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The effect of Jeans term in a multicomponent self-gravitating quantum magnetoplasma is investigated
employing the quantum hydrodynamic (QHD) model. The effects of quantum Bohm potential and
statistical terms as well as the ambient magnetic field are also investigated on both dust and ion
dynamics driven waves in this Letter. We state the conditions that can drive the system unstable in
the presence of Jeans term. The limiting cases are also presented. The present work may have relevance
in the dense astrophysical environments where the self-gravitating effects are expected to play a pivotal
role.
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1. Introduction

Dusty plasmas have engendered a lot of interest in the past two
decades because they have been observed in a variety of physical
situations of interest. This includes planetary rings, Earth’s iono-
sphere, cometary tails, laboratory experiments, in the fabrication of
semiconductor devices, etc. [1–4]. The inclusion of dust dynamics
or even the presence of stationary dust grains in the electron-ion
plasma can lead to the emergence of new modes in the system.
The dust grains are massive by comparison with the electron and
ions and, therefore the temporal and spatial scales associated with
the dust species can be very different.

When an electron–dust–ion (e–d–i) plasma is cooled to ex-
tremely low temperatures, the de-Broglie wavelength of the charge
carriers becomes comparable to the dimension of the system un-
der consideration. In such a situation, e–d–i plasma behaves like
a Fermi gas and quantum mechanical effects are expected to play
a significant role in the behavior of charged particles [5–10]. The
thermal de-Broglie wavelength for jth species is λB j = h

2πm j vT j
=

a j
λD j

, where a j(= h
4q j

√
πm jn j0

) characterizes the Bohr radius per

unit number density n j0, λD j is the Debye length, and q j is the
charge. For classical regimes, we assume λB j � λD j and, therefore,
consider them point like. On the contrary, for quantum regimes
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λB j � λD j and the quantum effects, therefore, could no longer be
ignored [8,9].

Manfredi [8] wrote a review article on the Schrödinger–Poisson
and the Wigner–Poisson models in a collisionless quantum plasma.
The quantum hydrodynamic model (QHD) is an extension of the
classical fluid model in a plasma. It comprises of a set of equa-
tions that describe the transport of momentum and energy of the
charged species. The departure from the classical model lies in the
fact that an additional term, the so-called “Bohm potential”, is in-
troduced in the equation of motion of the charged particles. In the
limit that the quantum effects go to zero, the classical fluid equa-
tion of motion is retrieved in accordance with the correspondence
principle.

The initial attempts to study the propagation of waves in quan-
tum dusty plasmas were made by Marklund et al. [11] and Shukla
and Ali [12]. Since then, numerous papers have been written on
the effect of quantum corrections on the propagation characteris-
tics of linear and nonlinear waves in homogeneous and inhomo-
geneous dusty plasmas. Masood et al. [10] studied the linear and
nonlinear properties of the dust–ion acoustic wave in a quantum
plasma using the quantum hydrodynamic (QHD) model and found
that the quantum electron Bohm potential significantly altered the
dispersion characteristics of dust ion acoustic wave in the linear
regime whereas it was observed to shrink the width of the soli-
ton in the nonlinear regime. Khan et al. [13] studied the obliquely
propagating dust ion acoustic wave with transverse perturbation in
a quantum magnetoplasma and derived Zakharov–Kuznetsov (ZK)
equation in the small amplitude limit. The authors found that the
quantum corrections, angle of propagation, as well as the dust con-
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centration modified the dust ion acoustic wave in both the linear
and nonlinear regimes.

As mentioned earlier, the dust grains are massive by compari-
son with electrons and ions. This fact brings the gravitational force
in the picture that needs to be taken into account along with the
electromagnetic force particularly in dense astrophysical environ-
ments. The importance of the gravitational-like instabilities in a
dusty plasma has been recognized as one of the processes respon-
sible for the production of stars, planets and smaller bodies like
comets and asteroids [14]. Recently, Shukla and Stenflo [15] inves-
tigated the Jeans instability [16] in multi-component unmagnetized
quantum plasmas and found that the electron Bohm potential ef-
fects stabilized Jeans instability. The authors however ignored the
quantum statistical effects due to pressure and focused only on the
tunneling effect produced by the quantum diffraction term.

In the present work, we investigate the effect of the Jeans term
in a self-gravitating multi-component quantum magnetoplasma
and also incorporate the quantum statistical effects. In Section 2,
we write down the basic set of equations for the system under
consideration. In Section 3, we derive an expression for the dust
driven wave in a quantum magnetoplasma and state the condi-
tions that can drive the system unstable in the presence of Jeans
term. We also discuss the limiting cases. In Section 4, we study the
effects of Jeans term on the ion driven wave, state the conditions
that can drive the system unstable and also present the limiting
cases. In Section 5, we recapitulate the main findings of the Letter
and conclude.

2. Basic set of equations

Consider a three component quantum dusty plasma comprising
of electrons, ions and dust in the presence of an ambient magnetic
field B0. Let the ambient magnetic field in the z-direction and as-
sume that the propagation is in the x and z directions, respectively.
We assume cold dust and ignore the quantum diffraction effect of
dust (meaning that we treat dust classically). The governing equa-
tions, therefore read as follows:

The dust equation of motion is given by

mdnd
dvd

∂t
= εezdnd∇φ + εezdnd

c
(vd × B) − mdnd∇ψ, (1)

where ε is ±1 for positive and negative dust respectively.
The ion momentum equation is

mini
dvi

∂t
= −eni∇φ + eni

c
(vi × B) − ∇pi + h̄2

4mi
∇

[∇2√ni√
ni

]
. (2)

The electron momentum equation is

mene
dve

∂t
= ene∇φ − ene

c
(ve × B) − ∇pe + h̄2

4me
∇

[∇2√ne√
ne

]
. (3)

The continuity equation for the jth species is

∂nl

∂t
+ ∇ . (nlvl) = 0. (4)

Using the Poisson equation, the electrostatic and gravitational po-
tentials (represented by φ and ψ respectively) are given by

∇2φ = 4πe(ne + εzdnd − ni), (5)

∇2ψ = 4πGmdnd, (6)

where ne , ni , and nd are the electron, ion, and dust number den-
sities and me , mi , and md are the electron, ion, and dust masses
respectively. h̄ is the Planck’s constant divided by 2π , vd , vi , and
ve are the dust, ion, and electron velocities and B represents the
ambient magnetic field. c is the velocity of light. l represents ion,
electron, and dust species and G is the gravitational constant. pe

and pi represent quantum statistical contributions of electrons and

ions which follow the pressure law [10] p = 1
3

ml v2
Fl

n2
l0

n3
l .

3. Dust dynamics driven wave

3.1. Dispersion relation

For a dust dynamics driven wave, we ignore the inertia of elec-
trons and ions, and assume that on a dust time scale the electrons
and ions are aligned along the field. Simplifying Eqs. (1), (2), and
(3) by ignoring the inertia of the lighter species (ions and elec-
trons) by comparison with the dust mass, linearizing them and
employing plane wave analysis (i.e., all perturbed quantities as-
sume to vary as e(ik.r−iωt) and k = kxx̂ + kz ẑ), we obtain

−iωvd1 = ikεezd

md
φ1 + vd1 × ωcd − ikψ1, (7)

ni1 = − eφni0

mi v2
F i(1 + γi)

, (8)

ne1 = eφne0

me v2
F e(1 + γe)

, (9)

where v F j = √
2K B T F j/m j are the Fermi velocities of the jth

species and γ j = h̄2k2

4m2
j v2

F j
for j = i, e. The continuity equation after

applying the plane wave equation for the electrostatic wave reads
as follows

nd1

nd0
= k · vd1

ω
. (10)

Substituting the above expression in Eq. (7), we obtain the follow-
ing expression for dust perturbed density

nd1 =
− εezdnd0

mdω2(1−ω2
cd/ω2)

1 + ω2
jd

ω2

[ k2⊥
k2

1
1−ω2

cd/ω2 + k2‖
k2

]k2⊥

−
εezdnd0
mdω2

1 + ω2
jd

ω2

[ k2⊥
k2

1
1−ω2

cd/ω2 + k2‖
k2

]k2‖. (11)

Substituting Eqs. (8), (9), and (11) in Eq. (5), we get the follow-
ing dispersion relation for a dust dynamics driven wave in a self
gravitating quantum dusty magnetoplasma

1 + ω2
pe

k2

1

fe
+ ω2

pi

k2

1

f i

− ω2
pd

ω2

[ ( k2⊥
k2

1
1−ω2

cd/ω2 + k2‖
k2

)
1 + ω2

jd

ω2

( k2⊥
k2

1
1−ω2

cd/ω2 + k2‖
k2

)
]

= 0, (12)

where

fe = v2
F e(1 + γe) (13)

and

fe = v2
F i(1 + γi). (14)

Note that the quantum contribution here is different from
Shukla and Stenflo [15] as the quantum statistical effects of both
electrons and ions are incorporated here. In conventional suscepti-
bility form, the above equation can be expressed as

1 + χe + χi + χd = 0, (15)
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where

χe = ω2
pe

k2

1

fe
,

χi = ω2
pi

k2

1

f i
and χd = −ω2

pd

ω2

[ ( k2⊥
k2

1
1−ω2

cd/ω2 + k2‖
k2

)
1 + ω2

jd

ω2

( k2⊥
k2

1
1−ω2

cd/ω2 + k2‖
k2

)
]
,

ωcd = ezd B
mdc is the dust Larmor frequency and ω jd = 4πGmdnd0 is

the dust Jeans frequency.
Eq. (12) can be rewritten as

ω =

√√√√−A1 ±
√

A2
1 − 4A2

2α
, (16)

where A1 = −αω2
cd + αω2

jd − ω2
pd , A2 = (ω2

pd − αω2
jd)αω2

cd

k2‖
k2 , and

α = 1 + ω2
pe

k2
1
fe

+ ω2
pi

k2
1
f i

.

If ω2
pd < αω2

jd , then the system is Jeans stable. It is clear from
the stability/instability condition that both the quantum statisti-
cal and Bohm potential terms stabilize the system. Conversely, the
system can become Jeans unstable provided A2

1 < 4A2.

Limiting cases
Case 1 (ωcd = 0,ω jd = 0)
This corresponds to the case when the ambient magnetic field

is absent, however, quantum statistical and Bohm potential as well
as the Jeans term is present. Eq. (12) in this case reads as follows

1 + ω2
pe

k2

1

fe
+ ω2

pi

k2

1

f i
− ω2

pd

ω2 + ω2
jd

= 0. (17)

The above equation can be rewritten as

ω =
√

−ω2
jd + ω2

pd

α
(18)

which leads to the condition ω2
pd > αω2

jd for the system to be
Jeans stable.

Case 2 (ωcd = 0,ω jd = 0)
This corresponds to the case when both the ambient magnetic

field and Jeans term are absent, however, quantum statistical and
Bohm potential are present. Eq. (12) in this case reads as follows

1 + ω2
pe

k2

1

fe
+ ω2

pi

k2

1

f i
− ω2

pd

ω2
= 0. (19)

Case 3 (ωcd = 0, ω jd = 0, and γ j = 0)
This corresponds to the case when only the quantum statisti-

cal terms are taken into account and everything else is ignored.
Eq. (12) in this case reads as follows

1 + ω2
pe

k2 v2
F e

+ ω2
pi

k2 v2
F i

− ω2
pd

ω2
= 0. (20)

As mentioned earlier that we include here the quantum statisti-
cal pressure term along with the quantum Bohm potential term.
We have calculated both the contributions using the following pa-
rameters in a dense dusty plasma environment: neo = 1024 cm−3,
ndo = 1021 cm−3, and zd = 100. It is found that barring a very
restricted wave number range, the quantum statistical pressure
dominates the quantum Bohm potential term by three or four or-
ders of magnitude. The wavelengths that make the quantum Bohm
potential term dominate the quantum statistical pressure term cor-
respond to the wave numbers of the order of the inter-particle
distance (given by d = 1/n1/3) indicating the severe limitations of
such an assumption. Thus, in general both the quantum statisti-
cal and Bohm potential terms should be incorporated to study the
quantum behavior of the system.

4. Ion dynamics driven wave

In this case, we assume that the dust grains are immobile.
Thus, the contribution of the dust comes only through the equi-
librium quasi-neutrality. In the presence of electrostatic and self-
gravitational fields, the dynamics of the ions and electrons is gov-
erned by

mini0
∂vi

∂t
= −eni0∇φ + eni0

c
(vi × B0) − mini0∇ψ, (21)

∂ni1

∂t
+ ∇ . (ni0vi1) = 0, (22)

0 = ene0∇φ − v2
F e∇ne1 + h̄2

4me
∇∇2ne1. (23)

Simplifying Eqs. (21), (22), and (23), and employing the plane wave
analysis, we obtain the following dispersion relation for an ion
dynamics driven wave in a self-gravitating quantum dusty mag-
netoplasma

1 + ω2
pe

k2

1

fe
− ω2

pi

ω2

[ ( k2⊥
k2

1
1−ω2

ci/ω
2 + k2‖

k2

)
1 + ω2

ji

ω2

( k2⊥
k2

1
1−ω2

ci/ω
2 + k2‖/k2

)
]

= 0, (24)

where ωci = eB
mi c

is the ion Larmor frequency and ω ji = 4πGmdnd0

is the ion Jeans frequency.
The above equation can be rewritten as

ω =

√√√√−A3 ±
√

A2
3 − 4A4

2α
(25)

where A3 = −α1ω
2
ci +α1ω

2
ji −ω2

pi , A4 = (ω2
pi −α1ω

2
ji)α1ω

2
ci

k2‖
k2 , and

α1 = 1 + ω2
pe

k2
1
fe

.

If ω2
pi < α1ω

2
ji , then the system is Jeans stable. It is again clear

from the stability/instability condition that like the dust driven
wave, both the quantum statistical and Bohm potential terms also
stabilize the ion driven wave. Conversely, the system can become
Jeans unstable provided A2

3 < 4A4.

Limiting cases
Case 1 (ωci = 0,ω ji = 0)
This corresponds to the case when the ambient magnetic field

is absent, however, quantum statistical and Bohm potential of elec-
trons as well as the ion Jeans term is present. Eq. (24) in this case
reads as follows

1 + ω2
pe

k2

1

fe
− ω2

pi

ω2 + ω2
ji

= 0. (26)

The above equation can be rewritten as

ω =
√

−ω2
ji + ω2

pi

α
(27)

which leads to the condition ω2
pi > αω2

ji for the system to be Jeans
stable.

Case 2 (ωci = 0,ω ji = 0)
This corresponds to the case when both the ambient magnetic

field and Jeans term are absent, however, quantum statistical and
Bohm potential are present. Eq. (24) in this case reads as follows
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1 + ω2
pe

k2

1

fe
− ω2

pi

ω2
= 0. (28)

Case 3 (ωci = 0, ω ji = 0, and γe = 0)
This corresponds to the case when only the quantum statisti-

cal terms are taken into account and everything else is ignored.
Eq. (24) in this case reads as follows

1 + ω2
pe

k2 v2
F e

− ω2
pi

ω2
= 0. (29)

5. Conclusion

The effect of Jeans term in a multi-component self-gravitating
quantum magnetoplasma comprising of electrons, ions, and dust is
investigated employing the quantum hydrodynamic (QHD) model.
It is found that the quantum Bohm potential and statistical effects
stabilize both the dust as well as the ion dynamics driven wave.
The limiting cases of both the quantum dust and ion waves are
also presented. It is also found that in general the quantum statis-
tical term dominates the quantum Bohm potential term and both
the effects should be incorporated to study the quantum behav-
ior of the system. The present investigation may have relevance
in the dense astrophysical environments where the self-gravitation
effects are expected to dominate.
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