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Electron acoustic solitons in collisionless and weakly relativistic plasmas are studied. The

Krylov–Bogoliubov–Mitropolsky perturbative technique is employed to obtain the nonlin-
ear Schrodinger wave equation. We have numerically investigated modulational instability
for different values of the streaming velocity. Graphs have been plotted to see the change in

amplitude and inverse width by varying different plasma parameters.

KEY WORDS: Solitons; KdV; plasma; electron acoustic.

INTRODUCTION

Electrons have been found to be consisting of
two distinct groups, one hot and one cold [1–3] in
many types of plasmas such as those in fusion devices
and in the auroral ionosphere. For analytical pur-
poses, it is sometimes convenient to introduce the so-
called two temperature electron model [2,4,5] in
which the electron density is given by ne ¼ neh þ nec,

where neh ¼ n0h exp
e/
Th

� �
and nec ¼ n0c exp

e/
Tc

� �
. The

unperturbed densities and temperatures of the two
species of electrons are denoted by n0h; Teh; and
n0c; Tec. One assumes in this model that both species
of electrons are in thermal equilibrium. Such an
assumption breaks down if the temperature of one
species is so low that its thermal velocity becomes
much less than the characteristic velocity of the prob-
lem. An example of this is the case of a cold electron
beam in a hot plasma [6]. An electron acoustic (EA)
wave can exist in a two-temperature plasma. It is
basically an acoustic (electrostatic) wave in which the

inertia is provided by the cold electrons and the
restoring force comes from the pressure of hot elec-
trons. The ions play the role of a neutralizing back-
ground, that is, the ion dynamics does not influence
the EA waves because the EA wave frequency is
much larger than the ion plasma frequency.

After the discovery of the existence of the EA
waves, the conditions for the EA wave propagation
as well as its linear properties have been investi-
gated by several authors. Berthomier et al. [7] have
studied EA solitons in an electron-beam plasma sys-
tem. A theoretical investigation has been carried out
for obliquely propagating EA solitary waves by Ma-
mun et al. [8]. In this paper, the nonlinear propaga-
tion of EA waves has been studied employing the
Krylov–Bogoliubov–Mitropolsky (KBM) perturba-
tion method [9]. It plays a powerful role in describ-
ing the long-term behavior of the solution. KBM
method has shown to be useful in obtaining the
nonlinear Schrodinger equation for the amplitude
modulation of a monochromatic plane wave as well
as the reductive perturbation method or the deriva-
tive expansion method [9]. Recently, ion envelope
solitons in electron–positron–ion plasmas have been
studied by Salahuddin et al. [10] using the KBM
method. Nonlinear ion acoustic waves have also
been studied by several authors, as for example
Refs. [11–15].
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We shall derive the nonlinear Schrodinger wave
equation in this paper for an electron acoustic wave
using the KBM method along with the numerical
results.

The paper is organized as follows: In the next
two sections, we have presented the basic equations
of our model and reduced our set of equations to
the NLS equation by using the KBM perturbative
technique. In the ‘‘Results and Discussion’’ section,
we have discussed the results that have been
obtained by the numerical investigation. In this
regard, modulational instability and the variation of
the amplitude and the inverse width of the soliton
with various plasma parametres have been carefully
studied. In the ‘‘Conclusion’’ section, we have
referred to some recent work on the EA solitons
and also summed up the main results presented in
this paper.

FORMULATION

In order to derive an expression for EA waves,
the basic set of equations for cold electrons is given
by the equations of motion and continuity:

½@t þ vc � r� vc
b

� �
� e=m0c@z/ ¼ 0; ð1Þ

where b ¼ 1=ð1� v2c
c2Þ

1=2 is the relativistic factor.

@tnc þr � ðncvcÞ ¼ 0: ð2Þ

The hot electrons and ions follow the Boltzmann
distribution given, respectively, as

neh ¼ ne0 expð�e/=ThÞ ð3Þ

and

ni ¼ ni0 expðe/=TiÞ: ð4Þ

Ions have been assumed to follow the Bolltzmann
distribution by various authors [16–18] and the sys-
tem of equations is closed by Poisson’s equation,

@2
x/ ¼ 4peðni0 expðe/=TiÞ � ne0 expð�e/=ThÞ � ncÞ

ð5Þ

Equation (1) is the momentum equation of the cold
electrons for a weakly relativistic case incorporating
the effect of streaming of the cold electrons. nc; neh,
and ni are the number densities of cold and hot
electrons and ions, respectively. vc is the velocity of
the cold electrons, / is the electrostatic potential,
Teh; Ti are the temperatures of the hot electrons and
ions respectively, m0 is the rest mass of the cold
electrons and �e is the charge of the electrons and
ions.

The quasineutrality condition at plasma equi-
librium is satisfied through

n0h þ n0c ¼ n0i; ð6Þ

where ne0; nc0; and ni0 are the unperturbed number
densities of hot and cold electrons and ions
respectively.We expand all the physical quantities
nc, vc, and / in terms of the perturbation parame-
ter-�, as

nc

vc

/

2
664

3
775 ¼

n0

v0

0

2
664

3
775þ �

n1ða; �a;wÞ

v1ða; �a;wÞ

/1ða; �a;wÞ

2
664

3
775

þ �2

n2 a; �a;wð Þ

v2 a; �a;wð Þ

/2 a; �a;wð Þ

2
664

3
775þ �3

n3 a; �a;wð Þ

v3 a; �a;wð Þ

/3 a; �a;wð Þ

2
664

3
775þ � � �

ð7Þ

While employing the KBM perturbation
method, we assumed that n1, v1 , /1, and all higher
orders in � quantities depend on x and t only
through a; �a; and w where a, and �a are the complex
amplitudes and w is the phase factor defined as
w ¼ kx� xt: Here k and x are the wave number
and frequency, respectively. The time and space
derivatives of the complex amplitude are slowly
varying functions of x and t and are given by

@ta ¼ �A1ða; �aÞ þ �2A2ða; �aÞ þ �3A3ða; �aÞ þ � � � ð8Þ

@xa ¼ �B1ða; �aÞ þ �2B2ða; �aÞ þ �3B3ða; �aÞ þ � � � ð9Þ

The unknown A0s and B0s are arbitrary functions
and are used to eliminate the secular terms that
appear subsequently.
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Substituting equations (7),(8) and (9) into
equations(1), (2) and (5), we obtain the linear dis-
persion relation of EA waves by collecting terms
of �-order and eliminating all terms in favor of /1

and further by assuming a starting solution of the
form:

/1 ¼ aeiw þ �ae�iw;

which gives the first order solutions:

n1 ¼
�1

4pek2s

 !
ð1þ k2k2s Þðaeiw þ �ae�iwÞ ð11Þ

and

v1 ¼
� x� kv0ð Þ
4pen0kk

2
s

 !
ð1þ k2k2s Þðaeiw þ �ae�iwÞ ð12Þ

and leads to the dispersion relation given by:

ðx� kv0Þ ¼ kces
d

rð1þ k2k2s Þ

 !1=2

; ð13Þ

where

r ¼ 1þ 3v20
2c2

;

ces ¼
Ti

m0ð1þ dþ aÞ

� �1=2

;

ks ¼
Ti

4pn0he2ð1þ dþ aÞ

� �1=2

;

a ¼ Ti
Th

;

and

d ¼ n0c
n0h

are the relativistic factor, modified EA speed, modi-
fied Debye length respectively. v0 is the weakly rela-
tivistic streaming velocity of the cold electrons, a is
the ratio of ion to hot electron temperature ratio,
and d is the ratio of number density of cold elec-
trons to hot electrons. In the limit r ¼ 1 and v0 ¼ 0,
we retrieve the dispersion relation as obtained in
Ref. [18] for a modified EA mode.

We note here that group velocity for the EA
wave is given by:

vg ¼ v0 �
ces

r=dð Þ1=2ð1þ k2sk2Þ
3=2

: ð14Þ

HIGHER ORDER TERMS AND THE

NLS EQUATION

In this section, we shall collect the �2-order
terms and �3-order terms by substituting equations
(7), (8) and (9) in equaitons (1), (2) and (5), respec-
tively. For �2-order, we eliminate the second order
variables in favor of /2 and further by setting the
secular terms equal to zero we get A1þvgB1 ¼ 0 and
obtain the following solution for /2:

/2 ¼ c1 þ c2ðeiw þ e�iwÞ þ a1a2e2iw þ c.cþ c1: ð15Þ

Here c1, c2, and c1are the integration constants.
By using the above results, we obtain explicit

expressions of n2 and v2, which are

n2 ¼a2a2e2iw þ ik
2pe

B1 � a3c2

� �
eiw þ c2a4

þ ni0e2

T 2
i

a�aþ c.c ð16Þ

and

v2 ¼a5a2e2iw

þ �ieð1þ k2k2s Þ
m0dkc2es

ðA1 þ v0B1Þ þ ia6B1 � a7c2

� �
eiw

� a8c2 þ c3 þ c.c; ð17Þ

where

a1 ¼
3v0e2kð1þk2k2s Þ
2r3=2m2

0
c2ces

� 3ke2ð1þk2k2s Þ
2m2

0
dc2es

� dkc2esni0e
2

2n0T 2
i
ð1þk2k2s Þ

ekð1þ4k2k2s Þ
m0ð1þk2k2s Þ

� ek
m0

;

a2 ¼
ni0e2

2T 2
i

� k2

pe
þ 1

4pek2s

 !
a1;

a3 ¼
k2

4pe
þ 1

4pek2s
;

a4 ¼ � 1

4pek2s
;
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a5¼
�e2ð1þk2k2s Þ

3=2

m2
0r

1=2d3=2c3es

"

� d1=2k2ces

pen0r1=2ð1þk2k2s Þ
1=2

þ d1=2ces

4pen0r1=2k
2
s ð1þk2k2s Þ

1=2

(

þ d1=2e2ni0ces
2r1=2n0T 2

i ð1þk2k2s Þ

)
a1

#
;

a6 ¼
d1=2kces

2pen0r1=2ð1þ k2k2s Þ
1=2

� eð1þ k2k2s Þ
1=2

m0r1=2d
1=2kces

" #
;

a7 ¼
d1=2k2ces

4pen0r1=2ð1þ k2k2s Þ
1=2

"

þ d1=2ces

4pen0r1=2k
2
s ð1þ k2k2s Þ

1=2

#
;

a8 ¼
d1=2ces

4pen0r1=2k
2
s ð1þ k2k2s Þ

1=2
;

and

c2 ¼ c1 þ c1:

The constants of integration c2 and c3 are assumed
to be real and arbitrary with respect to w, and they
depend on a and �a alone.

The constants c2 and c3 are obtained from the
�3-order terms in the following manner. We collect
�3-order terms and eliminate all unknowns in favor
of /3 and the removal of the secularity producing
constant terms yield the following expressions for c2
and c3:

c2¼

12v0eð1þk2k2s Þ
c2r2dc2esm0

� ek2s
r
dð Þ

1
2
1
2ð1þk2k2s Þ

3=2k2i Tidces
� ð1þk2k2s Þ

3=2

2r1=2d1=2k2s en0ces

( )

�1

r1=2d1=2cesð1þk2k2s Þ
3=2�ð1þk2k2s Þ

3=2

r1=2d1=2ces

n o
2
66664

3
77775

�a�aþR1 ð18Þ

and

c3 ¼
a9

1
ð1þk2k2s Þ

3 � 1
� �� 3v0e2ð1þ k2k2s Þ

m2
0c

2r2c2esd
3=2

2
64

3
75a�aþ R2:

ð19Þ

Here,

a9 ¼
3v0ð1þ k2k2s Þ
4pm0c2k

2
sr

2
� cesd

1=2

4pr1=2k2i Tið1þ k2k2s Þ
3=2

 

� ð1þ k2k2s Þ
3=2

2r1=2d1=2m0k
2
sces

!
1

n0ð1þ k2k2s Þ
� 1

n0

 !
:

On the other hand, the removal of the secularity
producing resonant terms yield:

iðA2 þ vgB2Þ þ P B1@a þ B1@a
� �

B1 ¼ Qa2aþ Ra ð20Þ

This is the NLS equation. The dispersion coefficient
P , the nonlinearity interaction coefficient Q, and lin-
ear interaction coefficient R are given as:

P ¼ �3=2
kcesk

2
s

ðrdÞ
1
2
1
2ð1þ k2k2s Þ

5=2

 !
¼ 1

2

dvg
dk

; ð21Þ

and

Q ¼

� 3e2kð1þk2k2s Þ
1=2

4r5=2d
1
2
1
2cesc2m2

0

þ 3v0ke2ð1þk2k2s Þ
2r2c2m2

0
dc2es

� �3v0kcesd
1=2

2c2r1=2ð1þk2k2s Þ
1=2 � k

n o
a5 � d1=2kces

2n0r1=2ð1þk2k2s Þ
1=2

� �
a2

� d1=2kces
8pn0r1=2Tik

2
i ð1þk2k2s Þ

1=2 � d1=2kcesk
2
s

2r1=2ð1þk2k2s Þ
3=2

� �
2pe4nh0

T 3
h

1þ 1þd
a3

� �
þ 4pnh0e3

T 2
h

1� 1þd
a2

� �
a1

n o

� k
2r þ k

2 �
3v0kd

1=2ces
2c2r3=2ð1þk2k2s Þ

1=2

� �
a8h� gð Þ � kcesd

1=2

2r1=2n0ð1þk2k2s Þ
1=2 a4h

� kcesd
1=2k2s

2r1=2ð1þk2k2s Þ
3=2

4pnh0e3

T 2
h

1� 1þd
a2

� �
h

n o

2
6666666666664

3
7777777777775
; ð22Þ
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R ¼

� k
2r þ k

2 �
3v0kd

1=2ces
2c2r3=2ð1þk2k2s Þ

1=2

n o
a8

� kcesd
1=2

2r1=2n0ð1þk2k2s Þ
1=2

n o
a4:

� kcesd
1=2k2s

2r1=2ð1þk2k2s Þ
3=2

4pnh0e3

T 2
h

1� 1þd
a2

� �n o

2
6666664

3
7777775
R1

þ k
2r

þ k
2
� 3v0kd

1=2ces

2c2r3=2ð1þ k2k2s Þ
1=2

( )
a8

" #
R2: ð23Þ

In the above expressions for P , Q, and R, h and /
are given by

h ¼

12v0eð1þk2k2s Þ
c2r2dc2esm0

� ek2s
r
dð Þ

1
2
1
2ð1þk2k2s Þ

3=2k2i Tidces
� ð1þk2k2s Þ

3=2

2r1=2d1=2k2s en0ces

( )

�1

r1=2d1=2cesð1þk2k2s Þ
3=2 � ð1þk2k2s Þ

3=2

r1=2d1=2ces

n o
2
66664

3
77775a�a

and

g ¼ a9
1

ð1þk2k2s Þ
3 � 1

� �� 3v0e2ð1þ k2k2s Þ
m2

0c
2r2c2esd

3=2

2
64

3
75a�a:

RESULTS AND DISCUSSION

In the present paper, we have used the multiple
scale method, that is, the KBM method to obtain the
nonlinear Schrodinger equation for collisionless and
weakly relativistic plasmas. We know that the NLS

equation leads to the formation of the envelope soli-
tons when the wave becomes modulationally
unstable. We have investigated the modulational
instability and it has been found that beyond a criti-
cal wave number k > kc, the nonlinear wave becomes
modulationally unstable and soliton formation takes
place (Figure 1). Figure 1 also shows that the critical
wave number kc decreases with the increasing stream-
ing velocity. Graphs have also plotted between
inverse width and amplitude of the soliton against
various plasma parameters. The values of the plasma
parameters namely cold electrons, hot electrons and
ion number densities, ion temperature and hot elec-
tron temperature are 0:5=cm3, 2:5=cm3, 1:75=cm3,
175 eV; and 250 eV respectively and they correspond
to the dayside auroral zone [8]. The numerical investi-
gation has shown that the inverse width j of the soli-
ton has a complex relationship with the wave number
for different values of the streaming velocity while
the amplitude of the soliton has been found to have
an inverse relationship with the wave number for dif-
ferent values of the streaming velocity (Figures 2 and
3). Moreover, Figures 4 and 5 show that the ampli-
tude of the soliton increases while the inverse width j
of the soliton decreases with the increasing number
density of the cold electrons for different values of
the streaming velocity.

CONCLUSION

In this paper, we have solved the problem of
1D EA in a collisionless and weakly relativistic

0 0.0001 0.0002 0.0003 0.0004
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-0.0005

0
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q
/
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q
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10, and v04 ¼ 4c
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plasma. KBM perturbation method has been
employed to reduce our fluid equations into NLS.
The variation of the EA solitons with the various
plasma parameters have been numerically investi-
gated. The values of the parameters correspond to
the dayside auroral zone as mentioned above. It
has been found that the amplitude and the inverse
width of the soliton undergo significant changes
with the variation of different plasma parame-
ters.The linear EA mode has been clearly identified
in the auroral cusp [19, 20] and in the large scale
auroral radiating cavity [21] where electrons are
accelerated downwards to produce visible auroras

in the ionosphere. The observed solitary waves
were, however, not interpreted in terms of EA soli-
tons because they were known to form the poten-
tial wells [22–24]. Recently, Berthomier et al. [7]
have shown that that the presence of electron
beam in the plasma allows the existence of poten-
tial humps and electron density holes ans stressed
to make a further anaysis to identify these struc-
tures as EA solitons. We, therefore, conclude by
saying that our endeavor should be useful in order
to understand the salient features of EA soliton in
the Space plasmas with special reference to the
auroral region.
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