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Some electrostatic modes based on non-Maxwellian distribution functions
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A comparative study of fundamental modes such as Langmuir waves, dust ion acoustic waves, and
dust-acoustic waves using non-Maxwellian distribution functions is presented. The real frequency
and the growth rate of the modes are calculated by using kappa and geneml@edigtribution
functions and results are compared with those of Maxwellian distribution. It is noted that in the limit
(i) r=0, g—o for generalized 1(,q) distributions and(ii) k—« for kappa distributions, the
non-Maxwellian functions reduce to Maxwellian. @004 American Institute of Physics.

[DOI: 10.1063/1.1688330

I. INTRODUCTION A three-dimensional kappa distributiois given by

Basic electrostatic modes such as Langmuir waves, ion- 1 (k+1) vf V2 Trl
acoustic waves and dust-acoustic waves in plasmas have f.= 3242 ¢ 1 2 R )
been widely studied on the basis of the fluid and the Vlasov L K3/21“< K— E) KOy KoL

models. These studies had assumed Maxwellian velocity dis- e
tribution for the plasma species. However, with more and
more empirical data becoming available, it is realized thaivherex is the spectral index; the thermal speg related
the Maxwellian is not a realistic distribution under all cir- to the particle temperaturg by
cumstances. Other distributions such as kdppageneral-
ized (r,q) distribution (which is the subject of the present 62 2"_3) 2’<—3)
work) fit better, for example, with the data available for ! K
space plasmas. Thus it has now become imperative to give.
attention to such velocity distributions for plasma studies inWlth
both space and laboratory. ) T

As is well known, the Maxwellian distribution is appli- vr = ?
cable to a system in thermodynamic equilibrium. However, a
realistic system may be far away from this state since thevhen «>3; I' is the gamma function; antl. has been nor-
plasma may be subject to a whole variety of different effectsmalized so thaf f,d3v=1.
For example, a spatial variation of physical quantities such In space plasma many particles possess high-energy tails
as density, temperature, and the intensity of magnetic fielavith approximate power-law distributions in velocity space.
may be involved in laboratory as well as in astrophysicalSuch type of particles can be better modeled by a generalized
plasmas. More importantly, background turbulence, whichLorentzian or kappa distributiocontaining the spectral in-
can be considered to be a quasisteady state, can contributedex «), than by the Maxwellian distribution. Important fea-
the appearance of distribution functions which are differentures of kappa distribution are that, first, at high velocities,
from Maxwellian! Plasmas may also be subject to the influ-this distribution obeys an inverse power law and second, in
ence of external force fields, which would create flows ofthe limit when the spectral index—<, the distribution ap-
particles. Consequently, in the natural space environment thgroaches the Maxwellian distribution. In this sense, the
distribution functions have been generally observed to havkappa distribution is a generalization of Maxwellian distri-
non-Maxwellian high-energy tails or have flat tops with pro- bution.
nounced shoulders. To model such space plasmas, general- Vasyliunas appears to have been the first to employ the
ized Lorentzian-type distributions have been found to begeneral form of the kappa distribution and to note its relation
more useful as compared to the Maxwellian distributionto the Maxwellian. On the basis of theory and observation, it
functions®® More than fifty years ago, it was suggested thatis noted that space and astrophysical plasmas often contain
such distributions result from wave particles interaction. supra- and superthermal particles and that the kappa distri-
Now, the same is regarded as almost an established fact, dbation offers a useful fit to their “spectral” distribution. So,
to the arguments given above. many space plasmas can be modeled more effectively by a

2 2 _ v_|2_

UTH; 1=

1
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superposition of kappa distribution functions than by Max-Here the specific forms o, , have been obtained in a
wellian. The Maxwellian and kappa distributions differ sub- manner similar to that used for obtainirly, in the kappa
stantially in the presence of the high-energy tail, but the dif-distribution functiont We also note that the spectral indices
ference become less significant agncreases. r, g, satisfy the constraintg>1 andq(1+r)>3, which

Several authofs*%’employed the kappa distribution to emerge from the normalization and the definition of tempera-
study a number of wave modes in space plasmas and intrédre for a distribution functiod” is the gamma function and
duced a new functiorZ} (¢) with é=«+iy, called the f 4 has been normalized such trfat(,,q)d?’v: 1.
modified plasma dispersion function. This modified disper- The above distribution is a generalized form of the
sion function is based on the generalized LorentZi@ppa  kappa distribution function and reduces to kappa distribution
particle distribution function analogous to the plasma disperfunction if r=0 andq=«+1, and to a Maxwellian ifqg
sion functionZ(¢) based on Maxwellian distribution. They —« andr=0. If we increase the value ofkeepingq fixed,
evaluated the rate of Landau damping for electron plasméhen the contribution of high-energy particles reduces but the
waves, ion acoustic waves, and electromagnéfemode  shoulders in the distribution function increase. The same also
and L-mode¢ waves and noted that the presence of a high-occurs if we fix the value of and increase the value of
energy tail leads to an increase in the damping rate of the We adopt this distribution function because it gives a
electron plasma wave compared to that of Maxwellianbetter data fit to the empirical data, especially when there are
plasma. This increase in the high-energy tiwlv values of  shoulders in the profile of the distribution function along
x) confines weakly damped Langmuir oscillations to a verywith a high-energy tail. Employing kappa and generalized
restricted frequency range above the electron plasma frd+,q) distributions with real valued spectral indicgsand
guency. They, however, noted that the dispersive propertie§,q), we determine the dispersion relations for some elec-
of Langmuir waves remain unaffected, if the ion term istrostatic modes in dusty plasmas. The real and imaginary
included in the dispersion relation. This ion component playsparts of the dielectric functiod (k,w) for these modes are
an important role in the damping rate of the ion acousticcalculated and then compared with those of the Maxwellian
wave calculated with the generalized kappa distributiondistribution®®
function. Consequently, the damping rate decreases.

In the present paper we introduce a three-dimensional
generalized 1(,q) distribution. This dlstr|but|qn function is 1. GENERAL FORM OF THE DISPERSION RELATION
of amore general form than _the above-mentioned kappa_ c_h%F ELECTROSTATIC MODES
tribution and hence better suited to model plasmas exhibiting
characteristics which cannot be described by the kappa dis- We consider an unmagnetized, collisionless multicompo-
tribution functions. This distribution function is given by ~ nent dusty plasma consisting of electrons, singly ionized

positive ions, and negatively charged dust grains, which is

¢ ( 3 ) characterized by equilibrium number density,, tempera-
(r.a)—

P ture T,, and massn, wherea=1i, e, d denotes the species
47T\I,llp” . . .
namely ions, electrons, and dust grains, respectively. The
r'(q) charge neutrality condition is;o=nNgy+ Zg4oNgo WhereZyg is
X 3 the equilibrium dust charge staf®.
(q—1)3’<2+2”1“(q— )F( 1+ ) To calculate the perturbed distribution function, we use
2+2r 2+2r the linearized Vlasov—Poisson coupled system of equations
1 2 2\ and obtain a general expression for the dispersion furtttion
% 1+_(_'+_i> , D(k,w) which can be written in the following manner in
q-1\wz w? cylindrical coordinates:
whereq andr are the spectral indices, the thermal spgeid D(k,@)=D,+iD;
related to the particle thermal velocity oy in the following 2 2
manner: =1-> T®pa 1+iw-i
o k? Ia""r
3(q—1) " Ur|g- r ° o (40l dv)) ”
) 2+2r 2+2r ) X f —dvuf v, du, |. (2
'\I/” = 5 UTH — o0 (vH—wr/k) 0
oo F(q— Stor Here we have used=w,+tw,, with v, <o;.
g A. Electrostatic waves in Maxwellian plasmas
an
For Maxwellian distribution
3 2 2
1)~ Ur+1) — 1 v v
X 3a-1) F(q 2+2r)r 2+2r) | , fo=———exg —| —5 +—
vi= vt . (2m)" vt vy, szu 207

vl > |p °
2+2r) |97 252

the dispersion relation becomes
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2
w J 17
pa . I
1-> —2 | 1+i w-—) 3[; —
a \/271'k2v$H o, (o Tk=vy)
vt _ v
X ex Ebers dUH+I’7TvHeX e =0.
2v7 2vt
I 1y =0, 1k
)

The real and imaginary parts bf(k,w) are in general given

by
D,=1- ©pa j*“ U o _v_f a0
T 2wk ) (o k=) 28 |
4)
2 2
D= \/;wpa)[ve)([( Y )] )
e 2123 || Y -—
k vTH 2U-|—” e I
which gives the growtlior damping rate
Di(k,w
. (K, ;) o

~ D,(K,w,)/dw,

1. Langmuir wave or electron wave
For the longitudinalLangmui waves propagating in an

Zaheer, Murtaza, and Shah

\/; w;
8 (1+ kZ)\ZDe)3/2(1_Zd77)3/2

B Tel/Tiy )
2(1+k3\3)(1—-Zy7)

[Me
+(1_Zd7]) H}

3. Dust acoustic waves

(10

For dust acoustic Wavev(du)<w/k<(uﬂ“), (qu‘) S0

that the real and imaginary parts Bk, ) give us the dis-
persion relation and the growth rat¥s:

2 2
Wy Cba

(1+ K2\ ap)

k2
whereCp, is the dust acoustic speed given by

(7Z53)(T;/my)

unmagnetized, collisionless multicomponent dusty plasmavhere ApZ=(\pZ+\pe) is the effective Debye length,
with w/k>(vre), so that the real part of the dispersion re- Ap,= (KT J4mn 0e%)¥? is the Debye length ofr species,

lation and the growth rate are obtained'a$®

w?= i 1+3K\3,]

\/; Wy 1 +3
wi=—\g exg —| ——*t5]|
' 8l k33, 2k2\2, 2

@)

and

8

We note here that the specific effect of the dust does not
appear in these waves, as these are high-frequency modes
and the dust and the ions only contribute the neutralizing
background. However, we have included this mode in our

discussion for the sake of completeness.

2. Dust ion acoustic wave

The condition for dust ion acoustic wave is:T(jH),
(vTi“)<w/k<(vT%). Applying this constraint yields the dis-
persion relatioht

wrz C2D|A

ERTIOCRY ©)

ke (1+k\ge)
whereCp, is the dust ion acoustic speed given by
cs
CZDIA: w;Z)i)\ZDezl_—nZd’

WhereC§:Te|,/mi is the ion sound speed,=ngyg/n;g is the
concentration of the negative dust, anglis the dust charge
state.

The growth rate for this wave s

and n=ngyo/n;, is the concentration of the negative dust.
The growth rate is given by the following expression:

Wy

e

W= 3

Ti
(1+ kzxgeff)w[ 1+ T—(1— 7Z4)

ell

(nZ5)(Ti/Tqy)
21+ KNB e [ 1+ Ty /Ty (1= 7Zg)]

i\ i Z)(Til " 2
7 dmd N4d T 7 ‘[

ell d

X exp—

(12

B. Electrostatic dusty modes using non-Maxwellian
distribution

In the following, we proceed to calculate the dispersion
relation and the growth rates for kappa and the generalized
(r,q) distributions.

1. Kappa distribution
Using the kappa distribution in E@2), we obtain
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203 I(k+1 1
1_2 wpa (K ) 1+iwii o 2 —k—1 K1/2F K+§
¢ \/;kzaﬁ K3/2F(K 1) o j (1 i) dUH:\/Eene T .1
_Z > ;
2\ —k—1
X fﬁ Y 14 dy 2 | k1
C k—ay — I +oo v
((l)r/k U“) Kaf j UH 1+ |2) dUH—O,
2\ —k—1 o KOje
v
+imy| 1+ —5 =0. 13 and
KO y=op Ik
Here the integration with respect t9 have been per- 1
formed by using the following integral: 2\ —x-1 3 K3’2F( K— —)
| jervz 1+ —vH v = \/;HHG 2
- A A —w K02 2 M(k+1) /°
[ il
J’ v | 1+ — > dv,
0 KaH Kai we get
Kﬁf (1 vf et
= 1
2(k+1) Y 3/ _ =
I . k_2 (76, | & 5
The real and imaginary parts &f(k,») then become - wrz 2 I(k+1)
203 I(k+1) 3607 [ K2 K
D,=1- —2° x| 1+ =8 = T (16)
' Jmk2g? K3,2F( . 1) 2 lw?l| 3
2 2
—k—1
% 3€ Y 4 i du (14) Thus the real part ob (k,w) gives the dispersion relation
(or k=) KO ”
2 2 2 2
whe| K 36 k
and :I.—k—pze _2|1+<Te)(_2)+] =0 (17
w w
2702\ [ T(x+1) ' r
Di=— K263 1 which, for long wavelengthskA3.>1) reduces to
I K3/2F K— =
2
o\ —k—1 2_ 2 3 2y 2
v wf=wpe 1+ Ek N\De|- (18
KG) y=op/k

The growth ratew; turns out to be
Using Egs.(13)—(15), we obtain the dispersion relations and

the growth rates for the Langmuir wave, dust ion acoustic \/;( w, ) C(k+1)
W= — -
8 (

wave (DIA) and dust acoustic wau®A) as follows.
a. Langmuir wave. For the high-frequency mode con-
dition w/k> v, the velocity integral in Eq(13),

k33,

| fﬂ I P 1ol x| 1+ ! b o (19
= — v, .
— (1= @, 1K) K 6% ” (2k—3)k2\3, (2k—3)
can be Writt?” in the following manner by expanding the  \ye note that the real part of the dispersion relation given
denominator: by Eq.(18) does not differ from the expression obtained by
5\ —k—1 using Maxwellian. However, the growth raig in Eq. (19)
= — J’“ 14 Yy differs significantly from the corresponding expression ob-
% K.gfe tained from a Maxwellian distribution function. The numeri-

cal analysis presented later will highlight the differences in

x ] + Uﬁ + Uﬁ . dv i .
o lk " W2k wik® a

b. Dust ion acoustic wave For dust ion acoustic wave,
satisfying the conditiom(TdH), (UTiH)<w/k<(UTeH)v the ve-
Noting that locity integral for ions becomes
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2

S S [

3/2
) (1—Z47)3"?

w, 2 F(K+1) kz)\zDe‘l‘m
3602 [ K2
1+T'(_2) K3 .. T(k+1) To | 32
O/l k== X 3|32 1 T
1
2 K—— F(K——
2 2
and for electrons ) - . T.IT, k-1
/ L ! 23 kaz 2N g
1 — - —
«r K+§ E K De (k—3/2) d7

(21)

2 wz K+
=m0\ ———— || 1-| = || = i
e )| [ m
+(1-Z47m) o b
so that, using appropriate expressions, we obtain '

2 c2 c. Dust acoustic waves.For dust acoustic wave the
@r _ DIA (20) phase velocity constraint is:;{d”)<w/k<(vﬂ”), (”Teu) SO

k? kz)\% (re— 1/2)) ’ that the real and imaginary parts can be obtained by solving
e

(k=312 the velocity integral in Eq(13) for the electrons, ions, and
the dust species.

where Cp,, is the dust ion acoustic speed given B%IA Thus the dispersion relation can be written as
=wyNje=CZ(1—7nZy) where CZ=Tg/m; is the ion 2 c2,
sound speed andy=nyy/n;o is the concentration of the —= . (22

: K2 (k—1/2)
negative dust. K3\2 -

. . . . . . Deff (K—3/2)
The imaginary part of the dielectric constant which gives

the growth rate of the mode is given by The expression fow; is obtained as

\/; o, [(k+1)
YT Ng (k—1/2) T, 3

3/2] 1
KA2 . +—— | |1+—(1—nZ —3/23| ——
( Deff <K—3/2>) T, 1T (k=302 (K 2)

(9Z3)(Ty/Tq) Tt

(26— 3) (KBt (k— 1D/ (k—3/2)[1+ Ty /Te(1— 5Zqy )]

,M T\ ¥ ,Me
+\/ 72—+ (1—nZy)| — nZi— . (23
my T m

1+

X { ( 7IZ§Ti I /TdH)SIZ

el d

The comparison of the results derived from kappa distribution function with those of Maxwellian, reveals that the real
parts and growth rates differ by some factors involving kappa and some gamma functions. Using the asymptotic form for the
gamma function, it is not difficult to show that in the limit->o, Egs.(19)—(23) reduce to those for a Maxwellian plasma.

2. Generalized (r,q) distribution
In the present section we use the generalized)(distribution function to evaluate the real and imaginary parts of the
frequency for all the modes that have been considered in the preceeding section.
For the generalizedr(q) distribution, the dispersion relation becomes
3w?, r'(q)
« 2k2Ww?

2\ —q(r+1)
1+iw.i é L i
'&wr ((L)r /k_ 'U”) q}ﬁ

(q_l)q+3/2(l+r)l'*(q_

3
201+ 1) ( 21N

2\ -r-11-q 2\ —q(r+1) 2\ r-1
1+(q—1)(i) l dv +i7'rv(v—> 1+(q—1)(i)
Il I
v v v

where the integration with respect t¢o has been performed using the integral

-q
X

1=o, (24)
y =, /K

Downloaded 02 Jul 2012 to 130.63.180.147. Redistribution subject to AIP license or copyright; see http://pop.aip.org/about/rights_and_permissions



Phys. Plasmas, Vol. 11, No. 5, May 2004

fw vﬁ N vf ' 14 1
0 vz w2 (q—1)

The real and imaginary parts &f(k,w) are

Some electrostatic modes based on non-Maxwellian . . . 2251

2\ —q(r+1)
1)

2
\PH

vﬁ ‘Ui r+1 —q—ld (q_l
_+_ =
2 2 = q(r+1)

D,=1 ( 3wpa ) I'(q) fﬁ Y| ( UZ)_q(rH)
r— -+ 3 — —
2K (q_l)—q+3/2(1+r)r(q_2(l+r) 1"(1+ 2(13+r)) (k=) | i
Uﬁ -r—17-—q
1 -1)| — d 2
X|1+(q )(qjlz) l Y (25
and
:_(3mvéa) r(q)
[ 24,3 3
2k \I’” (q_l)q+3/2(1+r)r(q_2(1+r) F(1+ 2(1+r)
(8 el
\I’ﬁ \I,f Y=o, /k
with
w=— Di(k!wr) (27)

D (K, 0 ) dw,

In the following, we determine the dispersion relations and growth rates for various modes.
a. Langmuir wave. Using the phase velocity constraim1k>(uTeH)1’2, the integral in Eq(24) can be expanded,

1+(q—1)(

% vf —q(r+1)
((1) /k UH)

-r—1
v2
Il )
2
\Plle

—-q
dU”

1+(q—1)(

IIe
r”( =
Wi
Using the following integrals:
oo vf —q(r+1)
f_w Y \p_Z
f—%—oc 2( ‘Uﬁ )_Q(r+1
Ul =2
- Ve
5+2r) —-34+2q(r+1)

2f 1|7 F(2+2r 2+2r
3w (g-1)9-¥4r(q)

Ny -r-11-q
! ) l dU”:O,
He

-r—1

1+(q— 1)(

—-q
d'U“

2

l)
1+(q— 1)(@2
I

2\ —r-11-¢q
o0 o,
lllfe w, 1k

oy
+ b dUH . (28)

0l w3k

and
- ( 7 )-q“*” L 1)( 7 ) -
Ul g2 a-bl -2 Y
- q’fe q’fe
r 7+2r —5+2q(r+1)
_2( 1 )‘5’2 2+ 2r 2+ 2r
v, (q—1)9752101(q)
we obtain
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FIG. 1. Growth rates of Langmuir wave showing the comparison of Maxwellian with non-Maxwellian distributions for different values of spectskindic
or g andr.

2 . F(5+2r) —3+2q(r+1) R 377) o,
|3:_<k)(2q'e) 2+2r 2+2r i 4 /\iene,
wrz 3 (q_l)qf3/2(r+1)r(q) . ) 1y g
o s X[1+q—l (kz)\%;s)s ] , (30
X| 1+ Wi X (1 )
2 \p?)lag-1 where
L F( 5 \F 5 )
5 5 . 2+2r) |\ 97 2var,
PR I - S
2+2r) |\ 2+2r AN (1r+1) ( ) _
X 3 3 (29 3@-1) P/t 25
F(q—2+2r)F(l+2+2r I
C=
Thus the real part oD (k,w) gives the dispersion relation F(q— 2+2r)r( 1+ 2+2r)
3 , / 5 5 3/2
wr=wpd 1+ 5 KB (30 Marar /M9 252r
Nl 2
The growth ratew; turns out to be 2+ 2r d 2+2r
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FIG. 2. Growth rates of dust ion acoustic wave showing the comparison of Maxwellian with non-Maxwellian distributions for different valuesaif spectr
indicesk or g andr.

b. Dust ion acoustic wave.The velocity integral in Eq. 2

. - Wy C2D|A
(24) for ions is = N , (34)
ke (1= nZg)(K°\petA)
+ -3+ +
5 s [ T Star 3+2q(r+1) whereCp, 4 has been defined earlier aAds given by
| (k )(mi) 2+2r 2+2r
472173 _1\9-3/2r+1) S
) 1 r R - - -
o (a=1) (@ Ma= %)M 252 F(q 212 F(“ 212
A= 2 3
2 2 — 1 1 —_— —- —
O P S T R Favar /T 9 272 F(1+2+2r
2 wr2 g—1

From the imaginary part of the dielectric constant we obtain
w; for the dust ion acoustic wave

F(q > )F(l+ > 37 |, | T.\372
2+2r) \7 2+2r wj=— () r % <e>
X 3 3 (32) 4 TN L(KNE o+ A)(1—Zg7) 132 Tiy,
TP *
e e |14+ 2 ( (Ta/Ti)(B) ”11 ‘
and for electrons A= 11 (K23 +A)(1—Z47m)
3+2r\ [—1+2q(r+1) \/me
+(1-Z . 35
r(2+2r)r( 2+ 2r (=2 Ny, (39
|5:2 \P”e. (33)

(q—1)9"Y2Ar=Dp(q) c. Dust acoustic wavesCalculating the velocity inte-

grals in Eq.(24) for dust, ions, and electrons according to the
These integrals yield dispersion relation condition, we obtain the dispersion relation

Downloaded 02 Jul 2012 to 130.63.180.147. Redistribution subject to AIP license or copyright; see http://pop.aip.org/about/rights_and_permissions



2254 Phys. Plasmas, Vol. 11, No. 5, May 2004 Zaheer, Murtaza, and Shah

(@) (b)

0
25x10" m":?sm
5x10""T 51077 @10
@ o 75X07 3
Upa 110 Wa 3,307
] -1.25510°° =0
-1.5x10° 1 s -
20 A5x10°f »
0 02 04 06 08
(c)
o
25107
55107
B 95,07
-1a0°9
1.25x10°
-1.5 X10-6 N N . P N
0 0.2 o'i;,, 06 08 0 0.2 o.ih 0.6 | 0.8

FIG. 3. Growth rates of dust acoustic wave showing the comparison of Maxwellian with non-Maxwellian distributions for different values of sgieesal i
Kk orqgandr.

wrz ZMCZDA Forrzo, g—, (r,q) distribution appro_aches. to Maxvx_/ell—
E: - . (36 ian. However, for other _values of the dispersion function
(K22, +A)| 1+ ﬁ(l_ 1Z4,) differs from the Maxwellian.
€
The value ofD; can be obtained by substituting the val-
Ues Of if oo/ 90—, i aNd assumingCh /v and Ch /v, Il- NUMERICAL RESULTS AND DISCUSSION
negligibly small. As a result we obtai@; , We have derived in computable form, expressions for
30 © electrostatic waves propagating in an unmagnetized dusty
wj=— ( C) ' plasma modeled by generalized kappa and) particle dis-
4 - T 82 tribution functions. To illustrate the behavior of the distribu-
(KADerrtA)| 1+ ?(1_Zdﬂ) tion functions, we present in Figs. 1-3, graphs of growth
el rates of different electrostatic waves obtained by using
Maxwellian, kappa andr(q) distribution functions. For our
X[[WZS(Ti ITg) 14 1+ _l[(ﬂZS)(TiM/Td) numerical analysis we have used the following
g plasma parametefé: T =1lev, T;;=0.1lev, Ty =0.lev,
Ti rel\-a ni=10°cm 3, n,=9.8x10f cm™3, ng=10" cm 3, my
X (B)/(K\pesi+A)| 1+ —— (1= nZgo) ] ) =10°m,, Z4=10.
el

We have evaluated the rate of Landau damping for Lang-
T\ 32 muir, dust ion acoustic, and dust acoustic waves in a gener-
T) v nzﬁ(me/md)]- alized Lorentzian plasma containing a high-energy tail mod-

el eled with a spectral index. The presence of a high-energy

It may be noted that, here too as in tkease, both the tail (for low value of x) leads to a decrease in the damping

real parts and growth rates for,€) distribution differ from  rate of Langmuir wave compared to that of Maxwellian
the results of Maxwellian plasma through the appearance gflasma. In the case of ion acoustic and dust acoustic waves
the gamma functions which in turn depends ugpandr. (calculated withk distribution function in which ions and

+\nZ2(m Img) + (1— nZg)
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