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The stability of a charged surface of a magnetoradiative dusty plasma is investigated. It is shown
that for a particular condition, the surface can become unstable through two different mechanisms:
one is when the surface is charged, while the other arises due to dissipation instabilities caused by
the radiation energy flux. In the linear approximation, a general dispersion relation is derived, taking
into account magnetoradiative effect, surface charge, and gravity. © 2007 American Institute of
Physics. �DOI: 10.1063/1.2749496�

I. INTRODUCTION

In recent years, dusty plasmas have attracted consider-
able attention, primarily in connection with their possible
role in various astrophysical phenomena1 as well as in dif-
ferent plasma processing technologies.2–6 There has been
considerable activity in the investigation of linear and non-
linear volume waves in dusty plasmas.7–9 However, the in-
vestigation of surface waves, on the interface between a
dusty plasma and a vacuum or on a longitudinal interface
between two different dusty plasmas, has received consider-
ably less attention.

The propagation of high frequency surface waves in
electron-ion collisionless �or weakly collisional� plasmas,
have been fairly intensively investigated10 along with inves-
tigations in the magnetohydrodynamic limit11,12 when the
surface was uncharged. In the past decade or so, surface
waves in dusty plasmas began to be investigated with differ-
ent interfaces for the dusty plasmas �see, e.g., Cramer
et al.13� investigated the propagation of surface waves at the
interface of two dusty plasmas, and in Refs. 13–16, surface
waves at the interface of a dusty plasma and a metallic or a
dielectric interface were considered. This was, of course, due
to the practical interest that such interfaces hold in various
laboratory situations. Such studies were further enhanced
with the inclusion of photoemission currents.

Quite recently,17 the question of stability of a charged
plane surface of an electron-positron-ion plasma was consid-
ered and it was shown that the charged surface of such a
plasma, which interfaces with a vacuum is unstable to small
surface perturbations. This instability is due to the surface
charge density fluctuations in the low frequency regime.

When we consider light particles as inertialess, it is pos-
sible to construct one fluid magnetohydrodynamics for a

dusty plasma, which means that the plasma is electrically
neutral at each point. However, this assumption is not strictly
fulfilled on the surface between the plasma and the vacuum.

In this paper we will consider the stability of a charged
surface of a dusty plasma that is subjected to thermal radia-
tions, as well as magnetic and gravitational fields. In particu-
lar, we will examine how the radiation effects the surface of
such a dusty plasma and we specially take into account the
effects of radiative transfer, assuming the dusty plasma to be
nonrelativistic.

II. GOVERNING EQUATIONS

It is known18 that if the temperature is not too high and
the plasma density is not too low, then the radiant energy
density and the radiation pressure are negligibly small in
comparison with the energy and pressure of the plasma.
However, in this case the effect of the radiations on energy
balance and the motion of the plasma will be essential, be-
cause the radiant energy lost by the heated plasma and the
radiant heat transferred in the plasma can become compa-
rable or can exceed the plasma thermal conduction. This
statement is based on the fact that photons usually have a
much longer mean free path than that of the charged par-
ticles.

At very high temperatures or in a tenuous plasma, the
radiation energy and pressure cannot be neglected and must
be added to the internal energy and pressure of the plasma,
and the radiated heat transfer term should be included in the
hydrodynamic �magnetohydrodynamic� equations.

The hydrodynamic equations for nonrelativistic tempera-
tures were derived in Ref. 19. Radiation electrodynamic and
hydrodynamics for a relativistically hot plasma were later
considered in Ref. 20. As already noted in equations describ-
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ing dusty plasma, we shall include the energy density and
radiation pressure as well as the radiation heat conduction,
and assume that the density of the plasma remains constant.
We shall consider nonrelativistic temperatures; in this case
the energy equation including radiation has the form20

�

�t
�3

2
T +

Ur

n
� + �u · ���3

2
T +

Pg

n
+

4

3

Ur

n
� + � ·

S

n
= 0,

�1�

where Ur=�rT
4 is the radiation energy density and �r

= ��2 /15��kB
4 / ��c�3�.

The heat flux transported by radiation heat
conduction21,22 is given by

S = −
lc

3
� Ur = − K0 � T , �2�

where K0= �lc /3��rT
3 is the coefficient of radiation thermal

conductivity, l being the Rosseland radiation mean free path,
where it is possible to consider l to be proportional to some
power of the temperature �assuming the density of the me-
dium to be constant�, i.e., l=AT�, �=1,2 ,3 , . . ..

In a fully ionized gas, where the radiation and absorption
of light proceeds entirely via bremsstrahlung, i.e., �= 7

2 ; thus,
K0T13/2, and therefore Eq. �1� reduces in equilibrium to

d2T�

dz2 = 0,

where �=�+4. Here we take the z axis to be normal to the
surface of the dusty plasma. Integrating this equation twice
with the boundary condition T=0 at z=zs, we obtain for the
temperature distribution

T0 = �0	zs − z	1/�, �3�

where zs is the surface coordinate and �0 is the constant
temperature inside the plasma. As is obvious from Eq. �3�,
the temperature vanishes at z=zs, which implies the exis-
tence of a surface with a sharp boundary. In order to inves-
tigate the stability of the surface waves along an interface
between a dusty plasma and vacuum, we shall assume that
electrons and ions are inertialess and their respective equa-
tions of motion are

− eneE −
e

c
ne�ve � B� − ��Pge + Pr� = 0 �4�

and

+ ZieniE +
e

c
ni�vi � B� − ��Pgi + Pr� = 0, �5�

where Pge�Pgi� are electron �ion� pressure and Pr is radiation
pressure. The equation of motion of negatively charged dust
grains is

mdnd
dvd

dt
= − ZdendE −

Zdend

c
�vd � B�

− ��Pgd + Pr� + mdndg . �6�

We also use the following Maxwell’s equations:

� · E = 4��e = 4�e�Zini − ne − Zdnd� , �7�

� · B = 0, �8�

� � B =
4�

c
J +

1

c

�E

�t
. �9�

Adding Eqs. �4�–�6�, we obtain

mdnd
dvd

dt
= e�Zini − ne − Zdnd�E +

1

c
�J � B� − ��Pg

t

+ Pr
t� + mdndg , �10�

where

J = − e�− Zinivi + neve + Zdndvd� , �11�

and

Pg
t = Pge + Pgi + Pgd, Pr

t = 3Pr. �12�

In these equations, Pr denotes the radiation pressure,
which can be expressed via the radiation energy

Pr =
Ur

3
=

�rT
4

3
. �13�

It is important to emphasize that at the surface of the plasma
the electric field does not have a tangential component, and
therefore E=−�	 must be normal to the surface of the
plasma at every point.23 Thus,

e�Zini − ne − Zdnd�E =
1

4�
E�� · E� =

1

8�
�nE2, �14�

where nˆ is normal to the surface and E=−�	 /�n. Substitut-
ing Eqs. �14� and �9� into Eq. �10�, we obtain

�d
dvd

dt
=

1

8�
�nE2 − ��Pg

t + Pr
t +

B2

8�
� +

1

4�
�B · ��B

+ �dg −
1

4�c
� �E

�t
� B� , �15�

where �d=mdnd and the first term on the right-hand side of
Eq. �15� is the negative pressure gradient, which acts on the
charged surface of plasma. For the magnetic field, we use the
equation

�B

�t
= � � �V � B� . �16�

Assuming the plasma to be incompressible,

� · v = 0; �17�

thus, v can be expressed through the gradient of a scalar
potential 
 and we have

�2
 = 0.

Further, we suppose that besides the number density the tem-
perature inside the plasma is also constant, but on the surface
�transition area� the equilibrium temperature becomes a func-
tion of the coordinate z, which is directed along the normal
to the surface. Equations �1�, �7�, and �15�–�17� are now in
closed form. We note here that all quantities related to radia-
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tion are expressed in terms of temperature T. We further note
that when the plasma is in equilibrium in the presence of
magnetic, gravitational, and radiation fields and the free
charged surface lies in the x ,y plane. Thus, any small pertur-
bation on the surface will propagate as a wave. We choose
the direction of constant magnetic field along the y axis. In
equilibrium, when the surface is at rest, the electric field
given by Eq. �7� �using the fact that E=0 on the inner area�
takes the form

Ez = 4�
 �edz = 4�� , �18�

where � is the surface charged density; thus, for the potential
	,

	 = − 4��z . �19�

Now we consider the propagation of waves in the linear
approximation. If we perturb the surface the potential, Eq.
�19� can be written as

	 = − 4���z + ��x,y,t�� + 
	 , �20�

where � is the displacement of the surface and 
	 is the
perturbed potential and may be expressed as 
	
�exp�i�kxx+kyy−�t�−kz�, where k2= �kx

2+ky
2� and k�0,

which vanishes for z→�. Here, ��x ,y , t� is the z coordinate
of a point on the surface. The surface oscillations can be
obtained by taking �, and using Eq. �20�, we obtain a relation
between 
	 and � given by 
	=4����x ,y , t�. Using Eqs.
�18� and �19�, we obtain

Ez
2

8�
� 2��2 + 	k�
		z=0 = 2��2 + 4��2k��x,y,t� . �21�

Now we can write the relation for the normal component
of velocity vz on the surface as


 �


�z



z=0
=

��

�t
. �22�

Using Laplace’s formula for the pressure difference, we ob-
tain

P − P0 = − �� �2�

�x2 +
�2�

�y2� , �23�

where � is the coefficient of surface tension. Linearizing Eq.
�15� and substituting Eqs. �21� and �23� in its z component,
taking into account that the last term in Eq. �15� is

−
B0

4�c

�Ex

�t
= −

B0
2

4�c2

�vz

�t
,

where Ex= �B0 /c�vz, we obtain the condition at the surface as


��1 +
VA

2

c2 � �


�t
−

k�

�d

	 + � �Pr

�T
�
T

�d
−

B0

4��d

�

�y

�
 Bzdz − g� − �� �2�

�x2 +
�2�

�y2��

z=0

= 0, �24�

where VA= �1/�4��d�B0 is the Alfvén velocity of the dust
grains, which is much smaller than the speed of light and

have in further calculations VA
2 /c2 is neglected. From Eq. �1�,

after linearization we obtain


� �

�t
�3

2
+

1

n

�Ur

�T
�
T +

�


�z

�

�z
�3

2
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n
+

4

3
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�

−
4

3
�rcA�2�zT0

�−1�z
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�−1
T��


z=0
= 0. �25�

On the surface of the plasma, the boundary condition can
be expressed as


 �
	

�t



z=0
= 4��

��

�t
= 4��� �


�z
�

z=0
�26�

and for the z component of magnetic field, we obtain upon
linearization of Eq. �16�, and using here that v has been
expressed through the gradient of a scalar potential 


�Bz

�t
= B0

�2


�y�z
. �27�

If now we differentiate Eq. �24� with respect to t, and
taking into account Eqs. �22�, �26�, and �27�, we obtain a
dynamical boundary condition given by


� �2


�t2 −
4��2k

�d
� �


�z
� +

1

�d
� �Pr

�T
� �
T

�t

− VA
2 �2


�y2 − g
�


�z
−

�

�d
� �2

�x2 +
�2

�y2� �


�z
�


z=0
= 0.

�28�

In order to obtain the dispersion relation, we shall look
for solutions of Eqs. �25� and �28�, by taking 

 ,
T
�exp�i�kxx+kyy−�t�+kz�. Substituting this solution into
Eqs. �25� and �28�, we obtain the dispersion relation for the
surface waves given by

�2 − k2�VA
2 cos2 � − VE

2� − k�g + gr� − g
a2k3

2

+ igrk
��	D	/���

1 + �D2/�2�
= 0. �29�

Equation �29� describes the surface magnetoradiative
capillary gravity waves, where VE

2 = �1/4��d�E0
2 is electric

Alfvén velocity, a2=2� /�dg is the capillary constant, and

gr = 4
3�r

T3

�d

� 3
2 + ��pg/n�T0� + 4

3 �1/n���Ur/�T0����T0/�z�
�1 + �D2/�2��

,

where D is given by

D =
4cA�r

3� 3
2 + �1/n���Ur/�T���2k

�

�z
T0

�−1 +
�2T0

�−1

�z2 � .

Now we investigate this dispersion relation in some de-
tail. First, we consider the case when radiation is absent. In
this case, Eq. �29� reduces to
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�2 = k2�VA
2 cos2 � − VE

2� + kg�1 +
k2a2

2
� . �30�

If on the surface the charge density is also neglected, then
VE=E0 /�4��d=4�� /�4��d=0, then the dispersion relation
describes the propagation of surface magnetocapillary grav-
ity waves.

On the other hand, if ��0, the surface becomes un-
stable, as is evident from Eq. �30�. For an unstable solution,
it is necessary that �2�0 for some values of k, i.e., VE

2

�VA
2 cos2 �+g /k�1+k2a2 /2�. If we further assume that the

magnetic field, the surface charge and the surface tension all
are absent and that the imaginary part in Eq. �29� is also
neglected, then

�2 = k�g + gr� . �31�

This dispersion relation describes the propagation of gravity-
radiated waves on the surface. From Eq. �31� follows an
interesting result. First, as we can see, the radiation does not
change the spatial dispersion relation and appears as a gravi-
tational effect. Second, on the surface, pure radiation waves
can propagate when g�gr, which leads to

�2 = kgr �32�

and the group velocity becomes a function of wavelength,
i.e., Vg=�gr /8��, where �=2� /k.

Now we assume that the imaginary term in Eq. �29� is
much smaller than the real terms, i.e., we suppose Re �
� Im �, then

Im � = −
kgr	D	

2 Re �2 , �33�

which describes the damping of the surface waves. We em-
phasize here that in the presence of surface charge, there
exist values of the wave vector

k1,2 =
1

ga2 �VE
2 − VA

2 cos2 ��

±
1

ga2
��VE

2 − VA
2 cos2 ��2 − �ga2�2�g + gr�

for which Eq. �29� reduces to �for 	D	2��2�

�3 + ikgr	D	 = 0. �34�

The solution of Eq. �34� has one negative imaginary root and
two complex roots; one of the two complex roots describes
damping of surface waves and the other, which has a positive
imaginary part, leads to the instability of surface waves, with
a growth rate given by

Im � =
�3

2
�k1,2gr	D	�1/3. �35�

Equation �35� corresponds to a dissipative instability due to
the radiation energy flux.

III. CONCLUSIONS

In this communication, we have considered that when
the plane surface of a dusty plasma is charged it can be
unstable to small perturbations for some particular conditions
and this instability arises as a result of the negative pressure.
The charged surface describes the propagation of �when un-
der the influence of radiation, magnetic, and gravitational
fields� the magnetic-radiative-capillary-gravity waves. Sev-
eral limiting cases were discussed and we have shown that
thermal energy flux leads to dissipation of surface waves, but
the surface charge and thermal energy flux together can
cause the dissipation instability.
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