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Abstract. Linear and nonlinear properties of the two-dimensional obliquely pro-
pagating dust magnetosonic wave are studied in a three-component dusty plasma.
The dispersion relations in the linear and Kadomstev–Petviashvili (KP) equation
in the nonlinear regime are derived for small-amplitude perturbations. It is shown
that the linear dispersion properties of the low-frequency dust magnetosonic wave
depend on the angle θ that the magnetic field makes with the x-axis, the ratio of
ion to electron concentration, and the plasma beta. It is found that retaining the
electron pressure term gives rise to novel features in the dust magnetosonic wave.
The slow magnetosonic wave is found to be the damped mode and, therefore, the
only propagating mode in our system is the fast magnetosonic mode. It is found that
the KP equation admits compressive solitary structures. Finally, it is found that
the amplitude of the soliton increases as the ratio of electron to ion concentration,
p, angle θ, and the plasma beta, β, is increased.

1. Introduction
Dusty plasmas have gained much attention in recent years [1–4]. A dusty plasma is
defined as a normal electron plasma with an additional constituent of micrometre or
submicrometre sized particles. The presence of this additional component enhances
the complexity of the system and, therefore, dusty plasmas are often referred
to as complex plasmas. Dusty plasmas are low-temperature, fully or partially
ionized electrically conducting fluids composed mainly of electrons, ions, charged
dust grains, and neutral atoms. The applications of dusty plasmas include space,
astrophysical, and laboratory plasmas [5–8].
Fast and slow magnetosonic modes are the fundamental modes of a magnetized

plasma from themagnetohydrodynamic (MHD) stand point. The fast magnetosonic
waves propagate perpendicular to the ambient magnetic field. One of the primary
examples of such a wave is the Earth’s bow shock that is formed due to the
interaction between the solar wind and the obstacle of the Earth’s magnetic field.
Although it is a nonlinear wave, it is termed as a fast magnetosonic wave in the
MHD picture.
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A vast amount of literature is found on the linear and nonlinear studies of
magnetosonic waves [9–13]. Maruyama et al. [14] studied the interactions of non-
thermal energetic ions with nonlinear magnetosonic waves by means of a one-
dimensional (one space coordinate and three velocity components), relativistic, elec-
tromagnetic particle simulation code with full ion and electron dynamics and found
that in a plasma with strong MHD turbulence, some of the ions could be repeatedly
accelerated to higher energies by many nonlinear pulses. De Juli and Schneider [15]
analyzed the absorption of the magnetosonic wave due to the presence of dust
particles with variable charge and the modification of this absorption due to finite-
Larmor-radius effects. Brodin et al. [16] studied the nonlinear interaction between
the Alfvén and slow magnetosonic wave and showed that the efficiency of the
process can be significantly enhanced if the Alfvén wave propagation directions are
appropriately chosen. The authors discussed the relevance of their study to investig-
ate the nonlinear excitation of MHDwaves in space plasmas. Mushtaq and Shah [17]
studied the linear and nonlinear two-dimensional magnetosonic waves in electron–
positron–ion (e–p–i) plasma and derived the Kadomstev–Petviashvili (KP) soliton
equation using the reductive perturbative scheme for fast and slow magnetosonic
modes in the nonlinear regime. The authors found that the propagation properties
of the solitary waves depended on positron concentration, the angle θ (that the
external magnetic field makes with the x-axis), and the plasma beta. Shukla and
Rahman [18] studied the magnetohydrodynamics of dusty plasmas (assuming the
wave frequency to be much smaller than the ion gyrofrequency) and showed the lin-
ear coupling between dust-Alfvén, dust-magnetosonic, and dust whistler waves. The
authors also found the dust inertia to play a major role in the wave dynamics. Alam
et al. [19] studied the obliquely propagating waves in a magnetized plasma with
stationary dust for both low and high frequencies of the ion cyclotron frequency and
found that the fluctuations in grain charges due to liberation of additional electrons
and protons induce momentum change giving rise to a change in the stability
criterion of the electrostatic and electromagnetic waves in dusty plasmas. Recently,
Marklund et al. [20] studied the ion magnetosonic solitons in dusty plasmas and
found that the small number of dust particles led to the formation of static nonlinear
structures instead of shocklets that are normally formed in usual magnetoplasmas.
In this paper, we investigate the obliquely propagating dust magnetosonic wave

both in the linear and nonlinear regimes. Using a reductive perturbative technique,
we derive the nonlinear KP equation for both fast and slow dust magnetosonic
waves. The effects of electron concentration, p, the angle θ which the magnetic
field makes with the x-axis, and the plasma beta (the ratio of plasma kinetic to
magnetic energy) on the dynamics of the dust magnetosonic waves are studied
both analytically and numerically. The paper is organized as follows. In Sec. 2, we
present the basic set of equations and outline the reductive perturbative scheme
used to obtain the linear and nonlinear sets of equations. In Sec. 3, we derive the
KP equation along with its stationary solution for the obliquely propagating dust
magnetosonic wave. In Sec. 4, we recapitulate and conclude the findings of our
paper.

2. Governing equations
We present here linear and nonlinear investigations of a three-component e–d–i
magnetoplasma.We consider a Cartesian system in which the background magnetic
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field B0 lies in the (x, y) plane making a small angle θ with the x-axis, and the
propagation in the nonlinear regime is considered in the (x, z) plane. The governing
equations used in this paper are the effective one-fluid isothermal MHD equations.
We develop the effective one-fluid model for the e–d–i plasma by writing down the
usual fluid equations for electrons, dust, and ions. The electron and ion inertia is
ignored as we are interested in studying the very-low-frequency dust wave. We also
ignore the displacement current term in Ampère’s law owing to the same reason.
The effective one-fluid model for a dusty plasma developed here closely follows the
work of Rao [21] and the basic set of equations reads as follows.
The inertialess electron and ion momentum equations are given by

0 = −neeE− ene
c

(ve × B) − ∇pe, (1)

0 = nieE+
eni
c

(vi × B) − ∇pi. (2)

The inertial cold dust momentum equation is given by

mdnd
dvd
dt

= −en∗
dE− en∗

d

c
(vd × B). (3)

The continuity equation for species α (where α = e, i,d) is given by

∂nα

∂t
+ ∇ · (nαvα ) = 0. (4)

Maxwell’s equations are given by

∇ × E = −1
c

∂B
∂t

, (5)

∇ × B =
4π

c
j, (6)

where the current density j is defined as

j = enivi − eneve − en∗
dvd (7)

where n∗
d = zdnd. The quantities vα , nα (nα0), and pα are the fluid velocities, particle

densities, and thermal pressures of species α, respectively, which is given by the rela-
tion pα =nαkBTα , Tα being the temperature of the species α (the dust temperature
is ignored here). md is the dust mass, e is the charge of species α, and zd is the
charge number associated with the dust. c is the velocity of light, E is the electric
field vector, B is the magnetic field vector, and d/dt = ∂/∂t + v · ∇ is the convective
fluid derivative.
In order to arrive at the governing set of equations for an e–d–i plasma, we

substitute for ve in (1) to get

E = − 1
enec

(
enivi − en∗

dvd − c

4π
∇ × B

)
× B− 1

ene
∇pe. (8)

Using (2), (3), and (7), we obtain the following momentum equations for ion and
dust species, respectively:

0 = − enind
nec

vi × B +
enind
nec

vd × B+
1
4π

ni
ne

(∇ × B) × B− ni
ne

∇pe − ∇pi, (9)



220 W. Masood et al.

mdnd
dvd
dt

=
enind
nec

vi × B− enind
nec

vd × B− 1
4π

nd
ne

(∇ × B) × B+
nd
ne

∇pe. (10)

Using the quasi-neutrality condition ni =ne + n∗
d (since we are treating long-

wavelength MHD waves here), and adding (9) and (10), we obtain

nd
dvd
dt

=
n0dv

2
Ad

B2
0

(∇ × B) × B− c2
sd(1 + σ)∇ni + c2

sd∇n∗
d, (11)

where σ =Ti/Te is the ion to electron temperature ratio, csd =
√

kBTe/md is the dust
acoustic speed, and vAd =B0/

√
4πmdnd is the dust Alfvén velocity. Eliminating E

between (3) and (8), the magnetic induction so obtained is given as follows:

∂B
∂t

= ∇ × (vd × B) +
B0

Ω∗
cd

∇ × dvd
dt

, (12)

where Ω∗
cd = zdΩcd (Ωcd = eB0/mdc is the dust cyclotron frequency). From (9), we

obtain the expression for the perpendicular ion velocity component, v⊥i, as

v⊥i =
1

B2 B× (vd × B) +
c

4πen∗
dB

2 B× (∇ × B) × B

− c

en∗
dB

2 B× ∇pe − cne
enin∗

dB
2 B× ∇pi. (13)

Neglecting the ion fluid velocity component parallel to the magnetic field using
the arguments given in Ref. [18], and using Eq. (13) in the ion continuity equation
given by Eq. (4), we arrive at the following expression.

∂ni
∂t

+ ∇ · ni
B2

(
B× (vd × B) +

c

4πen∗
d
B× (∇ × B) × B

− c

en∗
d
B× ∇pe − cne

en∗
dni
B× ∇pi

)
= 0. (14)

Equations (11) and (14) together with the dust continuity equation (4) and the
magnetic induction equation (12) form the basic set of equations of the effective
one-fluid model for a dusty plasma.
Using the reductive perturbative technique, we can reduce the above set of

equations into a simpler form so that the linear and nonlinear analyses become
possible. The reductive perturbative technique is generally employed to investigate
waves whose wavelengths are longer when compared with the typical length scale
of the system. It has been extensively used to study small-amplitude waves in
plasma physics [22–28]. The technique enables us to rescale both space and time
variables, thereby facilitating the analysis of long-wavelength phenomena. It may
be noted that the reductive perturbative technique is a special form of multiple scale
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analysis [29]. Following [30], we expand the variables in the following manner:

ni = ni,d0 + εni,d1 + ε2ni,d2 + · · · ,

vdx = εud1 + ε2ud2 + · · · ,

vdy = εvd1 + ε2vd2 + · · · ,

vdz = ε3/2wd1 + ε5/2wd2 + · · · ,

Bx = B0 cos θ,

By = B0 sin θ + εBy1 + ε2By2 + · · · ,

Bz = ε3/2Bz1 + ε5/2Bz2 + · · · .

(15)

Note that the anisotropy in the velocity components is due to the influence of a
strong magnetic field. In this expansion, the fluid gyromotion is treated as a higher-
order effect. It should also be noted that the background magnetic field lies in the
(x, y) plane making an angle θ with the x-axis and the wave vector k in the (x, z)
plane makes an angle with the x-axis that has a direct relation to the angle θ. Thus
what is done is that if the wave vector k is taken in the (x, y) plane then it can
be rotated in such a way that it lies along the x-axis and the magnetic field which
was originally in the x-direction now lies in the (x, y) plane. The obliqueness in the
z-direction occurs only in the higher-order (nonlinear) terms and appears via the
stretched variable η given below. This is done for mathematical ease and here we
have followed the works of De Vito and Pantano [29] and Shah and Bruno [31],
where the same scheme was used to study nonlinear magnetosonic waves in cold
and hot electron ion plasmas via the KP equation, respectively.
It should be noted that all the perturbed quantities are functions of x, z, and t,

and ε is a small parameter such that ε < 1. Employing standard procedures, we
stretch the variables as follows:

ξ = ε1/2(x − vpht),

η = εz,

τ = ε3/2t,

(16)

where vph is the phase velocity of the wave whose exact expression is calculated
below. The significance of the variable stretching procedure lies in its ability to
introduce the new variables in such a way that the slowness of the coordinate
dependence and the smallness of some of the physical variables are taken out in a
systematic manner.
Normalizing (4) and (11)–(14), using (15) and (16) and collecting terms of the

lowest order, i.e. (ε3/2), we obtain

λ
∂

∂ξ
nd1 =

∂

∂ξ
ud1 , (17)

λ
∂

∂ξ
ud1 = sin θ

∂

∂ξ
By1 +

zdβ(1 + σ)
1 − p

∂

∂ξ
ni1 − zdβ

∂

∂ξ
nd1 , (18)
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λ
∂

∂ξ
vd1 = − cos θ

∂

∂ξ
By1 , (19)

λ
∂

∂ξ
By1 = sin θ

∂

∂ξ
ud1 − cos θ

∂

∂ξ
vd1 , (20)

λ
∂

∂ξ
ni1 = sin2 θ

∂

∂ξ
ud1 − cos θ sin θ

∂

∂ξ
vd1 , (21)

where β = c2
sd/v2

Ad and λ is the normalized phase velocity given by λ = vph/vAd.
The perturbed number densities of the species α have been normalized by their
respective background counterparts, the velocities have been normalized by the
dust Alfvén velocity, the perturbed magnetic field components are divided by
the ambient magnetic field B0 and p = ne0/ni0 . Using (17)–(21), the fluctuating
variables ud1 , vd1 , By1 , and ni1 can be expressed in terms of nd1 as

ud1 = λnd1 , (22)

vd1 = −λ cos θ

sin θ

(
λ2 + β′ − [zdβ(1 + σ)/(1 − p)] sin2 θ

λ2 + [zdβ(1 + σ)/(1 − p)] cos2 θ

)
nd1 , (23)

where β′ = zdc
2
sd/v2

Ad,

By1 =
λ2

sin θ

(
λ2 + β′ − [zdβ(1 + σ)/(1 − p)] sin2 θ

λ2 + [zdβ(1 + σ)/(1 − p)] cos2 θ

)
nd1 , (24)

ni1 =
(

sin2 θ + cos2 θ

(
λ2 + β′ − [zdβ(1 + σ)/(1 − p)] sin2 θ

λ2 + [zdβ(1 + σ)/(1 − p)] cos2 θ

))
nd1 . (25)

Using (17)–(25), we obtain the dispersion relation which reads as

λ2 =
1
2

[(
1 +

zdβ(1 + σ)
1 − p

sin2 θ − β′
)

±

√(
1 +

zdβ(1 + σ)
1 − p

sin2 θ − β′
)2

+ 4 cos2 θβ′
]
. (26)

Equation (26) is the dispersion relation for obliquely propagating two-dimensional
dust magnetosonic waves propagating in a dusty plasma. The dispersion relation
shows that the propagation of the low-frequency dust magnetosonic wave depends
on the angle θ, the ratio of the ion to electron concentration, the plasma beta
(the ratio of kinetic to magnetic energy) given by β here, the charge number
associated with the dust, and the relative concentration of electrons p. The upper
(positive) and lower (negative) signs represent the fast and slow dust magnetosonic
modes, respectively. We have selected a range of p, θ, and β values and the slow
magnetosonic wave has been found to be a damped mode for all of them. We
therefore plot the fast magnetosonic wave against the different plasma parameters
to investigate the linear and nonlinear behavior in this study.
Figure 1 shows the variation of the phase velocity of a fast dust magnetosonic

wave with the electron concentration p. It indicates an increase in the phase velocity
with increasing values of p in a three-component dusty plasma. It is also found that
the phase velocity of the wave increases with increase of the angle θ (the angle the



Linear and nonlinear properties of a dust magnetosonic wave 223

Figure 1. Variation of the phase velocity λ of a fast dust magnetosonic wave with respect to
p (=ne0/ni0 ). Other physical parameters are taken arbitrarily as σ = 0.02, θ = 15◦, β = 0.1,
and zd = 100.

Figure 2. The normalized phase velocity λ of a fast dust magnetosonic wave versus the
obliqueness angle θ for a fixed value of p = 0.01. The other physical parameters are the
same as in Fig. 1.

ambient magnetic field makes with the x-axis) (see Fig. 2). However, it should be
noted that the results are valid only for small values of angle θ.
Figure 3 shows that the phase velocity of the wave increases with increasing β

meaning thereby that the propagation properties of the dust magnetosonic wave
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Figure 3. Variation of the linear phase velocity λ with increasing values of β (=c2
sd/v2

Ad).
The other parameters are the same as in Figs 1 and 2.

become significant for high-beta plasmas. It is worth noting here that all the above-
mentioned features occur due to the minus sign appearing in the equations due to
negatively charged dust. This leads to a competition between the terms β′ and
[zdβ(1 + σ)/(1 − p)] sin2 θ which give rise to all the interesting features that we
observe both in the linear and nonlinear regimes. It should be mentioned that the
slow magnetosonic wave is not a damped mode in the electron–ion [31] or electron–
positron–ion [17] plasma but it is for a dusty plasma with negatively charged dust
owing to the reason described above. If we set ni −→ 0, md −→ mi, nd −→ ni, and
−ezd −→ e, we retrieve the dispersion relation for an electron–ion plasma given
in [32].
The dispersion relation given by (26) differs from the one derived in [18] because

the authors there ignored the pressure contribution due to electrons by assuming
that ne(Te + Ti) � nd(Td + Ti). Note that we consider here cold magnetized dust
as opposed to the hot magnetized dust assumed by Shukla and Rahman [18]. It
turns out that the above-mentioned assumption hid the interesting information
introduced by retaining the electron pressure term, i.e. the competition between
the terms β′ and [zdβ(1 + σ)/(1 − p)] sin2 θ giving rise to novel features of the θ
and β dependences of the dust magnetosonic wave. It is also worth mentioning
that if we take positive dust then one can get both the slow and fast modes of the
magnetosonic wave as given in [17] for electron–positron–ion plasmas.

3. Nonlinear analysis
We develop the nonlinear KP soliton for the fast two-dimensional magnetosonic
modes (the slow mode is a damped mode in the present study) in a dusty plasma
by normalizing (4) and (11)–(14), using (15) and (16) and collecting terms of the
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order ε2 and ε5/2 . In order ε2 , we have the z-component of the momentum equation,

λ
∂wd1
∂ξ

= sin θ
∂By1

∂η
− cos θ

∂Bz1

∂ξ
+

zdβ(1 + σ)
1 − p

∂ni1
∂η

− β
∂n∗

d1

∂η
(27)

and the z-component of the magnetic induction equation,

λ
∂Bz1

∂ξ
= − cos θ

∂wd1
∂ξ

+
λvAd
Ω∗
cd

∂2vd1
∂ξ2 . (28)

Using (23)–(25), we obtain from (27) and (28)

∂wd1
∂ξ

=
λΘ1

(λ2 − cos2 θ)
∂nd1
∂η

+
Θ2λ

2vAd cos2 θ

Ω∗
cd sin θ(λ2 − cos2 θ)

∂2nd1
∂ξ2 , (29)

where

Θ1 =
(

1
λ2 + [zdβ(1 + σ)/(1 − p)] cos2 θ

)

×
(

λ2
(

λ2 + β′ − zdβ(1 + σ)
1 − p

sin2 θ

)
+

zdβ(1 + σ)
1 − p

(
λ2 +

zdβ(1 + σ)
1 − p

cos2 θ

)

×
[
sin2 θ + cos2 θ

(
λ2 + β′ − [zdβ(1 + σ)/(1 − p)] sin2 θ

λ2 + [zdβ(1 + σ)/(1 − p)] cos2 θ

)]

− β′
(

λ2 +
zdβ(1 + σ)

1 − p
cos2 θ

))
,

Θ2 =
(λ2 + β′ − [β(1 + σ)/(1 − p)] sin2 θ)
(λ2 + [zdβ(1 + σ)/(1 − p)] cos2 θ)

,

and

∂Bz1

∂ξ
= − Θ1 cos θ

(λ2 − cos2 θ)
∂nd1
∂η

− Θ2λvAd cos θ

Ω∗
cd sin θ

(1 + cos2 θ)
(λ2 − cos2 θ)

∂2nd1
∂ξ2 . (30)

Collection of ε5/2 terms give us the following set of equations:

(i)

−λ
∂

∂ξ
nd2 +

∂

∂ξ
ud2 = f1 (31)

where

(ii)

f1 = − 1
vAd

∂

∂τ
nd1 − ∂

∂ξ
(nd1ud1) − ∂

∂η
wd1 ,

− λ
∂

∂ξ
ud2 + sin θ

∂

∂ξ
By2 +

β(1 + σ)
1 − p

∂

∂ξ
ni2 − β

∂

∂ξ
nd2 = f2 (32)

where
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(iii)

f2 = − 1
vAd

∂

∂τ
ud1 + λnd1

∂

∂ξ
ud1 − By1

∂

∂ξ
By1 − ud1

∂

∂ξ
ud1 ,

−λ
∂

∂ξ
vd2 − cos θ

∂

∂ξ
By2 = f3 (33)

where

(iv)

f3 = − 1
vAd

∂

∂τ
vd1 + λnd1

∂

∂ξ
vd1 − ud1

∂

∂ξ
vd1 ,

− λ
∂

∂ξ
By2 − cos θ

∂

∂ξ
vd2 + sin θ

∂

∂ξ
ud2 = f4 (34)

where

(v)

f4 = − 1
vAd

∂

∂τ
By1 − ∂

∂ξ
(ud1By1) − λvAd

Ω∗
cd

∂2

∂η∂ξ
ud1 +

λvAd
Ω∗
cd

∂2

∂ξ2 wd1 − sin θ
∂

∂η
wd1,

− λ
∂

∂ξ
ni2 + sin2 θ

∂

∂ξ
ud2 − cos θ sin θ

∂

∂ξ
vd2 = f5 (35)

where

(vi)

f5 = − 1
vAd

∂

∂τ
ni1 − 2 sin θ cos2 θ

∂

∂ξ
(ud1By1) − sin2 θ

∂

∂ξ
(ni1ud1)

+ cos θ sin θ
∂

∂ξ
(ni1vd1),

cos3 θ
∂

∂ξ
(vd1By1) − vAd cos θ sin θ

Ωcd
∂2

∂ξ2 Bz1 − ∂

∂η
wd1 − vAd

Ωcd
cos2 θ

∂2

∂η∂ξ
By1

− cos θ
∂wd1
∂η

+
λvAd
Ω∗
cd

∂2vd1
∂η∂ξ

= 0. (36)

Solving (29)–(33) and using the dispersion relation (given by (26)), we arrive at the
following expression:

Vf1 +Wf2 + Xf3 + Yf4 + Zf5 = 0, (37)

where

V =
(

−λ sin2 θ

(
λ2 +

zdβ(1 + σ)
1 − p

cos2 θ

))

−
(

(−λ2 + cos2 θ)
(

λ2 − zdβ(1 + σ)
1 − p

sin2 θ

))
,

W = −λ2(−λ2 + cos2 θ),
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X =
(

cos θ sin θ

(
λ2 +

zdβ(1 + σ)
1 − p

cos2 θ

))
+

zdβ(1 + σ)
1 − p

cos θ sin θ,

Y = λ sin θ

(
λ2 +

zdβ(1 + σ)
1 − p

cos2 θ

)
and Z = −λ

zdβ(1 + σ)
1 − p

.

Now differentiating (35) with respect to ξ, using equations of the order ε2 and
ε5/2 , and expressing all the quantities in terms of one variable φ (assuming nd1/nd0 =
φ), we get after some algebraic manipulation the desired KP equation:

∂

∂ξ

(
∂

∂τ
φ + A

∂

∂ξ
φ2 + C

∂3

∂ξ3 φ

)
+ D

∂2

∂η2 φ = 0. (38)

The coefficients read as A = A1/A0 , C = C1/A0 , and D = D1/A0 , where

A0 =
−V sin θΓ2 − WΓ∗

3 sin θΓ2 + Xλ cos θΓ1 − Y λ2Γ1 − ZΓ2Γ3 sin θ

vAd sin θΓ2
,

A1 =
(

1
2 sin2 θΓ2

2

)
(−2V Γ∗

3 sin2 θΓ2
2 + WλΓ∗

3 sin2 θΓ2
2 + Wλ4Γ2

1

+ Xλ cos θ sin2 θΓ∗
3Γ1Γ2 − Xλ2 cos θ sin θΓ1Γ2 − 2Y λ2Γ∗

3Γ1Γ2 sin2 θ

− 4Zλ2Γ∗
3Γ2 cos2 θ sin2 θ − 2Z sin4 θΓ2

2Γ
∗
3Γ3

− 2Zλ cos2 θ sin2 θΓ1Γ2Γ3 − 2Zλ3Γ2
1 cos4 θ),

C1 =
Y λvAdΩcdΓ9 − ZvAdΩ∗

cdΓ7 sin θ cos2 θ

ΩcdΩ∗
cd

,

D1 =
(

1
ΩcdΩ∗

cdΓ2(Γ10 − Γ5) sin θ

)
(−V ΩcdΩ∗

cdΓ2Γ4Γ10 sin θ

− YvAdΩcdΓ2Γ∗
3Γ4 sin θ + Y λvAdΩcdΓ2Γ4Γ8 sin θ − Y ΩcdΩ∗

cdΓ2Γ4Γ10 sin2 θ

− ZvAdΩ∗
cdΓ2Γ4Γ6 cos2 θ sin2 θ − ZΩcdΩ∗

cdΓ2Γ4Γ10 sin θ

− Zλ2vAdΩ∗
cdΓ1Γ4 cos2 θ),

with

Γ1 = λ2 + β′ − zdβ(1 + σ)
1 − p

sin2 θ,

Γ2 = λ2 +
zdβ(1 + σ)

1 − p
cos2 θ, Γ3 =

sin2 θΓ2 + cos2 θΓ1

Γ2
,

Γ∗
3 =

λ2Γ1 + [zdβ(1 + σ)/(1 − p)]Γ2Γ3 − β′Γ2

λΓ2
,

Γ4 =
(

2(λ2Γ1 + [zdβ(1 + σ)/(1 − p)]Γ2Γ3 − β′Γ2)
λΓ2

)
,
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Γ5 =
vAdλ

2Γ1

Ω∗
cdΓ2 sin θ

,

Γ6 =
λ2(−λ2 + cos2 θ)Γ1 + [zdβ(1 + σ)/(1 − p)]Γ2Γ3 − β′Γ2

(−λ2 + cos2 θ)Γ2
,

Γ7 =
vAdλ

3 cos θ

Ω∗
cd(−λ2 + cos2 θ) sin θ

Γ1

Γ2
,

Γ8 = −λΓ6 , Γ9 = −
(

λΓ7 +
vAdλ

2Γ1

Ω∗
cdΓ2 sin θ

)
, Γ10 = − vAdλ

2Γ1

Ω∗
cdΓ2 sin θ

.

In order to find the steady-state solution of the KP equation, i.e. (3), we have
transformed the coordinates ξ, η, and τ into a new frame that moves with the
soliton, i.e. χ = (kξ ξ + kη η − V0τ)/�, where V0 is the constant speed of the wave
frame. Following [30], the steady-state solution of (3) can be written as

φ = φm sech2χ, (39)

where φm is the maximum amplitude of an obliquely propagating dust magneto-
sonic soliton given by φm = 3(V0 − D)/2A and Δ is the width of the soliton
which bears the relation Δ = [4C/(V0 − D)]1/2 . The subtle balance between the
coefficients A, C, and D results in the formation of the soliton in the KP equation
as seen from the relations of maximum amplitude and width of the soliton.
Using (29), (30), and (39), we get expressions for the z-components of the velocity

and magnetic field:

wd1 =
(

λΘ1

(λ2 − cos2 θ)
− 2 tanh χ cos2 θvAdλ

2Θ2

sin θΩ∗
cd�(λ2 − cos2 θ)

)
φ, (40)

Bz1 =
(

− Θ1 cos θ

(λ2 − cos2 θ)
+

2Θ2λvAd cos θ tanhχ

Ω∗
cd� sin θ

(1 + cos2 θ)
(λ2 − cos2 θ)

)
φ. (41)

Equations (40) and (41) give us useful information regarding variations in the
transverse direction (perpendicular to the plane of the ambient magnetic field), on
the basis of which one can predict the stability of the solitary structure, which is
beyond the scope of this work.
Using (8), (13), (26), and (39), we find the expressions for the normalized electric

field components of a two-dimensional obliquely propagating dust magnetosonic
wave in e–d–i plasmas,

cEx

B0
= − (1 − p) sin θ

pvAd
wd1 +

(
sin θ

pvAd
Θ3 + Θ4

)
φ, (42)

cEy

B0
=

(1 − p) cos θ

pvAd
wd1 +

(
−cos θ

pvAd
Θ3 + Θ5

)
φ, (43)

cEz

B0
=

(
(2 − p)

p
λ sin θ − λ cos2 θ(λ2 + β′ − [zdβ(1 + σ)/(1 − p)] sin2 θ)

sin θ(λ2 + [zdβ(1 + σ)/(1 − p)] cos2 θ)

)
φ, (44)

where Θ3 = Π1 − Π2 − Π3 + Π4

Π1 =
{

λ

(
λ2 +

[
zdβ(1 + σ)

(
λ2 +

zdβ(1 + σ)
1 − p

cos2 θ

)
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×
(

sin2 θ + cos2 θ

(
λ2 + β′ − [zdβ(1 + σ)/(1 − p)] sin2 θ

λ2 + [zdβ(1 + σ)/(1 − p)] cos2 θ

))]
(1 − p)−1

×
[

−β′
(

λ2 +
zdβ(1 + σ)

1 − p
cos2 θ

)]}

×
[
(λ2 − cos2 θ)

(
λ2 +

zdβ(1 + σ)
1 − p

cos2 θ

)]−1

,

Π2 =
[
2 tanh χ cos2 θvAd

(
λ2 + β′ − zdβ(1 + σ)

1 − p
sin2 θ

)]

×
[
sin θΩ∗

cd�(λ2 − cos2 θ)
(

λ2 +
zdβ(1 + σ)

1 − p
cos2 θ

)]−1

λ2 ,

Π3 =
[
2vAd tanhχ

(
λ2 + β′ − zdβ(1 + σ)

1 − p
sin2 θ

)
λ2

]

×
[
sin θΩ∗

cd�
(

λ2 +
zdβ(1 + σ)

1 − p
cos2 θ

)]−1

,

Π4 = −
[
2vAdβ(1 + pσ) tanhχ sin θ

×
(

sin2 θ + cos2 θ

(
λ2 + β′ − [zdβ(1 + σ)/(1 − p)] sin2 θ

λ2 + [zdβ(1 + σ)/(1 − p)] cos2 θ

))]

× [Ωcd(1 − p)�]−1 +
2vAdβ

′ tanhχ

Ωcd� ,

Θ4 =
(1 − p)

p

2 tanh χ(λ2 + β′ − [zdβ(1 + σ)/(1 − p)] sin2 θ)λ2

Ω∗
cd(λ2 + [zdβ(1 + σ)/(1 − p)] cos2 θ)�

+
[
2β tanh χ

(
sin2 θ + cos2 θ

(
λ2 + β′ − [zdβ(1 + σ)/(1 − p)] sin2 θ

λ2 + [zdβ(1 + σ)/(1 − p)] cos2 θ

))]

× (pΩcd�)−1 − 2(1 − p)β tanh χ

pΩcd� ,

and

Θ5 =
(1 − p)

p

[
2 tanh χ cos θ

(
λ2 + β′ − β(1 + σ)

1 − p
sin2 θ

)
λ2

]

×
[

�p sin θ

(
λ2 +

zdβ(1 + σ)
1 − p

cos2 θ

)]−1

.

It should be noted that (42)–(44) are useful for analysis of acceleration of the dust
particle via vp × B acceleration [33–35], where the dust particle can be accelerated
up to v ∼ cE/B0 , by the fast dust magnetosonic waves with effects of finite
β, concentration and temperature of the species, and obliqueness angle θ. The
calculation and discussion on particle acceleration and consequently plasma heating
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Figure 4. Variation of the maximum amplitude of the fast dust magnetosonic soliton as a
function of χ for different values of the ratio of electron to ion concentration, p, in an e–d–i
plasma. It is found that the maximum amplitude decreases with increasing values of p. The
other parameters are σ = 0.02, θ = 15◦, β = 0.01, and zd = 100.

by the slow and fast modes of magnetosonic waves are given in general in the above-
mentioned references.
Finally, with the application of (8), (26), (39), (40), and (41), we find the expres-

sions for the normalized current density components of two-dimensional obliquely
propagating dust magnetosonic waves in three-component dusty plasmas,

jx =
(

2v2
Ad tanhχ(λ2 + β′ − [zdβ(1 + σ)/(1 − p)] sin2 θ)λ2

�Ωcd sin θ(λ2 + [zdβ(1 + σ)/(1 − p)] cos2 θ)

)
φ, (45)

jy =
(

2v2
Ad tanh χΘ2

�Ωcd

)
φ, (46)

jz = −
(

2v2
Ad tanhχ(λ2 + β′ − [zdβ(1 + σ)/(1 − p)] sin2 θ)λ2

�Ωcd sin θ(λ2 + [zdβ(1 + σ)/(1 − p)] cos2 θ)

)
φ. (47)

Equations (45)–(47) are the parallel (jx , jy ) and perpendicular (jz ) currents which
are useful in the statistical spectrum for weak turbulence produced in the plasmas
due to the finite incoherent fluctuations of magnetosonic solitary waves [31,36,37]
and they have a strong influence on the transport properties of the plasmas. The
perpendicular current jz appears because of perpendicular inertial dust motion,
i.e. polarization drifts and E × B0 drift as well.
Figure 4 shows the variation of the maximum amplitude, φm, of the fast KP

soliton as a function of χ for different values of the electron concentration p. We
find that φm decreases with increasing values of p. It should be noted that we have
chosen an intermediate value of β in order to clearly see the effect of electron
concentration p on the shape of the soliton. The relation of φm with the angle θ
that the magnetic field makes with the x-axis is also investigated. As the results
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Figure 5. Variation of the maximum amplitude of the density as a function of χ for small
values of angle θ which the ambient magnetic field makes with the x-axis. We find that the
density increases as we increase the angle θ from 0◦ to 20◦.

are valid only for small values of angle θ, we vary θ from 0◦ to 20◦. We find that
the amplitude of the soliton increases as we increase the angle θ (see Fig. 5). It is
worth mentioning that the amplitude of the soliton exhibits a compressive (hump)
nature for the range of plasma parameters used here.
Figure 6 shows the relationship between the maximum amplitude (φm) of the

KP soliton with increasing values of β. Again, the amplitude of the soliton exhibits
a compressive nature. It is found that increasing the value of β enhances the
amplitude of the soliton as is evident from Fig. 6.

4. Summary and conclusions
In this paper, we have investigated the linear and nonlinear properties of an
obliquely propagating magnetosonic wave in a three-component dusty plasma. We
have ignored the electron and ion inertia to study the low-frequency wave related
to dust dynamics. We have derived the linear and nonlinear relations for small-
amplitude perturbations. The linear analysis shows that the dispersion properties of
the low-frequency dust magnetosonic wave depend on the angle θ that the ambient
magnetic field makes with the x-axis, the ratio of ion to electron concentration,
the plasma beta (the ratio of kinetic to magnetic energy) given by β, the charge
number associated with the dust, and the relative concentration of electrons p.
It is found that retaining the electron pressure term gives rise to novel features
in the dust magnetosonic wave. The slow dust magnetosonic wave is found to be
the damped mode and, therefore, the only propagating mode in a dusty plasma
is the fast magnetosonic mode. We also derive the nonlinear KP equation for
small-amplitude perturbations and find that it admits compressive solitons. We
find that the amplitude of the soliton enhances as we increase the values of p, θ,
and β.
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Figure 6. Variation of the maximum amplitude of the density as a function of χ for different
values of β. We find that the amplitude of the compressive soliton increases as we increase
the values of β.
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