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To describe the nonlinear propagation of electrostatic drift waves the generalized Hasegawa—Mima
equation containing both vector (Jacobian) and scalar (Korteweg—de Vries-type) nonlinearities is
obtained for electron-positron-ion plasmas. The drift waves are supposed to have arbitrary
wavelengths (as compared with the Larmour radius of plasma ions at the plasma electron
temperature). Temperature inhomogeneity of electrons and positrons is taken into account. Spatial
increase in the linear plasma-potential perturbations in the direction of density and temperature
inhomogeneities is shown. Self-organization mechanism of large-scale drift solitary vortices is
considered. It is shown that the existence of positrons in plasma enriches the class of solutions of
the generalized Hasegawa—Mima equation. © 2009 American Institute of Physics.

[DOL: 10.1063/1.3072722]

Due to the long lifetime of positrons, most
astrophysicalk3 and laboratory plasmas“f6 become an ad-
mixture of electrons, positrons, and ions. Three-component
electron-positron-ion (EPI) plasma can also be produced by
electrons accelerated to relativistic speeds either in the fields
of high-power laser beams’ or in the large amplitude wake
fields that are generated by ultrashort laser pulses in
plasmas.&9 The three-component EPI plasmas have also been
created in laboratories'*!! by injecting positrons in EI sys-
tems. Therefore, the study of EPI plasmas is important to
understand the behavior of both astrophysical and laboratory
plasmas. To grasp the basic physics of the three-component
EPI plasmas several theoretical investigations have been
within the framework of multifluid theory which
are applied to both astrophysical and laboratory plasmas.

The dynamics of low-frequency waves studied in usual
El plasmas is generally modified in EPI plasmas. These
modifications depend on the concentration ratios of different
species as well as on the magnitudes of their temperatures.
The study of low-frequency long wavelength drift waves is
of great interest because of its applications to many labora-
tory, space, and astrophysical systems. Such interest in drift
waves is also connected with the consequence that their ex-
istence explains anomalous transport of a plasma transverse
to a magnetic field. Zonal flows, generated by drift modes,
also play a major role in controlling the level of anomalous
transport in magnetic confinement systems. Different aspects
of electrostatic drift waves dynamics have been considered in
EPI plasma,zzf26 where electron and positron temperatures
have been assumed to be equal and constant in space. Be-
sides, the modified Hasegawa-Mima (HM) equation ob-
tained is not correct. In Refs. 22 and 23 solitary vortical
structures are also found as a solution of the corresponding
nonlinear HM equation. In these papers it is assumed that the
characteristic size of the considered nonlinear structures is
less or of the order of the ion Larmour radius at the plasma
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electron temperature. Such structures may be described in
the framework of classical HM equation containing only
vectorial (Jacobian) nonlinearity. In other words classical
HM equation only describes small-scale structures. Vortices
in a strongly magnetized EPI plasma in the electrostatic limit
were investigated by Shukla et al*’ via the HM equation
with a vector nonlinearity and vortex solutions of two differ-
ent classes, viz., vortex chain and a double vortex were
shown to exist. Extension to the large-scale electrostatic drift
nonlinear structures (having dimensions larger than the char-
acteristic Larmour radius of plasma ions) was discussed by
Nezlin and Chernikov.”® It was shown that such structures
are described in the framework of the generalized HM equa-
tion containing in addition to the vectorial nonlinearity a new
scalar nonlinearity of the Korteweg—de Vries (KdV) type.
According to the new self-organization mechanism, solitary
structures are formed by mutual compensation of wave dis-
persion by both scalar and vector nonlinearities. As a result,
in the general case, a solitary structure becomes essentially
anisotropic and is a superposition of monopolar and dipolar
vortices.

In this report the generalized HM equation valid for ar-
bitrary sizes of vortical structures is obtained and the nonlin-
ear dynamics of large-scale solitary vortical structures on the
electrostatic drift waves propagating in EPI plasma is dis-
cussed. In addition temperatures of electrons and positrons
are assumed to be arbitrary.

Let us consider, in the electrostatic approximation, the
quasi-two-dimensional motion of a quasineutral EPI plasma.
We consider a local perturbation (with respect to the unper-
turbed plasma environment) of the plasma potential ¢(z,x,y)

and assume that the external magnetic field B, is taken in the
Z direction.

The unperturbed plasma densities of electrons and posi-
trons 7,,(x), n,,(x) and corresponding temperatures 7,,(x),
T,,(x) are inhomogeneous and assumed to decrease monoto-
nously along the x axis. The ions are considered “cold” and
the quasineutrality condition in equilibrium

© 2009 American Institute of Physics
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(1)

is fulfilled, where Z is the charge number of positive ions.

Let us assume that in this system the plasma density
perturbation arises (corresponding to the plasma-potential
perturbation ¢), which excites a drift wave. Assume that the
plasma motion in the (x,y) plane is sufficiently slow, so that
electrons and positrons (fast moving along the magnetic
field) follow the Boltzmann equilibrium. Then from the
plasma quasineutrality condition (1), the ion density is de-
fined by the relationship

neo(x) = Znia(x) + npo(-x)

e@/T,(x) _ —ecp/TP(x) .

2)

The equation of motion for the plasma-ion component under
the action of the crossed electric (caused by the perturbed

Zni = neo(-x)e npa(x)e

potential ¢) and magnetic, éo, fields has the form
3)

where (BB,-:ZeE(,/ M is the cyclotron frequency of ions, Ze
and M are the ion charge and mass, respectively, and
v(u,v,0) is the velocity vector which has the velocity com-
ponents « and v (along the x and y axes, respectively). Note
that the wpg; vector is directed along the magnetic field, that
is, in the direction opposite to that of the angular velocity
vector of the ion Larmour rotation.

We consider a quasi-two-dimensional motion, and there-
fore the velocity perturbation along the z axis is absent. Us-
ing the continuity equation for ions with Eq. (3), we may
obtain the equation of conservation of the so-called potential
vorticity, which is defined as
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d

dt

S + wpg;

n

0, 4)

(=5

where d/dt=d,+ud,+vd, and the vorticity (5=V Xv),=v,
—u,. Here the lower indices refer to differentiation with re-
spect to x, y, and ¢, the cyclotron frequency wg;=¢,- @g; and
e. is the unit-vector in the z direction.

The drift wave regime in plasma takes place when the
inertia terms in the Euler equation (4) are small compared to
the Lorentz force, due to which the equations of motion, in
the first approximation, are the equations of equilibrium be-
tween the magnetic force and the force caused by the poten-
tial gradient; such an approximation implies the existence of
a small parameter,

w
— <1,
Wp;

(5)

where w is the characteristic frequency of the perturbation.
We also take into account the polarization drift (which is a
higher order term) and in accordance with Eq. (5) we get the
following expression for the ion velocity:
Ze
M(UB[

Ze

- 2
M wy,;

VoXey,

|

Here the subscript L denotes the plane perpendicular to the
external magnetic field.

Substituting Egs. (2) and (6) into Eq. (4) we obtain the
following generalized (containing both vector and scalar
nonlinearities) HM equation for an EPI plasma:

UV, =—

d
—+
ot

Ze
——e¢, XV, 0-V
Moy z 1PV

)Vﬂp- (6)

of | _Mpe\Bie L[ muT\de o =y 0@ g =m, Pe o el mpTe) e Zew
-\ 1= 1+ - rjwpg; -1y -\ 1+ @ -r
n,,/ Ot Z Neo T,/ It w Oy n,, OJtdx T, Neo Ty at T,
n e n,, T, J e(1 n,T,\d¢* ,Zewgn.,, —n) d e
X(l _ ﬂ)ﬂQD,AﬁP) + Vi_(l + _M_E>AL(P_‘P + _(_ _ _m_§>i _ Vi—BlMAﬂP_(P A
n,, T, Ty gt 2Z\T, n,T:.) ot T, n, ay Lot
X(l+ﬁﬂ)a(vl@)z_r4zewBine,‘0_n;0]((P 8_(,0)_ ¢ <7’l_:)0 %2_2_%%?)6_(92:0' (7)
Ny, Tp ot L T, Mg ox 2Mwgi\n,, Hn,, Tp T, n, TIZJ dy
[
Ir'1 'obtaining the above equation th.e inequalit'y (5) and con- 72 iy IA | @ g <1 , Moo 7, ) dp . Z_2 nj, dp
dition e@/T, <1 Were. used.to retain t.he donynant nonhn.ear Mwgn,, dt T, neoT,) 9t Mng, dy
terms. Thus Eq. (7) is valid for arbitrary sizes of vortical s
structures. In Eq. (7) J(a,b)=0daldxdb/dy—dal dy b/ ix is Z_hﬁ_ (8)

the Jacobian
(vector nonlinearity), the operator A, =V3 =d/d,+d/d,
r,=(T,/ Mw},)'"? is the ion Larmour radius at electron tem-
perature 7,, and the prime denotes derivative with respect to
the x variable.

In the linear regime Eq. (7) reduces to

MwBineo Jtdx a

The last term (which is of the order of w/ wp;) is kept in order
to obtain the spatial structure of the electrostatic drift waves.
Indeed, if we introduce the inhomogeneity length 1/L
! In;,| and look for the propagation of drift plane waves

= | n io
of the form
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o~ eIx/ZLeik'\kayy—iwot’ (9)
we get for the electrostatic drift frequency
2
MwBi Neo L
Po=T T P2 1\ (10)
n
—( 1+ 222 )+ 25+ —
n; n n 41
10 €eo - p eo

Here ki=kf+k§ and the F sign in Egs. (9) and (10) corre-
sponds to positive and negative signs of n; /n;,. Thus the
drift wave potential is spatially unstable in the direction of
the inhomogeneity. The drift wave structure given by Eqgs.
(9) and (10) is similar to that of acoustic-gravity waves
propagating in an inhomogeneous atmosphere embedded in a
gravitational field.”’

It is seen from Eq. (7) that the classical HM equation
(containing only vector nonlinearity) can be isolated, which
has the form

_Ze_ (1 _E&)_O”Ai(p_i__ewm(l +E]&£>&_(P

_MwBi n,,/ ot T, N, T,/ It
Zeny,—n,, dp  Ze n,—n, P
M n, Jdy Mwyg n, Jdtdx
7%e? n,,
- 2 2 (1_£>J((P’AJ_(P)=O (11)
M~ wy, co

The HM equation obtained above is valid if the following
inequalities are fulfilled:

a wg L @ o L
S <2 = o<-E Zs (12)
T w a r w a

Here a is the perpendicular size of the structure and L is the
characteristic scale of the inhomogeneity. Thus, the classical
HM equation is valid only when the ratio of the characteris-
tic size of the considered nonlinear structures and the ion
Larmour radius (at the plasma electron temperature) satisfies
the inequalities (12) and the smallness of this ratio as given
in Ref. 28 need not to be fulfilled. Thus the classical HM
equation, describes only “small-scale” structures. The classi-
cal HM equation predicts the existence of a solitary structure
in the form of a dipolar vortex that is a cyclonic-anticyclonic
pair. Solitary monopolar vortices (cyclones, anticyclones) are
absent in the framework of the classical HM equation.
We now look for large-scale vortical structures,

s, (13)
L

In this limit Eq. (7) reduces to the following generalized HM
equation for the potential perturbation ¢:

2 '
(@ + @&)0_@ _er%av_i"o _72 Bi%‘?_@
n;, n;, Tp ot ot n;, ﬁy

2

_erzn_,-'o é’zgo e (’ﬁ ngoTe>(9<p

+ —_— —_—
“ngotax 2\ T, T, ) ot
Z3ew3,-ri ZewB,-ri o7cp2
-—=J(p,A -———=0. 14
. (0, A1) 2T, dy (14)
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Here we have introduced the inhomogeneity length L defined
as

! !
l=L<n' +n'&—n E—n TLZE)
eo (0]
L\ o, T eop, T2
!
ZE(%+EM> ' (15)
N, Te Tp

In the generalized HM equation (14) we have kept the (so-
called scalar) nonlinear term dg?/dy which is analogous to
the KdV nonlinearity. The scalar and vector nonlinearities
are of the same order when

a2

L
T ~Zs1 (16)
ry a

Analogous to Eq. (14) a more simplified equation obtained in
Ref. 22 with the expression for 1/L analogous to Eq. (15) for
equal electron and positron temperatures is not correct.
Thus in the process of self-organization of large-scale
vortical solitary structures, both nonlinearities, scalar and
vector, taking place are important. Large-scale structures
having dimensions larger than the characteristic Larmour ra-
dius of plasma ions are influenced by the scalar nonlinearity.
It is very essential to elucidate the mechanism of formation
of solitary drift vortical structures due to the competition of
dispersion and nonlinearity.28 The problem is as follows: In
the solitary solitons of the KdV type, the dispersive spread-
ing of a wave packet is balanced by its nonlinear steepening.
This equilibrium, in particular, causes quite a definite rela-
tionship between the packet width and amplitude: The larger
the amplitude (stronger nonlinearity), the smaller the width
(stronger dispersion). However, the situation is more compli-
cated when it was discovered in the model experiments30 that
the characteristic size of the structures under consideration
was not dependent on the amplitude. This evidenced a more
complicated dynamics of the structure formation compared
to the simple compensation of dispersion by nonlinearity.
When a nonlinear dynamic equation [e.g., obtained here in
Eq. (14)] involves two types of nonlinearities (scalar and
vectorial) the new type of self-organization of solitary struc-
tures was revealed.” In particular, if at a given structure size
the structure amplitude is too large, i.e., the scalar nonlinear-
ity exceeds dispersion, then the additional dispersive com-
pensation of the scalar nonlinearity is provided by the vector
nonlinearity, which prevents the structure from undergoing
unlimited steepening. In this case, the vector nonlinearity
“works” against the scalar one. In the other case, when at a
given structure size the structure amplitude turns out to be
too small, so that the wave dispersion exceeds the scalar
nonlinearity, the vector scalar nonlinearities work against
dispersion together. Thus, the mechanism for self-
organization of solitary structures is associated with the com-
pensation of wave dispersion by both the scalar and vector
nonlinearities. As a result, a solitary structure is in general
intrinsically anisotropic and contains a circular (monopolar)
vortex superimposed on a dipole perturbation. The degree of
anisotropy increases sharply as the size of the vortex ap-
proaches the intermediate size (16). When the scalar nonlin-
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earity prevails over the vector one [in case of sufficiently
large sizes, see Eq. (16)] only monopolar structures exist.
Such solitary structures of monopole type were first found in
laboratory modeling of solitary Rossby vortices.* Numerical
calculations of the generalized HM equation containing both
scalar and vector nonlinearities were performed in Ref. 31. It
was shown here that a large-scale dipole vortex splits into
two monopoles (a cyclone and an anticyclone), where a vor-
tex of one polarity is long lived whereas the vortex of the
opposite polarity disperses. In case of drift waves, only the
anticyclones that propagate faster than the maximum veloc-
ity of the corresponding linear waves survive.
In the case when

4 2
w r rra
—s>L Lo« (17)
wp a a’L

we may be convinced that the first nonlinear term «d¢?/dt in
Eq. (14) is more important than others and we get the fol-
lowing equation with only the scalar nonlinearity:

n n,T,\d PAv nl d
(ﬁ+_&_e)_‘P_eri_L‘P_eri hichas
n;, n;, Tp ot ot n;, Jd
e (n n,,T,\d¢
+—(ﬂ——%)i=o. (18)
Znio Te TP at

If the structure drifts with constant velocity v, then consid-
ering the stationary case of propagation, one may obtain
dp/dt——vpde/dy. In this way we may easily obtain the
following equation:

1 (n, ny,T, n 1
Vie=| 5|+ |+ op— o
z L\ i Ny Tp i

e n n,, 1
+—<ﬂ__m>¢z' (19)
2n, 2\ T, T,

According to the above mentioned discussion, this equation
with only scalar nonlinearity describes solitary monopole
vortical structures. Approximate analytical solution and nu-
merical simulation of Eq. (19) confirm the solution in the
form of monopole vortical structures as it is has the same
form as Eq. (30) of Ref. 32.

In conclusion, in the present note we have discussed a
new self-organization mechanism of formation of large-scale
electrostatic drift vortical structures in EPI plasmas based on
the competition between scalar and vector nonlinearities. As
a result the solitary structure thus formed is intrinsically an-
isotropic and contains monopole vortex superimposed on a
dipole perturbation. We have shown that the dynamics of
low-frequency waves studied in usual EI plasmas is gener-
ally modified in EPI plasmas. These modifications depend on
the concentration ratios of different species as well as on the
magnitudes of their temperatures. Temperature inhomogene-
ity of electrons and positrons is taken into account. A new
class of corresponding differential equations (14) and (18)
with appropriate validity conditions (13), (16), and (17) is
obtained. The generalized HM equation [Eq. (7)] valid for
arbitrary sizes of structures is obtained. We have shown that

Phys. Plasmas 16, 024502 (2009)

due to the existence of positrons in the plasma, the sign of
the derivative Zn{o(x)zne’o(x)—n['m(x) may change which in
turn enriches the class of solutions of the generalized HM
equation. The new spatial structure given by Eq. (9) for the
drift waves with dispersion relation given by Eq. (10) is ob-
tained. Finally we note that the range of validity of the clas-
sical HM equation is revised and is given by Eq. (12).

Our results should be useful for understanding the prop-
erties of three-component EPI plasmas in laboratory
experiments,s’lo’11 where positrons are used as probes and
these types of electrostatic fluctuations are utilized for the
diagnostic of EPI plasmas. Also our results are related to the
localized nonlinear electrostatic structures, which may be
connected to the observed large-scale density inhomogene-
ities of the universe.' After the identification of the drift
modes and corresponding large-scale structures described in
the given paper, their eventual observation should be used in
the diagnostic of EPI plasma.
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