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Abstract. We compute velocity and the corresponding energy changes due to non-resonant interactions of 
protons with Alfv6n solitons. It is seen that the protons heat in the perpendicular direction but associated 
with this is a cooling in the parallel direction. 

1. Introduction 

Observations of proton distributions and temperatures in high-speed solar wind streams 
have shown that the proton distributions exhibit various degrees of anisotropy (Bame 
et al., 1975; Goodrich and Lazarus, 1976; Marsch et al., 1982a, b). In these papers 
it was also shown that core protons in fast speed solar wind streams have an anisotropy 
of the form T •  ITII ~ 2 (the subscripts ]l and _1_ refer to the parallel and perpendicular 
directions with respect to the background magnetic field). 

Since high-speed streams appear to be dominated to a large extent by parallel 
propagating Alfv6n waves (Belcher and Davis, 1971), it is possible that these waves may 
be responsible for local proton heating in the perpendicular direction. Schwartz et al. 
(1981) found that due to cyclotron damping of Alfv6n waves the energy converted to 
perpendicular proton heating was insufficient to explain the observed proton anisotropy. 
In this paper we consider non-resonant proton interactions with Alf6n solitons postu- 
lating that this could be possible way of explaining the observed results for the 
anisotropy of proton temperatures. 

In a previous paper (Ovendon et al., 1983) (hereafter referred to as Paper I) we 
showed that left hand circularly polarized Alfv6n waves are modulationally unstable and 
this instability could lead to soliton formation. Soliton solutions were obtained via 
Zakharov's equations, and using these as elementary building blocks of turbulence it 
was shown that a good qualitative agreement could be obtained between this theory and 
observational results, for mass density, velocity, magnetic field fluctuations and the 
shape and radial evolution of the power spectrum. Below we summarize some of the 
results of Paper I which would be used in the present work. The self consistent solution 
of Zakharov's equations for co/f2p ,~ 1 (where co is the frequency of propagation of the 
wave and f2p is the gyrofrequency of the protons) showed that the magnetic field 

* ICTP (Trieste) Fellow under programme: 'Training and Research in Italian Laboratories'. 
? Instituto di Fisicia dello Spazio Interplanetario CNR, via G. Galilei, CP 27, 00044 Frascati, Italy. 

Solar Physics 107 (1986) 173-181. 
�9 1986 by D. Reidel Publishing Company 



174 c .R.  OVENDON ET AL. 

fluctuations normalized to the background magnetic field are given by 

b(z,  t) = b o sech [K(z - % 0 ]  e ia~~ , (1) 

where K is the inverse width of the soliton, &o is the nonlinear frequency shift, and Cg 
is the group velocy of the propagating solitary wave. Expressions for K, be), and Cg are 

K = kA bo [ f2p/ COA11/2 ' 

2 L1-flJ 

~o - ~OA rbot ~ 

8(1 - ,6') 

e~ = VA0 - ~0A/t~p), (2) 

respectively. Here fl = c~/v 2 and v A is the Alfv6n speed, c s is the velocity of sound and 
co g = kAV A, where kA is the wave number associated with the Alfv6n wave. The mass 
density (normalized to its background value) and parallel velocity fluctuations are given 
by 

Ibl 2 
b p -  

2(1 - fl) 

~V = VA~ p �9 (3)  

In the present paper we consider particle (proton) interactions with a turbulent state 
consisting of solitons. Only non-resonant interactions are taken into account. In the 
following sections parallel and perpendicular velocity are computed and using phase 
averaged values of these, corresponding energy changes are found. Such interactions 
could lead to the observed temperature anisotropy in high-speed solar wind streams. 

2. Mathematical Formulation 

The equation of motion of a particle of mass m and charge q in electric and magnetic 
fields is given by 

[ 1  1 d r _  q E' + -  v •  , (4) 
dt m c 

where E' and B' are related to one another via Maxwell's equation 

1 0B' 
v • E' (s)  

c 0t 

We assume that E' and B' are set up by a localized Alfv6n wave (soliton) propagating 
along the background magnetic field B o which is taken along the z-axis. From 
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Equation (5) we have (see Paper I) 

E" VA , = - -  B y ,  
c 

175 

E• 
VA ; 

I ~ - -  _ _  B x  " 

r 

This allows us to write Equation (4) as two equations, namely 

d / ) +  
- if2p[(v z - VA)B + - v+ ] ,  (6) 

dt 

dv~ O 
- f - - "  ( v + B *  - v * + B + ) ,  ( 7 )  

dt 2 

where O p = q B o / m C  is the gyrofrequency of the proton, v+ = V x + i V y  and  

B +  = B x + iBy (Bx, y = B'~, y /Bo) ,  where v+ and B+ correspond to the left-hand 
polarized wave and * is the complex conjugate. We now let 

v+ = v • (z, t) e - i ( o p t  + 4~~ , 

where q~o is a constant phase factor containing information about the initial conditions. 
We further divide v• into its real and imaginary parts 

V •  = u + i w .  

Thus Equation (6) becomes 

du o 
- i "'P (v~ - VA)B+ e ~(apt+*~ + c.c., 

dt 2 
(8) 

dw _ f2p (v~ - VA)B + e i(ap'+*~ + c.c. 
dt 2 

(9) 

Here c.c. is the complex conjugate part. Equations (8) and (9) govern the evolution of 
the amplitude of the perpendicular particle velocity. For B+ we use the solution found 
in Paper I, i.e., 

B+ = b e e(kz- ~oAO, (10) 

where b is given by Equation (1). In all further calculations we make use of the fact that 
~o/f2p is a small quantity and thus neglect the nonlinear frequency shift and approximate 
the group velocity Cg by VA. This is done in view of the fact that small alterations brought 
about by including terms of the order ~/f2p would only hinder the calculations without 
greatly affecting the results. Thus Equation (1) in this level of approximation becomes 

b = b o sech [ K ( z  - vat)]. 
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We substitute Equation (10) into Equations (8), (9), and (7) to obtain 

du 2K 
- i - -  v s e c h K z ( t ) e  ~(apt+kz(t)+~~ + c.c., (11) 

dt zc 

dw 2K 

d t  
v s e c h K z ( t ) e  i(a~t+ k~(o + ~o~ + c.c., (12) 

dv 2K 
- i - -  (u  - i w ) s e c h K z ( t ) e  i ( ap '+kz (~176  + c.c., (13) 

d t  ~r 

where we have shifted to a flame of reference in which the field is at rest, i.e., v = vz - VA, 
a n d  z ( t )  = v ( t  - to), and have taken 

s @b o 

zc 2 

3. Particle Velocity Changes 

Equations (11)-(13) are coupled (via the trajectory z ( t ) )  integro-differential equations 
and in general such equations cannot be solved exactly. Thus if we wish to remain within 
the analytical frame work some approximate method has to be used in order to solve 
these equations. We make use here, of the 'Born Approximation', which is a method 
of handling integral equations by use of successive approximations and is essentially 
equivalent with Neumann's series expansion. The essence of this approach is to consider 
the particle and fields separate and to integrate the equations of motion of a particle in 
the given field assuming that the resulting changes in the velocity are small compared 
to the initial velocity (for more details see for, e.g., Roman, 1965). In the context of 
plasma physics this approximation has been used to solve similar problems (see below). 

The Born approximation was used by Berger et  al. (1958) to discuss transit time field 
dumping whilst dealing with the problem of heating of confined plasmas by oscillating 
electromagnetic fields. In a later paper Morales and Lee (1974) used the same approxi- 
mation to evaluate the effect of localized fields on the evolution of electron distribution 
function, in an unmagnetized plasma. The localized fields oscillated with a frequency 
comparable to electron plasma frequency. Morales and Lee (1974) compared the 
analytic results of the Born approximation with results of numerical integration of the 
equations of motion and found close agreement between the two. In this paper (Morales 
and Lee, 1974) pointed out that what was most important was the 'phase averaged 
velocity kick (A V) imparted to the particles by the localized fields'. Those authors also 
noted that the effect of particles spending several periods inside the localized field was 
not taken into account by the Born approximation, and in fact in this level of 
approximation was not necessary. 
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Thus in view of the above mentioned it should be borne in mind that such an approach 

neglects the coupling of the field to the particles in the system of Maxwell-Vlasov 

equations. Consequently, wherever such an approximation is used it should be seen as 

an indication rather than as an accurate solution of the problem. 
In order to solve Equations (11)-(13) we begin by expanding the velocities about the 

unperturbed velocity in the general form, 

a = a o + Aa (1) + Aa (2), 

and further in accordance with Born's approximation we assume that 
a 0 >> Aa (1) ~> Aa (2). This allows us to use as first approximation the unperturbed 
trajectory, 

z(t)  = V o ( t -  to) ,  

where Vo and t o are constants. Substituting the above in the set of Equations (11)-(13) 
we get for example for 

2 
Au (x) = i | - -  (v o + Av (1)) sech rc~ expi(g2p + kvo) e ~r dr  + c.c.,  

J Vo Kvo 
o O  

where rc~ -- Kz( t )  = Kvo(t  - to) and now we take 1 + A(v(1)/Vo) ~ 1 (which is the first 
Born approximation), and ~p = Cpo + Opto is the phase factor. 

Similar expressions are obtained for Aw (a) and Av (I) and integration over the whole 
range - o% oo yields 

Au (a) -- i2 sech k K--vo / )  e ice + c.c. ,  (14) 

Aw (l) = X s e c h  \ -K--Vo ]1  e'* + c . c . ,  (15) 

Av(l ) _ (Uo - iWo) Au(X). (16) 
I) o 

Thus we see that in the first approximation velocity changes take place but if we phase 

average equations (14)-(16) the net result is zero. This is to be expected from an 
unperturbed orbit approximation since, for any particle with initial conditions such that 
it is accelerated by a field we find another particle whose initial conditions would 
produce the opposite results - the net effect being zero. This is not so when higher order 
perturbed orbit velocity changes are included. Firstly we note that the phase averages 
of the squares of the quantities in Equations (14)-(16) are given by (which are second- 



178 c.R. OVENDON ET AL. 

order quantities) 

< (An(l))2> 4, = 2~2 sech~ [-~ ( a "  - + - k ~ ~  
k 2 \  Kv o / 1  

((AW(1))2)4, = ((Au(1))2)4, ,  

(ug + wg) ((AV(1))2) r - ( (Au(1))2)  4" 

(17) 

We now proceed to compute the second-order velocity changes taking into account 

perturbed orbits for the trajectory. From Equations (11)-(13) we have 

d (AuO)+ Au(2)) i2K 

dt n 
Vo sechKz( t )  e i(o~t + kz ( t )+  4'0) + c.c. + 

i2K 
+ - -  dv (1) sechkz( t )  e i(a~'+k~(O+ 4,0) + c.c.,  (18) 

7~ 

d (Aw(1) + AW(2)) 2Kv~ s e c h K z ( t ) d  (a~t+k~(~176 + c.c. + 
dt n 

2K 
+ - -  Av ~1) s e c h K z ( t ) e  ;(a,t+kz(~ 4,~ + c.c. ,  (19) 

7C 

d (AvO) + Av(2)) - i  2 K  
dt rc 

(u o - iWo) s e c h K z ( t ) e  i(ap'+kao+'i'~ + c.c. - 

2 K  
- i  - -  (Au (0 - iAw 0))  s e c h k z ( t ) e  i(apt+kz(t)+ 4,0) + c.c. 

7~ 

(2o) 

We first consider the second pair of terms on the right-hand sides of 

Equations (18)-(20). For these terms we use the unperturbed trajectory z(t)  = Vo(t - to), 

which is valid for the present level of approximation. It can be easily shown that for the 
second pair of terms on the right-hand side of Equation (18) we have, using 
Equation (16), the following relationship: 

2 K  

7~ 

- -  Av (1) sechKvo(t  - to) e i(Qpt + K v ~ 1 7 6  O~ + c . c .  = 

_ 1 d ~(AV(1))2~ (21) 
(u o - iWo) d t  ( ~ 2 - - )  " 

Similarly it can be shown that the second pair of terms on the right-hand side of 
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Equation (20), by using Equations (14)-(16), reduce to 

- i - -  
2 K  

7~ 

( A u  (1) - iAw  (l~) s e c h K v o ( t  - t o ) e  i(opt + k v ~ 1 7 6  4)~ + C.C. = 

1 d 

2v o dt 
((Aw(l~) 2 + (Au(l~)2) (22) 

We do not consider Equation (19) as it will be shown later that it is not used in latter 
calculations. 

We now consider the first pair of terms in Equations (18) and (20), noting that here 
it is necessary to take into account the perturbed trajectory: 

z ( t )  = Vo(t - to) + A z ( l ~ ( t ) ,  (23) 

where 

_d Az(1 ) = A1)(1) . 

dt 

The first pair of terms on the right-hand side of Equation (18) is 

2K 
i - -  v o s e c h K [ v o ( t  - to) + Az(l~(t)]  e itr~'t+k('~176 + c.c. 

7'C 

By a change of variables to 

K [ v o ( t  - to) + A z  (a)] = rc , ,  

we can integrate the above expression and after phase averaging obtain 

2 ~ 2 no sech2 [~ (~p ~ ~oI/] I 
V2o \ Kvo  ,/ J 

(24) 

Here AV (1) has been neglected in the sech terms. 
Similarly we get from the first pair of terms of Equation (20) (after phase averaging) 

2K 
- i  - -  (u o - i W o ) s e c h [ K ( v o ( t -  to) + Az(a>(t)] e i(apt+k~~176176176 + c.c. = 

% 

+ 

/ j  (25) 

Now combining Equations (21) and (22) after phase averaging and integration with 
Equations (24) and (25), respectively, we obtain expressions for second-order velocity 
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changes <Au (2)) and <Av (a)) given by 

( Au(2)) 0 = 222 Uo sech [n (I2p +_kvq]l 
v 2 L 2 \  Kvo ,/_l 2(u o - iWo) 

v~ L 2 \  KVo /J  

< (Z]/)(1))2)q~, (26)  

1 {<(Aw(1) )2>r  + <(Zlbt(1))2)4, } . (27) 
2Vo 

4. Energy Changes 

From the results obtained in the preceding section we can now compute the gain or loss 
of energy of the protons in both the perpendicular and parallel directions, due to a 
single-proton soliton interaction. 

We first calculate the energy change in the perpendicular direction. Without loss of 
generality we set w o = 0, thus the phase-averaged energy change is given by 

(Aex )0 = �89 + ((AU(1))2)O + ((Aw(1))2)4 ' ]  ; 

using Equations (17) and (26) in the above expression we obtain 

(Ag• = m22 (2 + ~ ]  sech2 r n (f2p_ + _kvo-~l . 
V2oJ L 2 \  Kvo , IJ 

Similarly for the parallel direction we get 

+4/ ,, / J  

(28) 

(29) 

From the above two expressions we see that the proton gains energy in the perpen- 
dicular direction from the soliton field thereby increasing its perpendicular temperature. 
On the other hand the proton lowers its parallel temperature by losing energy to the field. 
The soliton field provides a mechanism for the transfer of energy from the parallel to 
the perpendicular direction. The loss and gain in the parallel and perpendicular 
directions are equal. The result obtained here is qualitatively similar to the one obtained 
by Arunasalam (1976) for the case of ion cyclotron resonance heating, where it was 
shown, using quasi-linear theory that with the heating in the perpendiculat direction is 
associated cooling in the parallel direction. 

If we know the number of solitons per unit length (N/cm) then the interaction rate 
between protons and Alfv6n solitons can be written as N]vo]. If the background 
distribution for the protons is known (or can be approximated by a shifted bi-Maxwellian 
in the case of the solar wind) then the rate of gain of energy in the perpendicular direction 
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will be given by 

d (nk~T.)2n ifdvzdu~(Aej_)~foNIvol, dt 
- - o D O  

where n is the number density and T• is the perpendicular temperature of the protons. 
A similar expression can be written for the rate of loss of energy in the parallel direction. 

Such a transfer of energy could perhaps explain the observed proton temperature 
anistropy in fast speed solar wind streams. The results of the paper by Schwartz et al. 
(1981), where cyclotron resonance was used, showed enough energy could not be 
transferred in the perpendicular direction, since at higher frequencies (near the proton 
gyrofrequency) only a small amount of energy could be transferred to the protons. 
Non-resonant interactions taking place essentially at low frequency (~o/f2p ~ 1), where 
more energy is contained, could perhaps be better candidates for accounting for the 
above mentioned anisotropy. A knowledge of the interaction rate N I Vo] would, however, 
be needed to test the validity of this model - observations till now present no information 
on this. 
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