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Abstract. A directed Toeplitz graph is a digraph with a Toeplitz
adjacency matrix. In this paper we study the hamiltonicity of the
Toeplitz graphs of type Tn〈1, 3, 4; t〉. For t ∈ {2, 3, 4, 5, 8, 9}, we
give conditions (on n) under which such a graph is hamiltonian.
For t ∈ {6, 7} and t ≥ 10, we see that Tn〈1, 3, 4; t〉 is hamiltonian
for all n.
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1 Introduction

In this paper all graphs are directed. For a digraph (directed graph)
D, as usual, V (D) will denote its vertex set and A(G) its arc (directed
edge) set. A digraph C with V (C) = {v1, . . . , vn} and A(C)={(v1, v2),
(v2, v3),. . . ,(vn−1, vn),(vn, v1)} is called a circuit (Of course, vi 6= vj for
all distinct i, j). A circuit minus one arc is called a path. A digraph D′ is
called a sub(di)graph of D if V (D′) ⊂ V (D) and A(D′) ⊂ A(D). If moreover
V (D′) = V (D), D′ is said to span D. If D′ spans D and is a circuit or a
path, it is also called hamiltonian. Any digraph possessing a hamiltonian
circuit is itself called hamiltonian, too. Indegree (outdegree) of a vertex v
in D is the number of head (tail) endpoints adjacent to v and is denoted
by d−(v) (d+(v)). An arc (v1, v2) is increasing (decreasing) if (v1 < v2)
((v1 > v2), respectively).

The directed Toeplitz graph Tn〈 s1, s2,. . . , sk; t1, t2,. . . , tl〉 is the di-
graph with vertices 1, 2, . . . , n, in which the arc (i, j) occurs if and only if
j − i = sp or i − j = tq for some integers p and q (1 ≤ p ≤ k, 1 ≤ q ≤ l).
Its adjacency matrix is a Toeplitz matrix, i.e., it has constant values along
all diagonals parallel to the main diagonal. If the Toeplitz adjacency ma-
trix is symmetric, the graph is said to be undirected. Tn〈t1, t2, . . . , ti〉 de-
notes the undirected Toeplitz graph with the adjacency matrix of Tn〈 t1,
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. . . , ti; t1, . . . , ti〉. Hamiltonicity of Tn〈 t1,t2,. . . ,ti〉 means hamiltonicity
of Tn〈 t1,. . . ,ti;t1,. . . , ti〉. Connectivity results obtained in the undirected
case have a direct impact on the directed case. So connectedness of Tn〈
s1,. . . ,sk; t1,. . . ,tl〉 means precisely connectedness of Tn〈s1,. . . ,sk; t1,. . . ,tl〉
(with duplicates dropped) i.e., Tn〈s1,. . . ,sk, t1,. . . ,tl〉.

Remark that Tn〈s1, . . . , si; t1, . . . , tj〉 and Tn〈t1, . . . , tj ; s1, . . . , si〉 are
obtained from each other by reversing the orientation of all arcs.

Properties of Toeplitz graphs, such as bipartiteness, planarity and coloura-
bility, have been studied in [5] and [6]. Circulant graphs, which are special
Toeplitz graphs, have been intensively studied (see [1], [2], [4], [8], [12], [13]
and [7]). Hamiltonian properties of undirected Toeplitz graphs have been
investigated in [3] and [9] and those of directed Toeplitz graphs have been
investigated in [11] and [10].

In order to understand the hamiltonian properties of Toeplitz graphs it
is important to study the case of small values for k and l, starting of course
with small values of sk, tl. The hamiltonicity of larger Toeplitz graphs then
follows.

Paper [11] investigates the hamiltonicity of the Toeplitz graphs with
s2 = 2, and in particular those with s3 = 3. Paper [10] extends this inves-
tigation to the case s1 = t1 = 1 with s2 = 3. Following is a list of main
results of these two papers ([11] and [10]).

1. For even t, Tn〈1, 2; t〉 is hamiltonian if and only if n is odd.

2. Tn〈1, 2; 3〉 is hamiltonian if and only if n = 5 or n ≡ 1 (mod 3).

3. Tn〈1, 2; 5〉 is hamiltonian for all n > 29.

4. Let t ≥ 7 be an odd integer. Then Tn〈1, 2; t〉 is hamiltonian for all
n > 3t + 5.

5. Tn〈1, 2, 3; 2〉 is hamiltonian if and only if n = 4 or n ≡ 1 (mod 2).

6. Tn〈1, 2, 3; t〉 is hamiltonian for all t ≥ 3 and n.

7. Tn〈s; t〉 is a circuit if and only if gcd (s, t) = 1 and s + t = n.

8. For t ∈ {2, 4, 6}, Tn〈1, 3; 1, t〉 is hamiltonian for all n.

9. Tn〈1, 3; 1, t〉, where t(≥ 8) is even, is hamiltonian if n ≡ 0, 2, 4, 6, 5, 7,
9, . . . , t− 3 (mod (t− 1)).

10. Tn〈1, 3; 1, t〉, where t(≥ 3) is odd, is hamiltonian if and only if n is even.
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In this paper we extend the investigation to the case s2 = 3, s3 = 4,
still keeping s1 = 1 and l = 1. Thus, the Toeplitz graphs treated here
have the form Tn〈1, 3, 4; t〉. The main results are: For t = 2, Tn〈1, 3, 4; t〉 is
hamiltonian for infinitely many n,s. For 4 ≤ t ≤ 9, it is hamiltonian for all
but finitely many n,s. For t ≥ 10, Tn〈1, 3, 4; t〉 is hamiltonian for all n. So
in this paper we discuss all the cases for which Tn〈1, 3, 4; t〉 is hamiltonian,
and some cases for which Tn〈1, 3, 4; t〉 is non hamiltonian (i.e., for t = 5, 8
and two cases for t = 4) and leave the remaining ones as conjectures.

We underline a pair of consecutive vertices (say n−1 and n) as n− 1, n
to emphasize that (n− 1, n) is an arc in the hamiltonian circuit.

2 Toeplitz graphs Tn〈1, 3, 4; t〉 with t < 4

We start with the following lemma which is included in Theorem 1 of [10].

Lemma 1. If gcd(s, t) = 1 then Ts+t〈s; t〉 is a circuit.

Theorem 1. Tn〈1, 3, 4; 2〉 is hamiltonian for n ∈ {5, 7} and all n ∼= 0, 3
or 4 modulo 6.

Proof. T5〈1, 3, 4; 2〉 is hamiltonian by Lemma 1.
Fig. 1 shows why T7〈1, 3, 4; 2〉 is hamiltonian.

1 2 3 4 5 6 7

Fig. 1.

Fig. 2 shows the hamiltonian circuit (1, 2, 6, 4, 5, 3, 1) in T6〈1, 3, 4; 2〉,
which contains the arc (4, 5).
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1 2 3 4 5 6

Fig. 2.

Fig. 3 shows the hamiltonian circuit (1, 5, 9, 7, 8, 6, 4, 2, 3, 1) in T9〈1, 3, 4; 2〉,
which contains the arc (7, 8).

1 2 3 4 5 6 7 8 9

Fig. 3.

Fig. 4 shows the hamiltonian circuit (1, 4, 2, 6, 10, 8, 9, 7, 5, 3, 1) in
T10〈1, 3, 4; 2〉, which contains the arc (8, 9).

1 2 3 4 5 6 7 8 9 10

Fig. 4.

Since any hamiltonian circuit of Tn〈1, 3, 4; 2〉 which contains the arc
(n−2, n−1) can be transformed into a hamiltonian circuit of Tn+6〈1, 3, 4; 2〉
containing the arc (n + 4, n + 5) by replacing the arc (n − 2, n − 1) with
the path (n−2, n+2, n+6, n + 4, n + 5, n+3, n+1, n−1), the theorem
follows. ut
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Theorem 2. Tn〈1, 3, 4; 3〉 is hamiltonian for n ∈ {5, 6, 7, 9}.
Proof. Fig. 5 shows the hamiltonian circuit (1, 5, 2, 3, 4, 1) in T5〈1, 3, 4; 3〉.

1 2 3 4 5

Fig. 5.

Fig. 6 shows the hamiltonian circuit (1, 2, 5, 6, 3, 4, 1) in T6〈1, 3, 4; 3〉.

1 2 3 4 5 6

Fig. 6.

T7〈1, 3, 4; 3〉 is hamiltonian by Lemma 1. Fig. 7 shows a hamiltonian circuit
(1, 2, 5, 8, 9, 6, 3, 7, 4, 1) in T9〈1, 3, 4; 3〉.

1 2 3 4 5 6 7 8 9

Fig. 7.

This finishes the proof. ut

We ignore whether Tn〈1, 3, 4; 3〉 is hamiltonian for any n /∈ {5, 6, 7, 9}.
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3 Toeplitz graphs Tn〈1, 3, 4; t〉 with 4 ≤ t ≤ 9

Theorem 3. Tn〈1, 3, 4; 4〉 is hamiltonian for n ∈ {5, 7, 8, 9, 11, 14, 15,
17, 18, 20, 21} and all n ≥ 23.

Proof. T5〈1, 3, 4; 4〉 and T7〈1, 3, 4; 4〉 are hamiltonian by Lemma 1. The first
includes the circuit T5〈1; 4〉, which contains the arc (3, 4). Fig. 8 shows why
T9〈1, 3, 4; 4〉 is hamiltonian.

1 2 3 4 5 6 7 8 9

Fig. 8.

Fig. 9 shows the hamiltonian circuit (1, 2, 3, 7, 10, 6, 9, 13, 14, 15,
11, 12, 8, 4, 5, 1) in T15〈1, 3, 4; 4〉.

1 2 3 4 5 6 7
8 9 10 11 12 13 14 15

Fig. 9.

In Fig. 10 we see the hamiltonian circuit (1, 2, 3, 7, 10, 6, 9, 13, 17, 20,
16, 19, 23, 24, 25, 21, 22, 18, 14, 15, 11, 12, 8, 4, 5, 1) in T25〈1, 3, 4; 4〉.

Any hamiltonian circuit of Tn〈1, 3, 4; 4〉 which contains the arc (n −
2, n− 1) can be transformed into a hamiltonian circuit of Tn+3〈 1, 3, 4; 4〉
containing the arc (n + 1, n + 2) by replacing the arc (n − 2, n − 1) with
the path (n− 2, n + 1, n + 2, n + 3, n− 1), and this finishes the proof. ut
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1        2        3 4        5      6 7 8   9 10 11 12
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14 15 16

17

18
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20 21 22
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24 25

Fig. 10.

Theorem 4. T6〈1, 3, 4; 4〉 is non-hamiltonian.

Proof. Suppose on contrary that T6〈1, 3, 4; 4〉 is hamiltonian and H =
H1→6∪H6→1 is a hamiltonian circuit in T6〈1, 3, 4; 4〉. Then for every vertex
v in H, we have d−(v) = 1 = d+(v).

T6〈1, 3, 4; 4〉 has only two decreasing arcs namely (6, 2) and (5, 1) and
both of them are in H6→1 because d−(1) = 1 = d+(6). So H6→1 would be
H6→1 = (6, 2) ∪ (2, 5) ∪ (5, 1). Now H1→6 must contain the arc (1, 4) but
then H1→6 would be stuck at vertex 4 and also the vertex 3 would be lost.
So a contradiction. ut

Definition

The vertices V = {u1, u2, . . . , uk} are said to be consecutive vertices
of order k ≥ 2 if there exists an arc of length one between u1 and u2,
between u2 and u3, so on, and between uk−1 and uk. Two set of consecutive
vertices say V1 and V2 are disjoint if there does not exist an arc of legth
one between any vertex of V1 and any vertex of V2.

Theorem 5. T10〈1, 3, 4; 4〉 is non-hamiltonian.

Proof. Suppose on contrary that T10〈1, 3, 4; 4〉 is hamiltonian and H =
H1→10 ∪ H10→1 is a hamiltonian circuit in T10〈1, 3, 4; 4〉. Then for every
vertex v in H, we have d−(v) = 1 = d+(v).
Let

V (H10→1 \ {1, 10}) = V1 ∪ V2 · · · ∪ Vk

where each Vi is a disjoint set of consecutive vertices of order ≥ 2. But then
order of each Vi should be not more than 3 because H1→10 has no arc of
length more than 3. Thus |Vi| = 2 or 3.
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Let A be the set of all decreasing arcs in T10〈1, 3, 4; 8〉, i.e., A = {(10, 6),
(9, 5), (8, 4), (7, 3), (6, 2), (5, 1)}. The arcs (10, 6) and (5, 1) both are in
H10→1 because d−(1) = 1 = d+(10) in H. But H10→1 cannot have only
these two arcs as its decreasing arcs because otherwise H10→1 would be
stuck at vertex 6. Let B be the set of all decreasing arcs in H10→1. Thus
3 ≤ |B| ≤ 6. Four cases arise as per number of decreasing arcs in H10→1.

Case 1. If |B| = 6.

Thus B = A and V (H10→1 \ {1, 10}) = {2, 3, 4, 5, 6, 7, 8, 9} = V1, where
V1 is a set of consecutive vertices, but |V1| > 3 so a contradiction.

Case 2. If |B| = 5. Since (10, 6), (5, 1) ∈ B, four subcases arise.

1. (9, 5), (8, 4), (7, 3) ∈ B.
Since V (H10→1 \ {1, 10}) = {3, 4, 5, 6, 7, 8, 9} = V1 but |V1| > 3 so a
contradiction.

2. (9, 5), (8, 4), (6, 2) ∈ B.
Thus H10→1 = (10, 6) ∪ (6, 2) ∪ P2→8 ∪ (8, 4) ∪ P4→9 ∪ (9, 5) ∪ (5, 1)
but then H10→1 would be stuck at P2→8 because the only possibilty
for the path P2→8 in H10→1 is P2→8 = (2, 3) ∪ P3→8 but in this case
H10→1 \ {1, 10} would have more than 3 consecutive vertices.

3. (9, 5), (7, 3), (6, 2) ∈ B.
H10→1 = (10, 6)∪ (6, 2)∪ P2→7 ∪ (7, 3)∪ P3→9 ∪ (9, 5)∪ (5, 1) but then
H10→1 would be stuck at P2→7 because P2→7 cannot go beyond vertex
2.

4. (8, 4), (7, 3), (6, 2) ∈ B.
V (H10→1 \ {1, 10}) = {2, 3, 4, 5, 6, 7, 8} = V1 but |V1| > 3 so a contra-
diction.

Case 3. If |B| = 4. Since (10, 6), (5, 1) ∈ B, six subcases arise.

1. (9, 5), (7, 3) ∈ B.
Thus H10→1 = (10, 6) ∪ (6, 7) ∪ (7, 3) ∪ P3→9 ∪ (9, 5) ∪ (5, 1) but then
H10→1 would be stuck at P3→9 because the only possibilty for the path
P3→9 in H10→1 is P3→9 = (3, 4)∪P4→9 but in this case H10→1 \ {1, 10}
would have more than 3 consecutive vertices.
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2. (9, 5), (6, 2) ∈ B.
Thus H10→1 = (10, 6) ∪ (6, 2) ∪ P2→9 ∪ (9, 5) ∪ (5, 1) but then H10→1

would be stuck at P2→9 because the only possibilty for the path P2→9

in H10→1 is P2→9 = (2, 3) ∪ (3, 7) ∪ P7→9 which would stuck at vertex
∪P7→9 as cannot go beyong vertex 7.

3. (8, 4), (7, 3) ∈ B.
V (H10→1 \ {1, 10}) = {3, 4, 5, 6, 7, 8} = V1 but |V1| > 3 so a contradic-
tion.

4. (8, 4), (6, 2) ∈ B.
Thus H10→1 = (10, 6) ∪ (6, 2) ∪ P2→8 ∪ (8, 4) ∪ (4, 5) ∪ (5, 1) but then
H10→1 would be stuck at P2→8 because the only possibilty for the path
P2→8 in H10→1 is P2→8 = (2, 3) ∪ P3→8 but in this case H10→1 would
have more than 3 consecutive vertices.

5. (7, 3), (6, 2) ∈ B.
H10→1 = (10, 6) ∪ (6, 2) ∪ P2→7 ∪ (7, 3) ∪ (3, 5) ∪ (5, 1) but then H10→1

would be stuck at P2→7 as cannot go beyond vertex 2.
6. (9, 5), (8, 4) ∈ B.

Thus H10→1 = (10, 6)∪P6→8 ∪ (8, 4)∪P8→4 ∪P4→9 ∪ (9, 5)∪ (5, 1) but
then H10→1 would be stuck at P6→8.

Case 4. If |B| = 4. Since (10, 6), (5, 1) ∈ B, four subcases arise.

1. (9, 5) ∈ B.
Thus H10→1 = (10, 6) ∪ P6→9 ∪ (9, 5) ∪ (5, 1) but then H10→1 would
be stuck at P6→9 because the only possibilty for the path P6→9 in
H10→1 is P6→9 = (6, 9) but in this case H1→10 would be H1→10 =
(1, 2) ∪ (2, 3) ∪ (3, 4) ∪ (4, 7) ∪ (7, 8) ∪ P8→10 which would be stuck at
vertex 8 in P8→10.

2. (8, 4) ∈ B.
Thus H10→1 = (10, 6) ∪ P6→8 ∪ (8, 4) ∪ (4, 5) ∪ (5, 1) but then H10→1

would be stuck at P6→8.
3. (7, 3) ∈ B.

H10→1 = (10, 6) ∪ (6, 7) ∪ (7, 3) ∪ P3→5 ∪ (5, 1) but then H10→1 would
be stuck at P3→5.

4. (6, 2) ∈ B.
Thus H10→1 = (10, 6)∪ (6, 2)∪ (2, 5)∪ (5, 1) but then H1→10 would be
stuck at vertex 1.

Thus In each case there is a contradiction. Hence T10〈1, 3, 4; 4〉 is non-
hamiltonian.

ut
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Theorem 6. Tn〈1, 3, 4; 5〉 is hamiltonian for all n if and only if n 6= 7.

Proof. Claim 1. For n ∈ {8, 11}, Tn〈1, 3, 4; 5〉 is hamiltonian.

Indeed T8〈1, 3, 4; 5〉 has a hamiltonian circuit (1, 4, 7, 2, 5, 8 , 3, 6, 1),
and T11〈1, 3, 4; 5〉 has a hamiltonian circuit (1, 2, 5, 9, 4, 8, 3, 7 , 10 , 11
, 6 , 1) (see Figs. 11-12).

1 2 3

4 5

6 7 8

Fig. 11.

1 2 3 4 5 6 7 8 9 10 11

Fig. 12.

Claim 2. For n ∈ {6, 9, 12, 15}, Tn〈1, 3, 4; 5〉 has a hamiltonian circuit
containing the arc (n− 2, n− 1).

Indeed T6〈1, 3, 4; 5〉 contains the hamiltonian circuit (1, 2, 3, 4, 5, 6). In
T9〈1, 3, 4; 5〉 the circuit (1, 2, 3, 7, 8, 9, 4, 5, 6, 1) is hamiltonian, in T12〈1, 3, 4; 5〉
the circuit (1, 4, 5, 8, 9, 10, 11, 12, 7, 2, 3, 6, 1) is hamiltonian, and in T15〈1, 3, 4; 5〉
the circuit (1, 4, 5, 8, 9, 13, 14, 15, 10, 11, 12, 7, 2, 3, 6, 1), is hamiltonian
(see Figs. 13-16).
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1 2 3 4 5 6

Fig. 13.

1 2 3 4 5 6 7 8 9

Fig. 14.

1 2 3 4 5 6 7 8 9 10 11 12

Fig. 15.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fig. 16.

Starting from the above values of n ∈ {6, 9, 12, 15}, we can extend a
hamiltonian circuit in Tn〈1, 3, 4; 5〉 containing the arc (n − 2, n − 1) to a
hamiltonian circuit in Tn+4〈1, 3, 4; 5〉 with the same property by replacing
the arc (n− 2, n− 1) with the path

(n− 2, n + 1, n + 2, n + 3, n + 4, n− 1).
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Since 6, 9, 12, 15 are representatives in each of the various rest classes
modulo 4, it follows that Tn〈1, 3, 4; 5〉 is hamiltonian for n = 6, n = 9,
n = 10 and n > 12. This together with Claim 1 shows that if n 6= 7 then
Tn〈1, 3, 4; 5〉 is hamiltonian for all n.

Conversely, Let n = 7. Suppose on contrary that T7〈1, 3, 4; 5〉 is hamilto-
nian and H = H1→7∪H7→1 is a hamiltonian circuit in T7〈1, 3, 4; 5〉. Clearly,
H7→1 contains both arcs (6, 1) and (7, 2), otherwise vertex 1, respectively
vertex 7, would be lost. Therefore, the subpath of H from vertex 1 to vertex
7 must be (1, 4, 7). Now, the only paths from vertex 2 to vertex 6 are (2, 6),
(2, 3, 6) and (2, 5, 6), and each time at least one point remains unvisited
which contradicts our assumption. ut

Theorem 7. Tn〈1, 3, 4; 6〉 is hamiltonian for all n.

Proof. Claim 1. T9〈1, 3, 4; 6〉 is hamiltonian.

Indeed a hamiltonian circuit in T9〈1, 3, 4; 6〉 is (1, 4, 8, 2, 5, 6, 9, 3, 7,
1), see Fig. 17.

1 2 3 4 5 6 7 8 9

Fig. 17.

Claim 2. For n ∈ {7, 8, 10, 11, 14}, Tn〈1, 3, 4; 6〉 has a hamiltonian circuit
containing the arc (n− 2, n− 1).

Indeed T7〈1, 3, 4; 6〉 has the hamiltonian circuit T7〈1; 6〉. In T8〈 1, 3, 4; 6〉
we find the hamiltonian circuit (1, 4, 5, 8, 2, 3, 6, 7, 1), in T10〈1, 3, 4; 6〉 the
circuit (1, 2, 5, 8, 9, 3, 6, 10, 4, 7, 1), in T11〈1, 3, 4; 6〉 the circuit (1, 2, 3, 4, 8,
9, 10, 11, 5, 6, 7, 1), and in T14〈1, 3, 4; 6〉 the circuit (1, 4, 5, 6, 9, 10, 11,
12, 13, 14, 8, 2, 3, 7, 1) (see Figs. 18-21).
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1 2 3 4 5 6 7 8

Fig. 18.

1 2 3 4 5 6 7 8 9 10

Fig. 19.

1 2 3 4 5 6 7 8 9 10 11

Fig. 20.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Fig. 21.
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Starting from the above values of n ∈ {7, 8, 10, 11, 14}, we can extend
a hamiltonian circuit in Tn〈1, 3, 4; 6〉 containing the arc (n− 2, n− 1) to a
hamiltonian circuit in Tn+5〈1, 3, 4; 6〉 with the same property by replacing
the arc (n− 2, n− 1) with the path

(n− 2, n + 1, n + 2, n + 3, n + 4, n + 5, n− 1).

Since 7, 8, 10, 11, 14 are representatives in each of the various rest
classes modulo 5, it follows that Tn〈1, 3, 4; 6〉 is hamiltonian for all n 6= 9.
This together with Claim 1 shows that Tn〈1, 3, 4; 6〉 is hamiltonian for all
n. ut

Theorem 8. Tn〈1, 3, 4; 7〉 is hamiltonian for all n.

Proof. Claim 1. T11〈1, 3, 4; 7〉 is hamiltonian.

Indeed in T11〈1, 3, 4; 7〉 the circuit (1, 2, 5, 9, 10, 3, 6, 7, 11, 4, 8, 1) is
hamiltonian (see Fig. 22).

1 2 3 4 5 6 7 8 9 10 11

Fig. 22.

Claim 2. For n ∈ {8, 9, 10, 12, 16}, Tn〈1, 3, 4; 7〉 has a hamiltonian circuit
containing the arc (n− 3, n− 2).

Indeed T8〈1, 3, 4; 7〉 has the hamiltonian circuit T8〈1; 7〉, in T9〈 1, 3, 4;
7〉 the circuit (1, 4, 5, 9, 2, 3, 6, 7, 8, 1) is hamiltonian, in T10〈1, 3, 4; 7〉 we
find the hamiltonian circuit (1, 2, 5, 6, 9, 10, 3, 4, 7, 8, 1), in T12〈1, 3, 4; 7〉
the circuit (1, 2, 6, 9, 10, 3, 4, 7, 11, 12 , 5, 8, 1), and in T16〈1, 3, 4; 7〉 the
circuit (1, 5, 6, 10, 11, 12, 13, 14, 15, 16, 9, 2, 3, 4, 7, 8, 1) (see Figs. 23-26).
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1 2 3 4 5 6 7 8 9

Fig. 23.

1 2 3 4 5 6 7 8 9 10

Fig. 24.

1 2 3 4 5 6 7 8 9 10 11 12

Fig. 25.

1 2 3 4 5 6 7 8 9

10

11 12 13 14 15 16

Fig. 26.
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From the initial values n ∈ {8, 9, 10, 12, 16}, we inductively extend a
hamiltonian circuit in Tn〈1, 3, 4; 7〉 containing the arc (n − 3, n − 2) to a
hamiltonian circuit in Tn+5〈1, 3, 4; 7〉 with the same property, by replacing
the arc (n− 3, n− 2) with the path

(n− 3, n + 1, n + 2, n + 3, n + 4, n + 5, n− 2).

Since 8, 9, 10, 12, 16 are representatives in each of the various rest
classes modulo 5, it follows that Tn〈1, 3, 4; 7〉 is hamiltonian for all n 6= 11.
This together with Claim 1 shows that Tn〈1, 3, 4; 7〉 is hamiltonian for all
n. ut

Theorem 9. Tn〈1, 3, 4; 8〉 is hamiltonian for all n different from 14.

Proof. Claim 1. T12〈1, 3, 4; 8〉 is hamiltonian.
Indeed T12〈1, 3, 4; 8〉 has a hamiltonian circuit (1, 2, 3, 6, 7, 10, 11, 12,

4, 5, 8, 9, 1), see Fig. 27.

1 2 3 4 5 6 7 8 9

10

11 12

Fig. 27.

Claim 2. For n ∈ {9, 10, 11, 13, 18, 20}, Tn〈1, 3, 4; 8〉 has a hamiltonian
circuit containing the arc (n− 3, n− 2).

Indeed T9〈1, 3, 4; 8〉 has the hamiltonian circuit T9〈1; 8〉 = (1, 2, 3, 4,
5, 6, 7, 8, 9, 1). In T10〈1, 3, 4; 8〉 the circuit (1, 5, 6, 10, 2, 3, 4, 7, 8, 9, 1) is
hamiltonian, see Fig. 28.
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1 2 3 4 5 6 7 8 9 10

Fig. 28.

In T11〈1, 3, 4; 8〉 the circuit (1, 2, 5, 6, 7, 10, 11, 3, 4, 8, 9, 1) is hamilto-
nian, see Fig. 29.

1 2 3 4 5 6 7 8 9

10

11

Fig. 29.

T13〈1, 3, 4; 8〉 is spanned by the circuit (1, 2, 6, 10, 11, 3, 4, 7, 8, 12, 13, 5,
9, 1), T18〈1, 3, 4; 8〉 by (1, 5, 6, 7, 11, 12, 13, 14, 15, 16, 17, 18, 10, 2, 3, 4, 8,
9, 1), and T20〈1, 3, 4; 8〉 by (1, 5, 6, 7, 11, 14, 15, 16, 19, 20, 12, 13, 17, 18,
10, 2, 3, 4, 8, 9, 1) (see Figs. 30-32).

1 2 3 4 5 6 7 8 9 10 11 12 13

Fig. 30.
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1        2        3 7 8   9 10

11

12 13 14 15 16 17 184 5  6

Fig. 31.

1        2        3 7  8   9 10
11

12 13 14 15 16 17 184 5  6

19

20

Fig. 32.

Starting from the above values of n ∈ {9, 10, 11, 13, 18, 20}, we can ex-
tend a hamiltonian circuit of Tn〈1, 3, 4; 8〉 containing the arc (n−3, n−2) to
a hamiltonian circuit in Tn+6〈1, 3, 4; 8〉 with the same property by replacing
the arc (n− 3, n− 2) with the path (n− 3, n + 1, n + 2, n + 3, n + 4, n +
5, n + 6, n− 2).

Since 9, 10, 11, 13, 18, 20 are representatives in each of the various
rest classes modulo 6, it follows that Tn〈1, 3, 4; 8〉 is hamiltonian for n =
9, 10, 11, 13 and for all n > 15. This together with Claim 1 shows that
Tn〈1, 3, 4; 8〉 is hamiltonian for all n 6= 14. ut

Theorem 10. T14〈1, 3, 4; 8〉 is non-hamiltonian.

Proof. Suppose on contrary that T14〈1, 3, 4; 8〉 is hamiltonian and H =
H1→14 ∪ H14→1 is a hamiltonian circuit in T14〈1, 3, 4; 8〉. Then for every
vertex v in H, we have d−(v) = 1 = d+(v). The vertices which are not
covered by H14→1 would be covered by H1→14, and since increasing arcs in
H1→14 are of length 1, 3 and 4 only, so clearly H14→1 would not use more
than three consecutive vertices.
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Let A be the set of all decreasing arcs in T14〈1, 3, 4; 8〉, i.e., A = {(14, 6),
(13, 5), (12, 4), (11, 3), (10, 2), (9, 1)}, and B be the set of all decreasing arcs
in H, (clearly B ⊆ A). Since d−(1) = d+(14) = 1 in T14〈1, 3, 4; 8〉, so (14, 6),
(9, 1) ∈ B. Clearly, (14, 6), (9, 1) ∈ E(H14→1). H cannot have only these two
arcs as its decreasing arcs, because otherwise (6, 9) ∈ E(H14→1) but in that
case H1→14 cannot cover all of the remaining vertices {2, 3, 4, 5, 7, 8, 10,
11, 12, 13} of H (as H1→14 would be stuck at vertex 5), Thus |B| > 2. Four
cases arise as per number of decreasing arcs in H (other than (14, 6) and
(9, 1)), i.e., |B \ {(14, 6), (9, 1)}|.

Case 1. If |B \ {(14, 6), (9, 1)}| = 4, then (10, 2), (11, 3), (12, 4), (13, 5) ∈
B, which implies d−(2) = d−(3) = d−(4) = d−(5) = 1 in H. But then
H1→14 cannot go beyond vertex 1, so it would be stuck at vertex 1.

Case 2. If |B \ {(14, 6), (9, 1)}| = 3, then four subcases arise.

1. (10, 2), (11, 3), (12, 4) ∈ B.
Then clearly (1, 5) ∈ A(H), but then H would be stuck at vertex 2.

2. (10, 2), (11, 3), (13, 5) ∈ B.
Then Cleary, (1, 4) ∈ A(H), but then H would be stuck at vertex 2.

3. (10, 2), (12, 4), (13, 5) ∈ B.
Then H cannot go beyond vertex 1, so it would be stuck at vertex 1.

4. (11, 3), (12, 4), (13, 5) ∈ B.
Then Cleary, (1, 2) ∈ A(H), but then H would be stuck at vertex 2.

Case 3. If |B \ {(14, 6), (9, 1)}| = 2, then six subcases arise.

1. (10, 2), (11, 3) ∈ B.
Clearly, (2, 5) ∈ A(H), which implies (1, 4) ∈ A(H) ⇒ (3, 7) ∈ A(H) ⇒
(4, 8) ∈ A(H) ⇒ (5, 9) ∈ A(H) ⇒ (6, 10) ∈ A(H). But then H would
be stuck at vertex 7 (otherwise we would have a shorter circuit).

2. (10, 2), (12, 4) ∈ B.
Clearly, (2, 3, 7) and (1, 5, 8) is a path in H. But then H would be stuck
at vertex 4.

3. (10, 2), (13, 5) ∈ B.
Clearly, (1, 4) ∈ A(H), which implies (2, 3, 7) is a path in H ⇒ (4, 8) ∈
A(H) ⇒ (5, 9) ∈ A(H) ⇒ (6, 10) ∈ A(H) ⇒ (7, 11) ∈ A(H) ⇒
(8, 12) ∈ A(H). But then H would be stuck at vertex 12 (otherwise
we would have a shorter circuit).

4. (11, 3), (12, 4) ∈ B.
Clearly, (1, 2, 5, 8) is a path in H1→14 and (3, 7) ∈ A(H). But then H
would be stuck at vertex 4.

5. (11, 3), (13, 5) ∈ B.
Clearly, (1, 2) ∈ E(H1→14), but then H1→14 would be stuck at vertex
2.
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6. (12, 4), (13, 5) ∈ B.
Clearly, (1, 2, 3, 7) is a path in H1→14, which implies (4, 8) ∈ A(H) ⇒
(5, 9) ∈ A(H) ⇒ (6, 10) ∈ A(H) ⇒ (7, 11) ∈ A(H), but then H would
be stuck at vertex 8 (otherwise we would have a shorter circuit).

Case 4. If |B \ {(14, 6), (9, 1)}| = 1, then four subcases arise.

1. (10, 2) ∈ B.
Since (14, 6), (9, 1) ∈ E(H14→1), so clearly, (6, 9) /∈ E(H14→1), (other-
wise H1→14 = P1→10∪(10, 2)∪P2→14, where P1→10 should be (1, 4, 7, 10),
but then P2→14 would be stuck at vertex 3). Since (6, 9) /∈ E(H14→1), so
(10, 2) ∈ E(H14→1), which implies (2, 3) ∈ E(H14→1). Clearly, H14→1 =
(14, 6)∪P6→10∪(10, 2)∪P2→9∪(9, 1), where P6→10 = (6, 7, 10) or (6, 10).
For P6→10 = (6, 7, 10), we cannot find any path P2→9 such that H14→1

would use at most three consecutive vertices. Thus P6→10 = (6, 10),
and in this case P2→9 would be (2, 3, 4, 8, 9). But then H1→14 would be
stuck at vertex 5.

2. (11, 3) ∈ B.
Since (14, 6), (9, 1) ∈ E(H14→1), so clearly, (6, 9) /∈ E(H14→1) (other-
wise H1→14 = P1→11∪(11, 3)∪P3→14, where P1→11 should be (1, 2, 5, 8, 11),
but then P3→14 would be stuck at vertex 10, because otherwise some
vertices would be lost). Since (6, 9) /∈ E(H14→1), so (11, 3) ∈ E(H14→1),
which implies H1→14 = (1, 2, 5, 8, 12, 13, 14). But since H14→1 = (14, 6)∪
P6→11 ∪ (11, 3)∪P3→9 ∪ (9, 1), we cannot find a path P3→9 as it would
be stuck at vertex 7.

3. (12, 4) ∈ B.
Since (14, 6), (9, 1) ∈ E(H14→1), so clearly, (6, 9) /∈ E(H14→1) (other-
wise H1→14 = P1→12 ∪ (12, 4) ∪ P4→14, where (4, 5, 8, 11) should be a
path in P4→14, but this path would be stuck at vertex 11 because oth-
erwise vertex 13 would be lost). Since (6, 9) /∈ E(H14→1), so (12, 4) ∈
E(H14→1). Clearly, H14→1 = (14, 6) ∪ P6→12 ∪ (12, 4) ∪ P4→9 ∪ (9, 1),
then P6→12 must be (6, 7, 11, 12) (otherwise H14→1 uses more than three
consecutive vertices), but then we cannot find any path P4→9 such that
H14→1 would use at most three consecutive vertices.

4. (13, 5) ∈ B.
Since (14, 6), (9, 1) ∈ E(H14→1), so clearly, (6, 9) /∈ E(H14→1) (other-
wise H1→14 = P1→13∪(13, 5)∪P5→14, where P5→14 should be (5, 8, 11, 14),
but then P1→13 would be stuck at vertex 10, because otherwise vertex 12
would be lost). Since (6, 9) /∈ E(H14→1), so (13, 5) ∈ E(H14→1). Clearly,
H14→1 = (14, 6)∪P6→13∪(13, 5)∪P5→9∪(9, 1). Here P6→13 = (6, 10, 13)
or (6, 7, 10, 13) and P5→9 = (5, 8, 9) or (5, 9). If P6→13 = (6, 10, 13) and
P5→9 = (5, 8, 9), then (1, 2, 3, 4,7,11,12) would be a path in H1→14. If
P6→13 = (6, 10, 13) and P5→9 = (5, 9), then (1, 2, 3, 4,7,8,11,12) would
be a path in H1→14. If P6→13 = (6, 7, 10, 13) then P5→9 must be (5, 9)
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(otherwise H14→1 would use more than three consecutive vertices), then
(1, 2, 3, 4, 8, 11, 12) would be a path in H1→14. But in each case H1→14

would be stuck at vertex 12.

A contradiction occurs in each case, hence T14〈1, 3, 4; 8〉 is non-hamiltonian.
This finishes the proof ut

Theorem 11. Tn〈1, 3, 4; 9〉 is hamiltonian for all n different from 15.

Proof. Claim 1. T12〈1, 3, 4; 9〉 is hamiltonian.

Indeed, a hamiltonian circuit in T12〈1, 3, 4; 9〉 is (1, 2, 6, 7, 11, 12, 3, 4,
5, 8, 9, 10, 1), see Fig. 33.

1 2 3 4 5 6 7 8 9 10 11 12

Fig. 33.

Claim 2. For n ∈ {10, 11, 13, 14, 16, 17, 20, 23}, Tn〈1, 3, 4; 9〉 has a hamil-
tonian circuit containing the arc (n− 2, n− 1).

Indeed T10〈1, 3, 4; 9〉 has the hamiltonian circuit T10〈1; 9〉. In T11〈 1, 3,
4; 9〉 the circuit (1, 5, 6, 7, 11, 2, 3, 4, 8, 9, 10, 1) is hamiltonian, in T13〈1,
3, 4; 9〉 the circuit (1, 2, 3, 6, 7, 8, 11, 12, 13, 4, 5, 9, 10, 1) is hamiltonian,
in T14〈1, 3, 4; 9〉 we find the hamiltonian circuit (1, 2, 3, 4, 7, 8, 11, 12, 13,
14, 5, 6, 9, 10, 1), in T16〈1, 3, 4; 9〉 the hamiltonian circuit (1, 2, 3, 4, 5, 8,
11, 14, 15, 6, 9, 12, 13, 16, 7, 10, 1), in T17〈1, 3, 4; 9〉 the circuit (1, 2, 3, 4,
5, 6, 7, 11, 12, 13, 14, 15, 16, 17, 8, 9, 10, 1), in T20〈1, 3, 4; 9〉 the circuit
(1, 4, 5, 8, 9, 12, 13, 14, 15, 16, 17, 18, 19, 20, 11, 2, 3, 6, 7, 10, 1), and in
T23〈1, 3, 4; 9〉 the circuit (1, 4, 5, 8, 9, 12, 13, 16, 17, 18, 21, 22, 23, 14, 15,
19, 20, 11, 2, 3, 6, 7, 10, 1) (see Figs. 34-40).
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1 2 3 4 5 6 7 8 9 10 11

Fig. 34.

1 2 3 4 5 6 7 8 9 10 11 12 13

Fig. 35.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Fig. 36.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Fig. 37.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Fig. 38.

1       2        3 

7 8   9

10 11

12

13 14 15 16 17 18 4 5

 6

19 20

Fig. 39.
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1       2        3 7 8   9 10 11

12

13 14 15

16

17

18

4 5 6
19 20 21   22 23

Fig. 40.

Starting from the above values of n ∈ {10, 11, 13, 14, 16, 17, 20, 23},
we succesively extend a hamiltonian circuit in Tn〈1, 3, 4; 9〉 containing the
arc (n− 2, n− 1) to a hamiltonian circuit in Tn+8〈1, 3, 4; 9〉 with this same
property by replacing the arc (n− 2, n− 1) with the path

(n− 2, n + 1, n + 2, n + 3, n + 4, n + 5, n + 6, n + 7, n + 8, n− 1)

Since 10, 11, 13, 14, 16, 17, 20, 23 are representatives in each of the var-
ious rest classes modulo 8, it follows that Tn〈1, 3, 4; 9〉 is hamiltonian for
n = 10, 11, 13, 14 and n ≥ 16. This together with Claim 1 shows that
Tn〈1, 3, 4; 9〉 is hamiltonian for all n 6= 15 . ut

4 Toeplitz graphs Tn〈1, 3, 4; t〉 with t ≥ 10

Theorem 12. Tn〈1, 3, 4; t〉, t ≥ 10, is hamiltonian for all n.

Proof. First we remark that, for any vertex a and b = a + 5 + 4r; r ∈ N, of
Tn〈1, 3, 4; t〉, there exists a path Ma→b from a to b namely

(a, a + 1, a + 4, a + 5, a + 8, a + 9, . . . , b− 5, b− 4, b− 1, b)

(see Fig. 41).

a     a+1       

a+3      

. . . .

b-4 b-3    b-2     

    bb-5

a+2

a+4 a+5

a+6 a+7

a+8 a+9 b-1

Fig. 41.
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Claim 1. Tt+3〈1, 3, 4; t〉 is hamiltonian.

Indeed Tt+3〈1, 3, 4; t〉 has one of the following hamiltonian circuits, de-
pending upon t.
(i) If t + 3 ∼= 0 mod 4, then a hamiltonian circuit is
(1, 2, 5, 6, 7, 10, M11→t+3, 3, 4, 8, 9, M13→t+1, 1), see Fig. 42.

1       2        3 4       5       6 7 8   9 10 11 12 13 14 15 16 17

. . . .

t-1 t     t+1  t+3

Fig. 42.

(ii) If t + 3 ∼= 1 mod 4, then a hamiltonian circuit is
(1, 2, 6, 7, 8, M12→t+3, 3, 4, 5, 9, M10→t+1, 1), see Fig. 43.

1       2         3 4       5       6 7 8   9 10 11
12 13 14 15 16 17

. . . .

  t+3t     t+1t-1

Fig. 43.
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(iii) If t+3 ∼= 2 mod 4, then a hamiltonian circuit is (M1→t+3, M3→t+1, 1),
see Fig. 44.

1       2        3 4       5       6 7 8   9 10 11 12 13 14

. . . .

t-1 t     t+1   t+3

Fig. 44.

(iv) If t + 3 ∼= 3 mod 4, then a hamiltonian circuit is (1, 2, 5, 6, M10→t+3,
3, 4, 7, M8→t+1, 1) , see Fig. 45.

1       2        3 4       5       6 7 8   9 10 11 12 13 14

. . . .

t-1 t     t+1   t+3

Fig. 45.

Claim 2. For n ∈ {t + 1, t + 2, t + 4, t + 5, . . . , 2t− 1, 2t + 2}, Tn〈1, 3, 4; t〉
has a hamiltonian circuit containing the arc (n− 2, n− 1).

Indeed Tt+1〈1, 3, 4; t〉 has a hamiltonian circuit

Tt+1〈1; t〉 = (1, 2, . . . , t− 1, t, t + 1, 1).
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Tt+2〈1, 3, 4; t〉 has one of the following hamiltonian circuits, depending upon
t.
(i) If t + 2 ∼= 0 mod 4, then a hamiltonian circuit is

(1, 5, 6, M10→t−1, t + 2, 2, 3, 4, 7, M8→t−3, t, t + 1, 1), see Fig. 46.

1        2        3 4       5       6 7 8   9 10 11 12 13 14 15

. . . .

t     t+1t-1 t+2

Fig. 46.

(ii) If t + 2 ∼= 1 mod 4, then a hamiltonian circuit is

(1, 5, 6, 7, M11→t−1, t + 2, 2, 3, 4, 8, M9→t−3, t, t + 1, 1), see Fig. 47.

1        2        3 4       5       6 7 8   9 10 11 12 13 14 15

. . . .

t     t+1t-1 t+2

Fig. 47.
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(iii) If t + 2 ∼= 2 mod 4, then a hamiltonian circuit is (1, M4→t−1, t + 2,
M2→t−3, t, t + 1, 1), see Fig. 48.

1        2        3 4       5       6 7 8   9 10 11 12 13

. . . .

t     t+1t-1 t+2

Fig. 48.

(iv) If t+2 ∼= 3 mod 4, then a hamiltonian circuit is (1, 4, 5, M9→t−1, t+2,
2, 3, 6, M7→t−3, t, t + 1, 1), see Fig. 49.

1        2        3 4       5       6 7 8   9 10 11 12 13 14

. . . .

t     t+1t-1 t+2

Fig. 49.

Now for every n ∈ {t + 4, t + 5, . . . , 2t− 5, 2t− 4}, Tn〈1, 3, 4; t〉 has one of
the following hamiltonian circuits, depending upon t and n.

(i) If 2t− n ∼= 0 mod 4, then a hamiltonian circuit is

(1, 2, . . . , n−t−3, Mn−t−2→t+3, t+4, t+5, . . . , n− 2, n− 1, n, Mn−t→t+1,
1), see Fig. 50.
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1         2       

. . . .

t       t+1

t-1
. . . 

. . . 

 n-1         n

t+2n-t-1     

n-t     

n-t+2     

n-t+4     

n-t+6     

Fig. 50.

(ii) If 2t − n ∼= 1 mod 4, then a hamiltonian circuit is (1, 2, . . . , n − t −
1, n− t + 2, Mn−t+3→t+3, t + 4, t + 5, . . . , n− 2, n− 1, n, n− t, n− t + 1,
Mn−t+5→t+1, 1), see Fig. 51.

. . . .

t       t+1t-1

. . . 
. . . 

 n-1         n

t+2

1         2       

n-t-1     

n-t     

n-t+2     n-t+4     

n-t+6     

Fig. 51.

(iii) If 2t − n ∼= 2 mod 4, then a hamiltonian circuit is (1, 2, . . . , n − t −
1, n− t + 3, Mn−t+4→t+3, t + 4, t + 5, . . . , n− 2, n− 1, n, n− t, n− t + 1,
n− t + 2, Mn−t+6→t+1, 1), see Fig. 52.

. . . .

t     t+1t-1

. . . 
. . . 

 n-1       n 

t+2

1         2       

n-t-1     

n-t     n-t+2     n-t+4     n-t+6     

Fig. 52.
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(iv) If 2t− n ∼= 3 mod 4, then a hamiltonian circuit is

(1, 2, . . . , n− t− 1, n− t + 3, n− t + 4, n− t + 5, Mn−t+9→t+3, t + 4, t +
5, . . . , n− 2, n− 1, n, n − t, n − t + 1, n − t + 2, n − t + 6, Mn−t+7→t+1,
1), see Fig. 53.

. . . .

t       t+1t-1

. . . 
. . . 

t+2

 n-1       n

 
1         2       

n-t-1     

n-t     n-t+2     n-t+4     n-t+6     

Fig. 53.

T2t−3〈1, 3, 4; t〉 has one of the following hamiltonian circuits, depending
upon t.

(i) If t ∼= 0 mod 4, then a hamiltonian circuit is

(1, 2, . . . , t− 5, t− 2, t− 1, t + 2, t + 3, Mt+7→2t−8, 2t− 5, 2t− 4, t− 4, t,
t + 4, Mt+5→2t−6, 2t− 3, t− 3, t + 1, 1), see Fig. 54.

. . . .

1      2       2t-3

t-5       

t-4      t       

t-2       t+2       

t+4       t+10       2t-4

. . .

Fig. 54.
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(ii) If t ∼= 1 mod 4, then a hamiltonian circuit is

(1, 2, . . . , t − 5, t − 2, t − 1, t + 2, t + 3, t + 7, Mt+8→2t−8, 2t− 5, 2t− 4,
t− 4, t, t + 4, t + 5, t + 6, Mt+10→2t−6, 2t− 3, t− 3, t + 1, 1), see Fig. 55.

1      2       

. . . .

  2t-3

t-5       

t-4      t       

t-2       t+2       

t+4       t+10       2t-4

. . . 

Fig. 55.

(iii) If t ∼= 2 mod 4, then a hamiltonian circuit is

(1, 2, . . . , t−5, t−2, t−1, t+2, Mt+5→2t−8, 2t− 5, 2t− 4, t−4, t, Mt+3→2t−6,
2t− 3, t− 3, t + 1, 1), see Fig. 56.

. . . .

  2t-32t-41      2       

t-5       

t-4      t       

t-2       t+2       

t+4       

t+10       t+6       
. . . 

Fig. 56.
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(iv) If t ∼= 3 mod 4, then a hamiltonian circuit is

(1, 2, . . . , t− 7, Mt−6→2t−8, 2t− 5, 2t− 4, t− 4, t, Mt+4→2t−6, 2t− 3, t−
3, t + 1, 1), see Fig. 57.

. . . .

1      2       

t-5       

t-4      t       

t-2       t+2       

t+4       t+10          2t-32t-4

t+6       
. . . 

Fig. 57.

T2t−2〈1, 3, 4; t〉, has one of the following hamiltonian circuit depending upon
t.

(i) If t ∼= 0 mod 4, then a hamiltonian circuit is

(1, 2, . . . , t − 4, t − 1, t + 2, t + 3, t + 7, Mt+8→2t−7, 2t− 4, 2t− 3, t − 3,
t, t + 4, t + 5, t + 6, Mt+10→2t−5, 2t− 2, t− 2, t + 1, 1), see Fig. 58.

1      2       

. . . .

   2t-2t-4      t       t-2       

t+2       

t+4       t+10       2t-3

. . . 

Fig. 58.
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(ii) If t ∼= 1 mod 4, then a hamiltonian circuit is

(1, 2, . . . , t−4, t−1, t+2, Mt+5→2t−7, 2t− 4, 2t− 3, t−3, t, Mt+3→2t−5,
2t− 2, t− 2, t + 1, 1), see Fig. 59.

. . . .

   2t-22t-31      2      

t-4      

t       t-2       

t+2       

t+4       

t+10       t+6       
. . . 

Fig. 59.

(iii) If t ∼= 2 mod 4, then a hamiltonian circuit is

(1, 2, . . . , t−4, t−1, Mt+2→2t−7, 2t− 4, 2t− 3, t−3, t, Mt+4→2t−5, 2t−2,
t− 2, t + 1, 1), see Fig. 60.

. . . .

1      2       

t-4      

t       t-2       

t+2       

t+4       t+10          2t-22t-3

t+6       
. . . 

Fig. 60.
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(iv) If t ∼= 3 mod 4, then a hamiltonian circuit is

(1, 2, . . . , t− 4, t− 1, t + 2, t + 3, Mt+7→2t−7, 2t− 4, 2t− 3, t− 3, t, t + 4,
Mt+5→2t−5, 2t− 2, t− 2, t + 1, 1), see Fig. 61.

. . . .

1        2         2t-2t-4      t       t-2       

t+2       

t+4       t+10       2t-3
. . . 

Fig. 61.

T2t−1〈1, 3, 4; t〉 has a hamiltonian circuit

(1, 2, . . . , t − 2, t + 2, t + 3, . . . , 2t− 3, 2t− 2, 2t − 1, t − 1, t, t + 1, 1),
see Fig. 62.

1 2 3      

   t -2

   2t -3   t -1    t    t +1

   t +2

   2t -1 

.  .  .
.  .  .

Fig. 62.
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T2t+2〈1, 3, 4; t〉 has one of the following hamiltonian circuit depending upon
t.

(i) If t ∼= 0 mod 4, then a hamiltonian circuit is (1, 4, 5, 6, 9, M10→t−1, t+
3, t + 4, . . . , 2t, 2t + 1, 2t + 2, t + 2, 2, 3, 7, 8, M12→t+1 ,1), see Fig. 63.

1    2      3 4     5     6 7 8   13 14 15

. . . .

t-1

t     t+1

t+3
. . .

9  10  11   12   16   17   2t+2   

Fig. 63.

(ii) If t ∼= 1 mod 4, then a hamiltonian circuit is (1, 4, 5, 6, 10, M11→t−1, t+
3, t+4, . . . , 2t, 2t + 1, 2t+2, t +2, 2, 3, 7, 8, 9, M13→t+1, 1), see Fig. 64.

1    2      3 4     5     6 7 8   13 14 15

. . . .

t-1

t     t+1

t+3
. . .

9  10  11   12   16   17   2t+2   18   

Fig. 64.

(iii) If t ∼= 2 mod 4, then a hamiltonian circuit is

(1, M4→t−1, t + 3, t + 4, . . . , 2t, 2t + 1, 2t + 2, t + 2, M2→t+1, 1), see Fig.
65.
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1    2       3 4       5         6 7 8   13 14 15

. . . .
t-1

t     t+1

t+3 . . .

9  10  11   12   2t+2   

Fig. 65.

(iv) If t ∼= 3 mod 4, then a hamiltonian circuit is

(1, 4, 5, M9→t−1, t + 3, t + 4, . . . , 2t, 2t + 1, 2t + 2, t + 2, 2, 3, 6, M7→t+1,
1), see Fig. 66.

1    2       3 4       5      6 7 8   13 14 15

. . . .

t-1

t     t+1

t+3 . . .

9  10  11   12   2t+2   16   

Fig. 66.

Starting from the above values of n ∈ {t+1, t+2, t+4, t+5, . . . , 2t−
1, 2t + 2}, we can extend a hamiltonian circuit in Tn〈 1, 3, 4; t〉 containing
the arc (n − 2, n − 1) to a hamiltonian circuit in Tn+t−1〈 1, 3, 4; t〉 with
the same property by replacing the arc (n− 2, n− 1) with the path

(n− 2, n + 1, n + 2, n + 3, . . . , n + t− 3, n + t− 2, n + t− 1, n− 1).

Since t + 1, t + 2, t + 4, t + 5, . . . , 2t − 1, 2t + 2 are representatives in
each of the various rest classes modulo t− 1, it follows that Tn〈1, 3, 4; t〉 is
hamiltonian for n = t+1, t+2 and all n ≥ t+4. This together with Claim
1 shows that Tn〈1, 3, 4; t〉 is hamiltonian for all n. ut
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Conjectures:

1. Tn〈1, 3, 4; t〉 is non-hamiltonian for n ∼= 1, 2, 5 mod 6 such that n /∈
{5, 7}.

2. Tn〈1, 3, 4; t〉 is non-hamiltonian for n ∈ {12, 13, 16, 19, 22}.

3. T15〈1, 3, 4; 9〉 is non-hamiltonian.
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