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For a semiconductor piezoelectric plasma coupled helicon-acoustic waves are investigated by using the reductive perturbation
method. The equation governing the nonlinear coupled wave is a mixed modified KdV and BBM equation along with an addi-

tional term. A one-soliton solution of this equation is obtained.

The propagation of nonlinear waves in piezoelec-
tric semiconductor plasmas has been studied exten-
sively in recent years [ 1-5]. In the above mentioned
papers Brillouin and Raman scattering have been
studied as well as modulational instability via the
nonlinear Schrédinger equation, and the Benjamin—
Bona-Mahoney equation has been obtained in the
investigation of coupled electron-acoustic waves in
such plasmas.

We consider it an n-type piezoelectric semicon-
ductor plasma in order to investigate the nonlinear
behaviour of coupled helicon-acoustic waves. The
basic equations necessary for carrying out this anal-
ysis for the one-dimensional case are the following
[5.6],
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Eq. (1) is the electron continuity equation and egs.
(2), (3) are the electronic equations of motion in
the perpendicular and parallel directions respec-
tively. Eq. (4) is the lattice equation of motion and
eqgs. (5)-(8) are Maxwell’s equations. We note here
that since helicons are circularly polarized waves
propagating parallel to the ambient magnetic field
the fluctuating quantities in the perpendicular di-
rections have all been expressed in the form
a.=a,tia, where t corresponds to the left and
right handed circularly polarized waves respectively.
The quantities #, v, 4, E and B represent the elec-
tronic number density, the electron velocity, the lat-
tice displacement and the electric and magnetic field
intensities respectively. We further note that p, f, €
and y, are the lattice ion mass density, the piezo-
electric coupling constant, the dielectric tensor and
the magnetic susceptibility respectively. Finally w,
and v are the electron gyrofrequency and the elec-
tron thermal velocity respectively. In order to apply
the reductive perturbation method we expand in the
following manner,

n=ny+€%n, +..., (9a)
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v, =€, +.... (9b)

Here n, is the background number density which is
taken to be homogeneous and constant. All quan-
tities with subscripts * are expanded in the follow-
ing way,

ai =€ai1+€3ai2+.... (10)

We note here that in eq. (9) the leading order terms
for fluctuations in the number density and the par-
allel velocity are of order €2, this is because for hel-
icon waves fluctuations in the above mentioned
quantities do not contribute to the linear dispersion
relation. We further note that for quantities which
have subscripts * the lowest order (i.e. order ¢) de-
termines the linear dispersion relation for helicons.
Further we introduce stretched coordinates:

{=z-At, t=€%. (11)

Here A is a velocity parameter which is determined
later. We note that this ordering is the same as that
used in ref. [7] for obtaining the modified KdV
equation for Alfvén waves. We now substitute the
ordering scheme given by expressions (9)-(11) in
the set of equations (1)-(8) and collect terms in dif-
ferent orders of €. In lowest order, i.e. in order ¢, we
obtain the linear dispersion for circularly polarized
coupled helicon-acoustic waves. We assume that the
first order fluctuating quantities a., are propor-
tional to exp(ik{) and obtain the expression

(PR —c) [(A2=c?) (At w./k) —wiA/k]
=p*2 0w /€k. (12)

In expression (12) A=w/k is the phase velocity of
the coupled helicon-acoustic wave.

From terms of order ¢ we obtain an expression
relating v,, and v.,. We obtain

0.0 =4/[2(A2=v3) 10 |v]?, (13)

where |v|?=v2+0v2.

Finally in order € we obtain the equation for the
evolution of the amplitude of the coupled helicon-
acoustic wave. In obtaining this equation the com-
patibility and secularity conditions have been used
[8-10]. This equation has the form

O vy +0, 0 0s +058, 0|70 Hiasdg | V)%

=0. (14)
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The coefficients «,, «, and «; are given by the fol-
lowing expressions respectively,

[(A2—c?) (pA%—c.)—A?B%/€')?
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where w, is the electron plasma frequency and
c= (€ ug)~'/? is the velocity of light in the piezo-
electric semiconductor.

It can be seen that eq. (13) resembles the modi-
fied KdV and Benjamin-Bona-Mahoney (BBM)
equation [10,11]. The BBM equation is considered
to be more appropriate in describing the nonlinear
evolution of long wavelength waves, it is also re-
ferred to as the regularized long wave equation. Had
the last term on the left hand side been missing the
equation could probably have been called a “mod-
ified BBM equation” and it has been checked that a
solution of the form A,sechxn fits the equation.
However, the presence of the last term alters this sit-
uation and below we have attempted to write a sta-
tionary one-soliton solution of eq. (14). Following
ref. [7] we move to a frame of reference moving with
the wave. This is done by changing variables:
n={— ut where u is the arbitrary velocity with which
the solitary wave propagates. Substituting this in eq.
(14) we can integrate once. Further we separate into
real and imaginary parts by taking

ve =A(n) exp(xig) .

We finally obtain from the real and imaginary parts

dA+ B A+ B ABA°=0, (16)
d,p=y47, (17)
where

Bi=1a,

Ba=(pA2—c)wid ({2p[ (A% =c?) (pA%=c.)

—A2B /€ 13 (A%-vR)) 7,
Bi=ilw/(A*—v3)u)?,
y=2w./u(A*-1%) .

In order to find a solution to eqs. (16) and (17) we
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have tried the solution of the generalized KdV equa-
tion [12] which is of the form

A=Ao(Ao+cosh kn)~", (18)

where Ay, Ay, k and n are determined below after put-
ting eq. (18) into eq. (16). We take n=14 and collect
terms in different orders of cosh ki and after some
algebra we obtain the following expressions,
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Now from eqs. (17)-(19) after integration we get
the following expression for ¢,

w3 dn
T 8u(A?=v3)J do+coshikn”

7 (20)
Here we note that A4+ cosh xn# 0. Thus the solution
for the nonlinear equation (eq. (14)) can be written
as

vs =Ag(do +cosh kn) 2 exp(tig), 21

where k, Ag and A are given by expressions (19) and
¢ by expression (20).

In conclusion we note that this model of consid-
ering nonlinear coupled helicon-acoustic waves was
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a simplified one since collisions between the carriers
and the lattice were neglected. If, however, these col-
lisions are included then perhaps an externally ap-
plied electric field has also to be included in the cal-
culations - this would counter balance the wave form
damping out immediately (due to collisions). The
inclusion of collisions and the external electric field
would of course lead to the right hand side of eq. (14)
to be nonzero. This in turn would imply that an ex-
act (one-soliton) solution would not exist, and a
perturbative technique would have to be used to give
an approximate solution. We hope to report on this
investigation soon elsewhere.
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