 3; 1, 2m〉 is

(1, 2, 3, . . . , n−2m−1, n−2m+2, n−2m+1, n−2m+4, n−2m+7, n−
2m+8, . . . , n− 2, n− 1, n, n−2m, n−2m+3, n−2m+6, n−2m+5, 1).
(for Cases 1-6, see Figures 14-19, respectively).

1 2 3        

n-2m-1

n-2m

n-2m+4

 n-2      n-1        n
. . . . . . . .

Fig. 14. Tn〈1, 3; 1, 2m〉; n = 4m− 2.

1 2 3               n-2      n-1       n
.  .  .

Fig. 15. Tn〈1, 3; 1, 2m〉; n = 2m + 1.
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1 2 3        4 5  n-2      n-1     n
.  .  .  . 

  

Fig. 16. Tn〈1, 3; 1, 2m〉; n = 2m + 3.

1 2 3        4 5 n-3       n-2    n-1      n
.  .  .

Fig. 17. Tn〈1, 3; 1, 2m〉; n = 2m + 5.

1 2 3        

n-2m-1

n-2m

n-2m+8

 n-2      n-1        n
. . . . . . . .

 

Fig. 18. Tn〈1, 3; 1, 2m〉; n = 4m− 6.

1 2 3        

n-2m-1

n-2m

n-2m+7

  n-2      n-1        n
. . . . . . . .

Fig. 19. Tn〈1, 3; 1, 2m〉; n = 4m− 4.
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Case 7. n ≡ s (mod (2m− 1)), where s = 5, 7, 9, . . . , 2m− 7.
We have three subcases.
(i) If 4m− n ≡ 1 (mod 3), then a hamiltonian cycle in Tn〈1, 3; 1, 2m〉 is

(1, 2, 3, . . . , n − 2m − 1, n − 2m + 2, n − 2m + 1, n − 2m + 4, n − 2m +
5, . . . , n− 2m + 3p− 1, n− 2m + 3p− 2, n− 2m + 3p + 1, n− 2m + 3p +
2, . . . , 2m, 2m + 3, 2m + 4, . . . , n− 2, n− 1, n, n − 2m, n − 2m + 3, n −
2m + 6, . . . , 2m + 2, 2m + 1, 1), where p is a non-negative odd integer.

(ii) If 4m−n ≡ 0 (mod 3), then a hamiltonian cycle in Tn〈1, 3; 1, 2m〉 is
(1, 2, 3, . . . , n − 2m − 1, n − 2m + 2, n − 2m + 1, n − 2m + 4, n − 2m +
5, . . . , n− 2m + 3p− 1, n− 2m + 3p− 2, n− 2m + 3p + 1, n− 2m + 3p +
2, . . . , 2m+2, 2m+3, 2m+4, . . . , n− 2, n− 1, n, n−2m, n−2m+3, n−
2m + 6, . . . , 2m, 2m + 1, 1)

(iii) If 4m−n ≡ 2 (mod 3), then a hamiltonian cycle in Tn〈1, 3; 1, 2m〉 is
(1, 2, 3, . . . , n−2m−1, n−2m+2, n−2m+1, n−2m+4, n−2m+5, . . . , n−
2m+3p−1, n−2m+3p−2, n−2m+3p+1, n−2m+3p+2, . . . , 2m+2, 2m+
3, . . . , n− 2, n− 1, n, n−2m, n−2m+3, n−2m+6, . . . , 2m−2, 2m+1, 1)
(for subcases (i)-(iii) see Figures 20-22, respectively).

        

n-2m-1
. . . 

. . .
.   .   .   .

1     2 n-2m

2m
 n-1    n

2m+3

Fig. 20.

        

n-2m-1
. . . 

. . .
.   .   .   .

1    2 n-2m 2m  n-1    n

2m+2

Fig. 21.
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n-2m-1
. . . 

. . ..   .   .   .

1    2 n-2m

2m+2
 n-1    n2m-12m-2

Fig. 22.

Note that for n 6= 2m + 5, (n− 2, n− 1) is an edge in each of the above
hamiltonian cycles of Tn〈1, 3; 1, 2m〉.

For n = 2m+5, since (n, n−1) is an edge in the shown hamiltonian cycle
of Tn〈1, 3; 1, 2m〉, we transform this hamiltonian cycle to a hamiltonian
cycle in Tn+(2m−1)〈1, 3; 1, 2m〉, by replacing the edge (n, n − 1) with the
path (n, n + 1, n + 2, . . . , n + 2m− 3, n + 2m− 2, n + 2m− 1, n− 1). Now
Tn+(2m−1)〈 1, 3; 1, 6〉 contains the edge (n+2m−3, n+2m−2) (see Figure
23).

1 2 3        4 5 n-3       n-2      n-1       n

1 2 3        4 5 n-3       n-2      n-1     n  n-2m-3         n-2m-1 

.  .  .  .

.  .  .  . .  .  .  .

Fig. 23.
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Suppose Tn〈1, 3; 1, 2m〉, with n = 4m + 4 + q(2m − 1), k + q(2m − 1);
k = 2, 4, 5, 7, . . . , 2m− 5, 2m− 3, has a hamiltonian cycle containing the
edge (n−2, n−1), for some q ∈ N. We prove that Tn+(2m−1)〈1, 3; 1, 2m〉 has
the same property. Since (n− 2, n− 1) is an edge in a hamiltonian cycle of
Tn〈1, 3; 1, 2m〉, we transform this hamiltonian cycle to a hamiltonian cycle
in
Tn+(2m−1)〈1, 3; 1, 2m〉, by replacing the edge (n − 2, n − 1) with the path
(n− 2, n + 1, n + 2, . . . , n + 2m− 3, n + 2m− 2, n + 2m− 1, n− 1). This
shows that Tn+(2m−1)〈1, 3; 1, 2m〉 has the same property. This together with
Case 3 proves the theorem.ut

In Theorem 5, if n ≡ 3 (mod (t2−1)), then the hamiltonicity of Tn〈1, 3; 1, t2〉
depends upon t2 as described in Theorem 6.

Theorem 6. Tn〈1, 3; 1, t2〉 is hamiltonian if t2 ≡ 0, 2 (mod 3), t2(≥ 8) is
even, and n ≡ 3 (mod (t2 − 1)).

Proof. Put t2 = 2m. Since n ≡ 3 (mod (2m − 1)), the smallest possible
value for n is 2m + 2.

Case 1. If 2m ≡ 0 (mod 3), then a hamiltonian cycle in Tn〈 1, 3; 1, 2m〉 is
(1, 4, 5, 8, 7, . . . , 3p + 1, 3p + 2, 3p + 5, 3p + 4, . . . , n− 3, n, 2, 3, 6, 9, . . . ,
n− 2, n− 1, 1), where p is a non-negative odd integer (see Figure 24).

.   .   .   .

1      2        3        4      5       6      7          8      9        10    
 n-3     n-2     n-1       n

Fig. 24. Tn〈1, 3; 1, 2m〉; n = 2m + 2 where2m ≡ 0 (mod 3).

Case 2. If 2m ≡ 2 (mod 3), then a hamiltonian cycle in Tn〈 1, 3; 1, 2m〉 is
(1, 4, 3, 6, 7, . . . , 3p+1, 3p, 3p+3, 3p+4, . . . , n−3, n, 2, 5, 8, 11, . . . , n− 2, n− 1, 1)
(see Figure 25).

Note that (n − 2, n − 1) is an edge in both of the above hamiltonian
cycles. Suppose Tn〈1, 3; 1, 2m〉, with n = (2m + 2) + q(2m − 1), has a
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.   .   .   .

1      2       3         4      5        6      7        8     
 n-3     n-2     n-1       n

Fig. 25. Tn〈1, 3; 1, 2m〉; n = 2m + 2 where2m ≡ 2 (mod 3).

hamiltonian cycle containing the edge (n−2, n−1), for some non-negative
integer q. We prove that Tn+(2m−1)〈1, 3; 1, 2m〉 has the same property.

Since (n− 2, n− 1) is an edge in a hamiltonian cycle of Tn〈1, 3; 1, 2m〉,
we transform this hamiltonian cycle to a hamiltonian cycle in Tn+(2m−1)〈
1, 3; 1, 2m〉, by replacing the edge (n−2, n−1) with the path (n−2, n+1,
n + 2, . . . , n + 2m− 3, n + 2m− 2, n + 2m − 1, n − 1). This shows that
Tn+(2m−1)〈 1, 3; 1, 2m〉 enjoys the same property. This finishes the proof.ut

Theorem 7. Tn〈1, 3; 1, t2〉, where t2(≥ 3) is odd, is hamiltonian if and
only if n is even.

Proof. For t2 = 3 it is done in ([1], Theorem 5).
For t2 ≥ 5. First suppose n is even. We have t2 = 2m − 1 for some

integer m ≥ 3, and write

n ≡ n0 (mod (2m− 2)),

where
2m ≤ n0 ≤ 4m− 4.

Clearly n0 − (2m− 1) is odd. First, assume n = n0. We show the exis-
tence of a hamiltonian cycle containing the edge (n− 2, n− 1).

Case 1. If n − (2m − 1) = 1, then a hamiltonian cycle in Tn〈 1, 3; 1,
2m− 1〉 is (1, 2, 3, . . . , n− 2, n− 1, n, 1) (see Figure 26).
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1 2 3                n-2      n-1      n
. . . .

Fig. 26. Tn〈1, 3; 1, 2m− 1〉; n− (2m− 1) = 1.

Case 2. If n− (2m−1) = 3, then a hamiltonian cycle in Tn〈 1, 3; 1, 2m−1〉
is (1, 4, 5, 6, . . . , n− 2, n− 1, n, 3, 2, 1) (see Figure 27).

1 2 3        4 5  n-2      n-1     n
.  .  .  . 

Fig. 27. Tn〈1, 3; 1, 2m− 1〉; n− (2m− 1) = 3.

Case 3. If n− (2m− 1) > 3, we have the following subcases.

(a) If n−(2m−1) = 2m−3, then a hamiltonian cycle in Tn〈1, 3; 1, 2m−
1〉 is (1, 2, 3, . . . , n − 2m, n − 2m + 3, n − 2m + 2, n − 2m + 5, n − 2m +
6, . . . , n− 2, n− 1, n, n− 2m + 1, n− 2m + 4, 1) (see Figure 28).

1 2 3        

n-2m
n-2m+4  n-2      n-1        n

. . . . . . . .

Fig. 28. Tn〈1, 3; 1, 2m− 1〉; n− (2m− 1) = 2m− 3.

(b) If n−(2m−1) = 2m−5, then a hamiltonian cycle in Tn〈1, 3; 1, 2m−
1〉 is (1, 2, 3, . . . , n−2m, n−2m+3, n−2m+2, n−2m+5, n−2m+8, n−
2m+9, . . . , n− 2, n− 1, n, n−2m+1, n−2m+4, n−2m+7, n−2m+6, 1)
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(see Figure 29).

1 2 3        

n-2m

n-2m+1

n-2m+8

n-2      n-1       n
. . . . . . . .

Fig. 29. Tn〈1, 3; 1, 2m− 1〉; n− (2m− 1) = 2m− 5.

(c) If n − (2m − 1) 6= 2m − 3, 2m − 5, we have the following three
subcases.

(i) If 4m− n ≡ 0 (mod 3), then a hamiltonian cycle in
Tn〈1, 3; 1, 2m− 1〉 is (1, 2, 3, . . . , n− 2m, n− 2m+3, n− 2m+2, n− 2m+
5, n− 2m+6, . . . , n− 2m+3p, n− 2m+3p− 1, n− 2m+3p+2, n− 2m+
3p + 3, . . . , 2m − 1, 2m + 2, 2m + 3, . . . , n− 2, n− 1, n, n − 2m + 1, n −
2m + 4, n− 2m + 7, . . . , 2m− 2, 2m + 1, 2m, 1), where p is a non-negative
odd integer (see Figure 30).

        

n-2m
. . . 

. . .
.   .   .   .

1    2 n-2m+1 2m   n-1    n

Fig. 30.

(ii) If 4m− n ≡ 1 (mod 3), then a hamiltonian cycle in
Tn〈1, 3; 1, 2m− 1〉 is (1, 2, 3, . . . , n− 2m, n− 2m+3, n− 2m+2, n− 2m+
5, n− 2m+6, . . . , n− 2m+3p, n− 2m+3p− 1, n− 2m+3p+2, n− 2m+
3p + 3, . . . , 2m− 1, 2m− 2, 2m + 1, 2m + 2, . . . , n− 2, n− 1, n, n− 2m +
1, n− 2m + 4, n− 2m + 7, . . . , 2m− 3, 2m, 1) (see Figure 31).
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n-2m
. . . 

. . ..   .   .   .

1    2 n-2m+1

2m+1
  n-1    n2m2m-3

Fig. 31.

(iii) If 4m− n ≡ 2 (mod 3), then a hamiltonian cycle in
Tn〈1, 3; 1, 2m− 1〉 is (1, 2, 3, . . . , n− 2m, n− 2m+3, n− 2m+2, n− 2m+
5, n− 2m+6, . . . , n− 2m+3p, n− 2m+3p− 1, n− 2m+3p+2, n− 2m+
3p + 3, . . . , 2m− 3, 2m− 2, 2m + 1, 2m + 2, . . . , n− 2, n− 1, n, n− 2m +
1, n− 2m + 4, n− 2m + 7, . . . , 2m− 1, 2m, 1) (see Figure 32).

        

  n-2m
. . . 

. . .
.   .   .   .

1    2 n-2m+1 2m-1   n-1    n

2m+12m-3

Fig. 32.

Suppose Tn〈1, 3; 1, 2m − 1〉 with n = n0 + q(2m − 2) has a hamilto-
nian cycle containing the edge (n− 2, n− 1), for some non-negative integer
q. We shall prove that Tn+(2m−2)〈1, 3; 1, 2m − 1〉 enjoys the same prop-
erty. Since (n − 2, n − 1) is an edge in a hamiltonian cycle of Tn〈 1, 3;
1, 2m − 1〉, we transform this hamiltonian cycle to a hamiltonian cycle in
Tn+(2m−2)〈1, 3; 1, 2m − 1〉, by replacing the edge (n − 2, n − 1) with the
path (n− 2, n + 1, n + 2, . . . , n + 2m− 4, n + 2m− 3, n + 2m− 2, n− 1).
This shows that Tn+(2m−2)〈1, 3; 1, 2m− 1〉 enjoys the same property.

Conversely, since t2 is odd, Tn〈1, 3; 1, t2〉 is bipartite and, being hamil-
tonian, n must be even. ut
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4 Concluding Remarks

The investigation of the hamiltonicity of Toeplitz graphs, directed or
not, is far from being achieved. The cases of small numbers k, l and si, tj
were studied in [6]. Of course, these cases are most relevant to this study,
but there is still much left to do. In [6] it is shown that the investigation
is complete for s2 = 2 and s3 = 3. In this paper we tried to enlarge si (in
particular s2) a little bit, so we extended this investigation here to s2 = 3.
The next task is, in our opinion, the investigation of the case of k, l still
small, but larger si, tj . Also, other characterizations of hamiltonian graphs
inside subfamilies of Toeplitz graphs would be most welcome.

In this paper again we provided no negative results, except for those
implied by the characterizations of hamiltonian graphs inside classes of
Toeplitz graphs. Such results, besides those in [1] yielding disconnected-
ness, would also be of interest.
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