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Abstract 
The propagation of a relativistically strong electromagnetic pulse in an 
underdense homogeneous plasma is considered with the focus on the pos- 
sible existence of stationary structure of a pulse front. The analytical sta- 
tionary shock-like solutions are obtained and analyzed. These solutions 
correspond to the conversion of the pulse electromagnetic energy to an 
electron plasma wave in the narrow region of the considered stationary 
front. Our theoretical analysis is supported by the PIC simulations, which 
demonstrate the formation and existence of the shock-like structure of the 
pulse leading front and extremely fast pulse depletion. 

1. Introduction 

The recent progress in producing extremely powerful laser 
pulses [l, 21 has prompted researches into investigations of 
relativistically strong laser pulse interaction with plasmas. 
For a pulse of such high intensity the kinetic energy of oscil- 
lating electrons can exceed their rest energy mc’. Thus, the 
interaction has to be treated as strongly nonlinear. In fact, 
in the ultrarelativistic limit only the pulse edges can be con- 
sidered as regions of strongly nonlinear interaction. It is so, 
since inside the main body of the pulse the interaction is 
suppressed as a result of relativistic electron mass growth 
and this part of the laser pulse propagates just as in a 
vacuum. 

Therefore, the matter of primary interest is to study the 
interaction on the pulse edges. The polar cases of this study 
are the case of sharp pulse edges and the case of the pulse 
with adiabatically slow growth and decrease of amplitude. 
The first case was studied in Refs [3, 41 where it was shown 
that the leading edge of the pulse excites an intense electron 
plasma wave. The shape of the rear front of the pulse with 
the sharp leading edge appears to be of minor importance 
for the plasma wave excitation. The smooth pulses were 
considered in Refs [S, 61. It was shown there that the 
leading part of the pulse undergoes steepening as a result of 
various nonlinear processes. For example, for a sufficiently 
long pulse the leading front steepening is driven by the 
intense stimulated backward Raman scattering. Once the 
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steepening has appeared the excitation of the plasma wake 
is triggered off and we again return to the case of a sharp 
leading edge. 

We assume here that the leading edge of the pulse is a 
stationary one. Neglecting the interaction inside the main 
body of the pulse we shall study the structure of the pulse 
leading edge. Previously there were several studies of 
envelope shock-fronts (for example in Ref. [7]), but all of 
them addressed primarily the weakly relativistic case while 
the subject of our interest is the pulses of ultrarelativistic 
intensity. In the present paper the analytical theory of 
strong envelope shock-like fronts is developed. Computer 
simulations are carried out to demonstrate the formation of 
a shock-front and its further propagation. 

2. Mathematical formulation 

Due to the ultra fast nature of the process under consider- 
ation, the motion of the ions can be neglected, and these 
only form an immobile neutralizing background. We shall 
look for the solution of the fully relativistic nonlinear elec- 
tron fluid equations along with Maxwell’s equations to 
describe the pulse front motion. We consider the one- 
dimensional case and circularly polarized radiation. The 
potential of charge separation q5 (normalized to mc2) is 
taken as a variable characterizing the low frequency plasma 
motion. For the description of the high frequency field we 
take the transverse electron momentum qIr (normalized to 
mc). This is natural as in one-dimensional case this momen- 
tum is exactly equal to the normalized vector potential of 
the pulse field eAJmc2. Since we are looking for the station- 
ary solution for the pulse front propagating at the velocity 
V ,  we assume the following form of ql,: 

q,r = &eo a exp (- io t  + ikx) + e,* a* exp (iot - ikx)]. (1) 

Here a is the complex amplitude of the pulse field which 
depends only on the combination of coordinates 
5 = x - ~ t ,  vector e, = (yo  + ito)/fi is a unit vector ofcir- 
cular polarization, o and k are the high frequency and wave 
number, respectively, which are related only to another by 
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the expression k = Vo/c2. The coupled equations for vari- 
ables a and 4 can be obtained in the form [8] 

x [ 1 - (1 + 1 a l2/2)/(1 + $)2yi] - l i2  a = 0, (2) I 
a24 0 2 y ;  
- - - { 1 - #IC1 - (1 + la1 2/2)/(1 + 4)2y;l - l I 2 }  = 0, (3) 
a 5 2  c2 

where p = V/c, y i  = 1/(1 - p2), cop = ( 4 ~ e ~ n , / m ) ’ ~ ~  is the 
electron plasma frequency, and no is the unperturbed elec- 
tron density. 

Since we consider the case of an underdense plasma 
(mi Q w2), the normalized velocity p can be assumed to be 
close to 1. Further on, considering in addition the case (1 
+ I a 12/2)/[(1 + r#~)~yi ]  Q 1 and expanding the square root 
terms in eqs (2) and (3) we finally obtain the equations 

(4) 

(5) 

which are already simple enough to be studied analytically. 

3. Analytical and numerical analysis 

We note that for yg  c w2/wi only periodical solutions of the 
coupled equations [(4) and (5) ]  exist. As such solutions are 
out of scope of our study, we restrict ourselves to the 
opposite case y i  > w2/w,”. We assume that the field inside 
the pulse is relativistically strong. The results of numerical 
integration for this case which demonstrate a typical behav- 
ior of the solution of the coupled equations [(4) and (5)] in 
the leading part of the pulse are presented in Fig. 1. 

In the region ahead of the pulse (for 5 + + a) both a2 
and 4 vanish as exp (-25/8, where f is a corresponding 
characteristic scale length 

- l / 2  e = L{Y; WP - $} 
Behind the front (in the region where the electrostatic 

potential 

a 6  
4 
2 
0 

-2  
-4 

- 6  

- 
4 becomes larger than yg  wi/w2 - 1) the ampli- 

-2 - 1  0 

Fig. 1. Solution of the coupled equations [(4) and (S)] in the front part of 
the pulse for w/op = 100 and yi = l .0102/o~.  Curves 1 and 2 correspond 
to profiles of a and 4, respectively. The coordinate { is normalized to c/op 
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tude a demonstrates the oscillating behavior : 

Here a, is a slowly varying amplitude. The expression for 
~ ( 5 )  is defined by : 

yi Y I 2 ,  = c {q - [l + 4(5)] 
3 w2 

and t l  is the coordinate of the point on the front where ~ ( 5 )  
is equal to zero. 

The oscillations of a can be interpreted as being produced 
by the beating of two light waves: 

(9) a exp (- iwt + ikx) = a + exp (icp +) + a - exp (icp -), 

where a ,  = a,(5)/2 and 

are amplitudes and phases of the waves, respectively. The 
local frequencies and wave numbers of the waves are defined 
as w * = - acp ,/at and k = acp ,/ax and are given by 

a*(O = f VK(~),  kk(5) = k k $5). (1 1) 

One of the waves (with the subscript “+”) can be associated 
with the “fresh” radiation supplied to the front region from 
the bulk of the pulse. The other wave (“-”) is associated 
with the portion of the radiation which has already lost its 
energy on the leading front and is shifting backwards in the 
frame of the leading edge. 

behind the leading front 
increases and, as the result, for 4 %- 1 eq. (4) becomes de- 
coupled from eq. (5). Thus, the plus-wave propagates in this 
region as in a vacuum so that w +  and k ,  there become 
equal to coo 41 + B) ‘Y 2 0  and k, = o(l + P)/c N 2k, 
respectively. As the main body of the pulse (where q5 %- 1) is 
fairly long in comparison with the front structure, it carries 
the main pulse energy. Therefore, wo and k ,  can be con- 
sidered as the carrying frequency and the wave number of 
the pulse. 

As the potential 4 behind the front varies slowly in com- 
parison with the oscillations of a, in this region the value 
 ai^ is conserved   ai^ = const) and can be treated as an 
adiabatic invariant. To find the constant that it is equal to, 
we study the solution of eqs (4) and (5 )  near the shock front 
where 4 4 1. Assuming that e G c/op, eqs (4) and ( 5 )  can be 
reduced in this region to the equation without parameters 

The electrostatic potential 

d2U - + (f- l)u = 0, 
dt12 
where 

I I‘ 

m m‘ 
u = a/ci, q = t / f ,  f= 4/$ = j dq’ 1 dq”[u(q”)I2. 

Vector and scalar potentials are normalized to the values 
ci = 2y0(l - w2/wi y,;) and 4 = (1 - w2/wi y;), respectively. 
For parameters which correspond to $ < 1, eq. (12) can be 
valid iff %- 1. In the region where f %- 1 the fast oscillations 
of u with a slow varying amplitude U, occur. The amplitude 
U, is related to f and constant CO [obtained here by the 
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numerical integration of eq. (12)] by expression 

ui(f - l)'lz = CO 1: 10.43. (13) 

For 4 greater than unity eq. (4) should be used to 
describe the variations of a. Since the adiabatic invariant is 
still conserved we find that  ai^ = Codz/[ and thus for a: 
we can obtain 

When 4 + 00, a:(<) + a i  % 1. Here 

is a constant value which can be associated with the ampli- 
tude of the main part of the pulse. 

Thus, via eq. (15) we can find yo [and, consequently, the 
velocity of the leading shock-like front V c(1 - l/yi)'/'] 
as function of the pulse frequency and amplitude: 

Note that in the above analysis [where 6 = (1 
- oz/o; yt) 4 13 the range of considered amplitudes is 

restricted to the case when 1 4 a i  4 o$of. For greater 
amplitude (a i  2 oi/oi) a more sophisticated analysis 
without expansion in eqs (2) and (3) should be carried out to 
find out that the growth of y; with the increase of amplitude 
is limited by a certain value. This value can be obtained by 
the numerical integration and is approximately equal to 
0.4o;/of. This means that even a pulse of an infinitely large 
amplitude with a stationary leading front propagates at the 
velocity not too close to the speed of light in free space 

The results of numerical investigation of eqs (2) and (3) 
are presented in Fig. 2. It shows the velocity of the station- 
ary front as a function of a, for two values of the parameter 
oo/wp. It can be seen that the velocity of the leading front 
for a relativistically strong pulse (a, % 1) depends rather 
weakly on the pulse amplitude: with the growth of the 
amplitude the value of V / c  - 1 increases from -2o;/oi  (for 
1 < a, 4 w,/wp) up to the value N - 1.2w;/wi (as a, + 00). 

The group velocity of radiation inside the pulse us N c[1 
- OSo%/wi(l + 4)] (where 4 % 1) tends to the speed of 

light in free space as 4 + 00, meanwhile the pulse leading 

(1 - V/c+ N1.2W;/o;). 

1 10 1 o2 1 o3  

Fig. 2. The dependence of the shock-front velocity V on the pulse ampli- 
tude. The difference between V and c is given as a function of a, for 
oo/op = 10 (curve 1) and for oo/op = 100 (curve 2) 

front travels at the speed V which is below e. As the group 
velocity is the velocity of energy transport, there is a per- 
manent energy input into the front region, where the sup- 
plied energy is converted to longitudinal plasma oscillations. 
The rate of this conversion can be estimated as 

(17) 

Therefore one can suggest that the pulse evolution [ S ,  61 
and the above-described solutions can be joined in the 
following scenario of the fast depletion of the fairly long 
(T % o; ') and relativistically strong electromagnetic pulse. 
The jump of amplitude on the leading front (formed due to 
the stimulated backward Raman scattering or some other 
nonlinear phenomena [SI) leads to the excitation of the 
plasma wake wave and to the formation of the shock-like 
structure of the front described above. The velocity of the 
shock V is slightly less than the speed of light (c - V N 

cwfjo i )  and weakly depends on the pulse amplitude behind 
the front region. Since the main part of the pulse propagates 
as in vacuum, the process of the pulse depletion looks as the 
progressive cut-off of its leading part. The cut-off point 
moves backward into the main body of the pulse with a 
relative velocity V - c until it reaches the pulse rear front. 
So, the total time of the pulse depletion can be estimated as 

f d e p  1: T O i / W f .  (18) 
Using a simplified model, we should be aware, that in 

addition to the nonlinear effects mentioned above (which 
provide the formation of the jump of amplitude on the 
leading front), there are other physical processes which can 
have some effect on the evolution of the pulse. For example, 
it can be breaking of nonlinear plasma wake or trapping of 
thermal plasma electrons. Being important even for the case 
of nonrelativistic initial electron plasma temperatures [9] 
these processes can result in heating of plasma electrons 
behind the shock front. The forward Raman scattering and 
modulational instability could also play some role in the 
pulse evolution (though both of them are to be suppressed 
for an electromagnetic wave of ultrarelativistic amplitude). 

In order to verify our theoretical predictions we used 
particle-in-cell simulations. The initially smooth and circu- 
larly polarized electromagnetic pulse with a duration T N 

24Onw;' and the maximum amplitude a, = 3 penetrated 
into the plasma (where wp = o,/3) with a sharp boundary. 
We used 1(2/2)-D fully self-consistent relativistic electromag- 
netic code [SI. The cell size was equal to 0.25c/w0 and the 
number of particles in the cell was equal to 10. The ions 
were considered as an immobile neutralizing background. 

The results of the simulations are given in Fig. 3, which 
displays the profiles of the absolute value of the transversal 
electric field E,  = (E: + Et)'/' normalized on mcwo/e for 
five successive moments. Here we do not discuss the reasons 
that lead to the formation of the jump of a pulse amplitude 
on the leading front, as details of the shock formation 
process can be found in Ref. [6]. We only mark that the 
bulk of the pulse travels just at the speed of light in free 
space, while the pulse shock front has the velocity approx- 
imately lSc(w;/o@ less. So, the numerical experiment 
demonstrates a fairly good agreement with our theory. 

Looking upon the picture we can also see that the main 
part of the pulse energy is transferred to plasma electrons. 
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Fig. 3. A typical scenario of the depletion for a fairly long and rela- 
tivistically strong pulse in an underdense plasma. Results of PIC simula- 
tions for a circularly polarized pulse with t,  = 240x0;’ and I a lmlx = 3 for 
up = w0/3. Each plot (a, b, c, d, e) shows the profile of the transverse elec- 
tric field E ,  = (e/cm,wo)(E: + for the successive stages of evolution. 
The coordinate x is normalized to c/wo 

Neither breaking of the plasma wake-wave behind the 
shock nor the Raman scattering or modulational instability 
affect the pulse envelope significantly in the course of its 
depletion, resulting only in short wavelength perturbations 
of pulse amplitude. The small amplitude noise behind the 
pulse (which can be seen in the picture) corresponds to the 
fields of the wave reflected from the electron density fluctua- 
tions in the region of pulseplasma interaction. 

If one is interested in the exact solutions of eqs (2) and (3), 
stretching them into the main body of the pulse, one can 
find out that in the cold plasma model without dissipation 
the decoupling of the plasma wave and the electromagnetic 
field is broken at some distance from the leading front. 
Thus, inside the main body of the pulse in the cold plasma 
model the strong interaction with a plasma seems to be pos- 
sible. Naturally, from eq. (5 )  it follows that far from the 
leading front (4 % I al) the potential 4 varies as 4 N 

W/aO,(t - 51) - (w;/c2Xt - 51)’/2, where - (a+/at )m cor- 
responds to the maximum value of the longitudinal electric 
field of the excited nonlinear plasma wave. At the distance 
A t  N -2(c2/w;)(aq5/at), from the leading front the poten- 
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tial 4 becomes of the order of 1 and eqs (4) and (5)  become 
coupled again. There can be pointed out a discrete row of 
parameters (pairs of V and U) for which a and 4 behind this 
region can vanish simultaneously as < + - 00 forming the 
trailing front of a so-called “electric envelope soliton’’ [7] of 
relativistically strong amplitude. Our analytical results are 
valid for a description of the soliton, which was previously 
(in Ref. [7]) studied numerically. 

In fact, even small electron temperatures result in trap- 
ping of plasma electrons [SI. The trapping can also be initi- 
ated by breaking of the excited nonlinear plasma wave. 
Trapped particles form the additional space charge inside 
the pulse, so that the potential 4, after reaching its 
maximum value 4,,, % 1, decreases but not down to values 
comparable with 1. As a result, eqs (4) and (5 )  remain decou- 
pled everywhere behind the leading front. So our initial 
assumption that everywhere inside the main body of the 
pulse the interaction is suppressed seems to be true. Thus, 
the considered solution above should be regarded primarily 
as the kink type solution for the pulse leading front. 

4. Conclusions 

The shape of the considered stationary laser front appears 
to be similar to the shape of the usual hydrodynamic shock 
wave [lo] although the nature of these phenomena are 
fairly different. For example, the decreasing oscillations in 
our solutions for the pulse amplitude behind the shock-like 
leading edge appears as a result of relativistic increase in 
electron mass and has nothing in common with the usual 
collisional damping. 

It is interesting to look upon the stationary structure 
from the point of view of the energy exchange. The energy 
of the electromagnetic radiation with extremely high efi- 
ciency is transferred to the plasma electrons on the station- 
ary front. As a result of the interaction, the frequency of 
radiation decreases and so does its group velocity. After 
taking part in the interaction, the portion of radiation lags 
behind the front. At the same time new portions of radiation 
are supplied to the leading edge region. Thus, counter- 
streaming flows of electromagnetic radiation provide the 
energy exchange between the region of strong interaction 
and the main part of the pulse. This effect can be easily 
understood if one considers the front of the pulse as a 
mirror moving at a relativistic speed. Let us consider the 
down-frequency conversion as Doppler shift in the process 
of reflection from the moving mirror. Then using the simple 
kinematic relations, one can easily obtain the relation 
between the frequencies of incident and reflected radiation: 
WO 
which as well can be obtained directly from eq. (1 1). 

w+(+ + 0O) = o(l + p) = 0 - ( 4  + 0O)(l + B)/(l - p), 
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