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In the present work the propagation of nonlinear density waves in a superconducting layered struc-
ture has been investigated. It is seen that the nonlinear Schrédinger (NLS) equation governs the
propagation of density waves in a superconducting plasma. It is shown that in general the NLS equa-
tion in this case is modulationally unstable. By using the Kronig-Penney model to depict the layered
structure we derive a nonlinear dispersion relation relating the nonlinear analog of the Bloch wave
number to the propagation frequency. This nonlinear dispersion relation is numerically investigated.

1. Introduction

Recently Bunch and Grow [1] have investigated the linear propagation of density waves
in a superconducting plasma by using the London theory [2] and the two fluid Gorter-
Casimir [3] model to describe a superconducting plasma. Ali and Shah [4] extended this
work to explore the propagation of density waves in a medium consisting of periodically
alternating layers of a superconducting plasma. The London model as well as the Gorter-
Casimir and the Ginzburg-Landau [5] models are phenomenological models in supercon-
ductivity theory and are based on Maxwell’s equations and general laws of physics. The
use of such models is justified by the fact that they provide useful insights into observed
high temperature superconductivity (HTS) phenomena. The shortcoming of such phe-
nomenological theories is that these are too general to provide an actually rigorous expla-
nation of the mechanism of HTS. Bunch and Grow [1] have noted the applications of the
phenomenological theories in devices using superconductors and have enumerated some
of the advantages of using superconductors in active devices and have stressed the possi-
ble importance of travelling wave behavior of superconducting electrons in these devices.

With the advances of new technology and experimental techniques in solid state phy-
sics and material science, the fabrication of more and more artificial materials with
layered structures having special properties is taking place. Such materials have in-
cluded metal-semiconductor or semiconductor—insulator periodic layers etc. The theo-
retical work of Baynham and Boardman [6, 7] is considered a watershed for the further
description of theoretical work in the area of periodic multilayer structures. Since then
a lot of theoretical work has appeared investigating both linear and nonlinear proper-
ties of wave propagation in periodic multilayer media (e.g. [8, 9]).

Microelectronic applications require HTS multilayers containing different non-conduct-
ing, semiconducting, conducting and superconducting multilayers. It is with such applica-
tions in view that the properties of multilayered superconductors have been investigated.
For example, investigations of vortex motion in layered superconductors have been made
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by Iye et al. [10]; resistivity studies have been carried out by Raffy et al. [11] and Hao
et al. [12], and interface studies by Aarnink (see [13] and the references therein).

In this work we have attempted to explore the nonlinear wave propagation properties
of density waves in a periodically layered superconducting plasma (each layer is say a
YBCO superconductor described by the London and two fluid model [1]). We employ a
standard perturbation and scaling technique to derive the nonlinear Schrodinger (NLS)
equation which governs the propagation of density waves in the superconducting medium.
The properties of the nonlinear wave for a layered structure consisting of alternating
superconductor layers are investigated using the Kronig-Penney model. As in the work of
Bunch and Grow [1] and Ali and Shah [4] here, too, we make use of the London model
along with the two fluid model to describe the superconducting plasma which can be
thought to be composed of both normal and superfluid electrons. The two fluid model
takes losses into account, since one fluid is related to the superconducting electrons and
the other to the semiconducting electrons. This approach is further justified since high T,
ceramics exhibit metallic properties along the superconducting plane (ab-plane) and semi-
conductor characteristics along the c-plane. Bunch and Grow [1] have noted that this
approach may have applications in the use of superconductors in travelling wave devices.
The advantages of such a device are, that no electron focusing structure is needed, no
cathode is necessary. This makes possible the fabrication of millimetre and infrared de-
vices since HTS are compatible with such fabrication (as opposed to conventional electron
devices which are difficult to size down at high frequencies) along with the fact that these
would be moderate power devices which are of high quality with low noise. The micro-
wave and infrared properties are of importance in superconductors because of the exis-
tence of the energy gap, which implies that photons of energy less than the energy gap are
not absorbed. For superconductors the frequencies of interest are those which lie below
the electron plasma frequency, that is, the microwave and infrared frequency range.

The layout of the paper is as follows. In Section2 we give a general mathematical
formulation of the problem and derive the nonlinear Schrodinger (NLS) equation,
which governs the propagation of nonlinear density waves within a single layer of the
superconducting medium. The NLS has a known soliton solution, which is used in a
self-consistent manner to relate the different parameters entering into the system. We
then investigate the modulational instability of the NLS equation.

In Section 3 we introduce the boundary conditions of the Kronig-Penney model and
derive an expression for the nonlinear dispersion relation for the propagation of den-
sity waves through a periodically layered superconducting medium. The nonlinear dis-
persion relation relates the nonlinear analog of the Bloch wave vector to the propaga-
tion frequency of the soliton. In Section 4 we give a numerical analysis of the results
obtained in the previous section.

2. Nonlinear Schrodinger Equation

For the propagation of charge density waves in the superconducting medium, the fol-
lowing set of equations is used [1]:
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Equations (1) to (4) are the Maxwell’s equations, egs. (5) and (6) are the London equa-
tions. Equation (7) is the expression for the total current density containing both the super-
conducting current and normal resistive current which depends on the conductivity o,.
Equation (8) is the equation of motion of the superconducting electrons. Equation (9)
gives the relation between the superconducting electrons ng, and the total number of elec-
trons n,, the parameter b is the fraction which gives the number density of the normal-
state electrons. The subscript a (¢ =1, 2) in the above set of equations denotes the layers
of the alternating periodic medium. A slow electromagnetic wave [1] propagates close to
the surface of the layered superconducting medium, which interacts with the superconduct-
ing electrons in each layer, this in turn sets up the density wave in each layer of the med-
ium. The layers have thicknesses d; and d, and number densities n; and n,, respectively,
both of which have a superconducting component #s and a normal state component #,,.

In order to derive the NLS equation we divide the fluctuating quantities into a low
frequency part and a high frequency part (having superscript 1 and h, respectively) in
the following manner:

j=jo+i+i",
n=ny+n+n", (10)
E=E".

We note that in the above set of equations E only has a high frequency fluctuation
term, this enables us to neglect the ion (lattice) motion. Quantities with subscript 0 are
the background quantities. We shall only deal with high frequency terms except in the
equation of motion (8) where the low frequency ©' term occurs in the convective deri-
vative and this contributes to the nonlinearity. Further in eqgs. (1) to (9) all high fre-
quency terms are eliminated in favour of /" and considering one-dimensional propaga-
tion in the z-direction, we obtain the following equation:
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In order to evaluate the term o' we use the low frequency components of the set of egs.
(1) to (9) bearing in mind that the average over the square of the high frequency terms

yields a low frequency term [14]. We obtain the following expression for o'
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Using equations (11) and (12) and the following solution for J":
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we obtain the NLS equation
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is the group velocity of the density wave (which can be obtained from the real part of
the linear dispersion relation of the density wave) and
_ —wv3(1 —Db)
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We note that in obtaining the above we have put equal to zero the real part of the
linear dispersion relation for density waves which is given by [1, 4]

—@’ + ko*vo(2 — b) — wk*v5(1 — b) + ww) + vo(1 — b) kwye =0. (15)
The scaling procedure that we have used in obtaining eq. (14) is the following [15]:
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where 7 is a time scale and 1/7 < w, where o is the density wave propagation frequency
(linear).

Equation (14) can be transformed into the standard NLS equation by making the
transformation

Q= QU/ e—Rt , (16)
thus the NLS equation (14) has a known soliton solution given by
@ = @q sech (kK*z — 0™t) ¥ e R, (17)
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Substituting (17) into (16) we can self-consistently evaluate the quantities in the solu-
tion of the NLS equation, and these are given by

—0Q + Pk™ =0,
—2Pk™* + Qg3 =0, (18)
w* - vgk* =0.

Here ¢ is the amplitude of the NLS equation and 02, k* and o are the nonlinear
frequency shift, wave number and the frequency, respectively. The solution given by
eq. (18) makes a soliton solution when PQ > 0 (which corresponds to modulational
instability) and for the case of PQ < 0 (which corresponds to modulational stability), it
results in a dark soliton as solution.

3. Periodic Boundary Conditions

Since we are investigating the propagation of charge density wave solitons in a super-
conducting layered medium consisting of two alternating layers of thickness d; and d»,
respectively, these two layers repeat periodically — therefore the soliton solution should
carry a subscript i (where i = 1, 2) denoting different layers:

@ = @y sech (kiz — wit) e e R (19)

We now introduce the boundary conditions, which are used in the standard treatment
of layered media having a Kronig-Penney structure, and wave propagation across the
layers is considered [6, 7]. Soliton solution for the current densities of the two layers is
connected to one another at the boundary of the two layers in the following way:

@1 \z:d.: (p2‘z:d1 ) (20)
99| _ 09, (21)
Oz z=d, 0z 7=d,

(pl ‘z:(): ein (p2|z:d ) (22)
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where d; + d, = d, and K is the nonlinear analog of the Bloch wave number. We now
substitute the solution for ¢ (given by eq. (19)) into the set of egs. (20) to (23). Follow-
ing [16] and skipping the details of the rather messy algebra for the nonlinear analog of
the Bloch wave number, we directly arrive at the final expression

Wi cos? Kd + W, cos Kd+ W3 =0, (24)
where Wi, W, and Wj are given by

Wi = X1C3CE + X,CC,8, 4 X5C383

W, = X114, + X2Ds + X3B3, (25)

W3 = X1A1 + XoD1 + X3B1,
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and Aj, Ay, By, B, and Dy, D; are given by

Ay = CLCICL G + CL Ci85,85 + STSTCHL G + 81,5155,53
—2C} CICnCyS»S; — 2C11C1C3,C5811S1 — 2C11C155,555111
—28%,82CCy820Ss + 4C11C1CC281151525,

Ay = —C11CnCiC3 +2C1CrC118208; +2C1C381151Co — 2C1C28115152:52

By = —2C},C18$0C2CnS, — 2C11C185,C581S1 — 2C11C1C5,83511 51
— 28282855, C2C S5 + 4C11 C180.C2811 51 C2 Sy + C3C18%,C3
+CHCICHLS] + S15155,C5 + S1181C5, 83,

By =2C38,C1180Cy — 2C285C11Coy — 2C15:8118180.Co +2C15581151Caa (26)
Dy = —C3,C3C» (585 + C1 C3C,C28, +2C11C1Cn C38115152
—2C11C1C3H 028118185 + CF 85,8, Cr — CF C18380Can
—2C11C185,8:81151Co + 2C11 C180.8581151Cor — 85,51 C5CnSn
+ 81,81C5,C28; + 83,5285,8,Cy — §3,518285Can
Dy = —2C2CyC11CSy + C2C3C11 82y — C1C38118182 + 2C1C281151CSs
+ C11C285,85 — 811515,55C ;
X1, X2 and Xj are given by
X1 = 81C5C11C182 — S5C581182 + S2C2811CSy — C18,811C0Ch
+ 28281182 — C185C115152,
Xo = —S1C5811Cop + 2525:,81180.Cr — 8783811 Cop + C1C5811C o7
—2C58:81152.C, + C185811Con
X; = 8183C11820C1 + 518,811 CnCy — $28581182 + C1C58115n
— C2Cy811CpSy — C1C3C11 8180,
where S1, S, C1, Ca, S11, S22, C11, Cx2 and 81, Co1 are given by
S = sinh O , Sy1 = sinh k%d; , Sy = sinh k5d,
S, = sinh O, , Sy = sinh kbds Cy = cosh k3d; , 08)

Cy =cosh O, Cy1 = cosh kidy ,
C, = cosh O, Cy = cosh kd, ,

with @, = wlt , i=1, 2. The terms Sy and C» do not appear explicitly in expressions
(24) to (27) as these have been eliminated and expressed in terms of hyperbolic func-
tions S; and Cj.

Equation (24) is the nonlinear dispersion relation for density wave solitons propagat-
ing across a superconducting medium consisting of two alternating layers. We note here
that eq. (24) is quadratic in cos (Kd), whereas in the linear case [4, 6, 7] the dispersion
relation was linear in cos (Kd). Therefore the charge density wave solitons have two
modes of propagation corresponding to the two solutions of eq.(24). The result
(eq. (24)) is qualitatively similar to that given in our earlier work [16], but is presented
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here for the sake of completeness since this is used in the numerical analysis given in
the following section.

4. Numerical Analysis and Conclusions

Now we numerically investigate eq. (24) by taking some numerical values associated
with typical layered superconducting plasmas. We attempt to establish a relationship
between the nonlinear analog of the Bloch wave number K and the propagation fre-
quency o :

C —Wak /W2 — AW, W
Kd = 29
cos W, (29)

with Wy, W, and W; defined by expressions (25) to (28). We note that real propagating
roots will be obtained only when

|cos Kd| < 1. (30)

Numerical values of the linear wave number k;, (real) is calculated from the linear
dispersion relation and we note nonlinear frequency  is taken as o™ < w. Therefore
ki 2 is then obtained through eq. (15).

400 [~

500

400 . _
Fig. 1. Bloch wave vector K versus
300 frequency w for a) the upper and
b) the lower sign. Numerical val-
ues: n; = 1.5 x 102 m=3,

A~

200 ny =100 m=3; vgq = ve = 10° m/s;
di=10"m, d,=10""m;
100 : @129221;8123,8224;
b) by = b, =0.25;
0 o1=0,=10"Q 'm!
0 2 4 6 8 10

o (10" Hz)
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400 ' ' ' ' "] Fig. 2. Bloch wave vector K versus
frequency w for the upper sign with
conductivities 01 = 0, = 10° Q' m™;

300 other values remain the same as in
Fig. 1

K 200
100
0
0 2 4 6 8 10
(10" Hz)

Figures 1a and b show the dependence of the nonlinear Bloch wave number K on
the propagation frequency w for upper and lower roots, respectively. The numerical
values used for the thicknesses di, d,, the dielectric constants &1, &, the number densi-
ties ny, ny, the effective masses my, my, and the values of @, @, are given in the cap-
tion to Fig. 1, where the propagation frequency o is taken from 10° to 10'> Hz. Compar-
isons of Fig. 1a and b show that in each case there is a small propagation gap in the
region around 10°Hz and then there is continuous propagation band right up to
10'2 Hz. We see that for the mode with the upper sign the nonlinear Bloch wave vector
has smaller value as compared to lower sign. Further we note that the propagation
region shifts to the right to the higher frequency range for the lower sign.

As we decrease the value of conductivity, Fig. 2 (with upper sign), the frequency
increases, thus both propagation bands and gaps shift to the right, the lower sign shows
the same trend as described above. This is qualitatively similar to the case investigated
by Ali and Shah [16], Baynham and Boardman [6]. In Fig. 3 we increase the number of
normal-state electrons b, in the second layer and we see that the value of Bloch wave
vector decreases as compared to the results in Fig. 2. Thus our investigations show that
nonlinear density waves can be described by the NLS equation which has soliton solu-
tions. The band gap structure in the propagation characteristics is maintained when a
Kronig-Penney model is used to depict a sandwich structure.

350
300
250
_ 200

150 Fig. 3. Bloch wave vector K versus

frequency w for the upper sign with

100 conductivitieso; = 0 = 10° Q' m™!

50 and fraction of normal-state elec-

X trons b; = 0.25, b, = 0.75; other val-

0 ues remain the same as in Fig. 1
0 2 4 6 8 10



Nonlinear Density Wave Propagation in Layered Superconducting Plasmas 701

Acknowledgement This work was conducted under the Pakistan Science Foundation
research grant No. PSF/Res/P-PU/Phys(99).

References

[1] K. J. BuncH and R. W. Grow, Internat. J. Infrared Millim. Waves 18, 57 (1997).

[2] F. and H. LonpoN, The Electromagnetic Equations of Superconductors, Proc. Royal Soc. (Lon-
don) 149, 71 (1935).

TINKHAM, Introduction to Superconductivity, McGraw-Hill, New York 1975.

L and H. A. SHAH, J. Phys.: Condensed Matter 12, 5857 (2000).

. GINZBURG and L. D. LANDAU, Soviet Phys. — JEPT 5, 1442 (1957).

BaynHaM and A. D. BoARDMAN, J. Phys. A 1, 363 (1968).

BaynHAM and A. D. BoARDMAN, J. Phys. C 2, 619 (1969).

KusuwaHA and P. HALEvI, Phys. Rev. B 35, 3879 (1987).

SHAH, 1. U. R. DurrANI, and T. ABDULLAH, Phys. Rev. B 47, 1980 (1993).

IYE, I. OGURO, T. TAMEGAIL, W. R. DATARS, N. MOTOHIRA, and K. Kitazawa, Physica C 199,

154 (1992).

] H. RAFFY, S. LaBpI, O. LABORDE, and P. MoNCEAU, Phys. Rev. Lett. 66, 2515 (1991).

| Z. Hao, C-R. Hu, and C. S. TING, Phys. Rev. B 51, 9387 (1995).

] W. A. M. AARNINK, Ph.D. thesis, Univ. of Twente, Netherlands, 1992.

] .

] .

]

A
L
C
C
S
A

M.
R.
V.
A.
A.
M.
H.
Y.

DENDY, Plasma Physics, Calaredon Press, Oxford 1990.
OVENDEN, H. A. SHAH, and S. J. SCHWARTS, J. Geophys. Res. 88, 6095 (1983).

.0
.R
. ALt and H. A. SHAH, J. Phys.: Condensed Matter 9, 7583 (1997).






