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Modified Debye screening potential in a magnetized quantum plasma
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The effects of quantum mechanical influence and uniform static magnetic field on the Shukla–Nambu–
Salimullah potential in an ultracold homogeneous electron–ion Fermi plasma have been examined in
detail. It is noticed that the strong quantum effect arising through the Bohm potential and the ion
polarization effect can give rise to a new oscillatory behavior of the screening potential beyond the
shielding cloud which could explain a new type of possible robust ordered structure formation in the
quantum magnetoplasma. However, the magnetic field enhances the Debye length perpendicular to the
magnetic field in the weak quantum limit of the quantum plasma.

© 2009 Elsevier B.V. All rights reserved.
There has been a growing interest in quantum plasmas in re-
cent years [1–3]. Particular emphasis has been given to microelec-
tronics [4,5], astrophysical and cosmological objects [6,7], laser-
produced plasmas [8], and in Fermi gas in general [9]. To study
quantum effects in plasmas, the quantum hydrodynamic (QHD)
model has been developed [9–12]. Using QHD model, a number
of works on new electrostatic and electromagnetic waves in un-
magnetized quantum plasmas and their modifications have been
reported in the literature [13–16]. Some limited studies have been
made in quantum magnetoplasmas [17–19].

Recently, the quantum effects on the Debye shielding problem
in an ultracold unmagnetized plasma have been examined by a
number of workers [20–23]. To our best knowledge, the effect of
external magnetic field on the Debye shielding in quantum plas-
mas has not been reported in the literature. Basically the sym-
metric Debye–Hückel potential arises due to the quasi-neutrality
in the unmagnetized plasma. However, in the presence of a static
magnetic field strong anisotropy may cause an additional shielding
potential known as the Shukla–Nambu–Salimullah (SNS) potential
[24–26]. In this Letter, we examine the effect of static magnetic
field on the fundamental problem of SNS potential in a general
quantum magnetoplasma. The Debye length is found to be signif-
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icantly modified in the quantum magnetoplasma in any direction
perpendicular to the magnetic field.

Basically, if a plasma is cooled to an extremely low-temperature,
the de Broglie wavelength of the charge carriers may be compa-
rable to the various scale-lengths of the systems, viz., the Debye
length of the plasma, Larmor radius, etc. In such situations, the
ultracold plasma must behave as a Fermi gas and the quantum
mechanical effects are expected to play a vital role in the behavior
of the collective interactions of the charged particles. However,
a plasma is a plasma if the Debye length is smaller than the
size of the plasma systems. So, one could say that when the de
Broglie wavelength of carriers is comparable to the Debye length,
the quantum mechanical effect must be significant in the Debye
shielding.

We consider a collisionless and homogeneous ultracold plasma
consisting of electrons and ions in the presence of a uniform ex-
ternal magnetic field (B0‖ẑ). We assume that the electrons and
ions possess significant quantum mechanical effects in an ultra-
cold Fermi gas, an electron–ion plasma. Fermi plasmas obey the
pressure law [1,4,10]

p j = m j V 2
F jn

3
j /3n2

j0, (1)

where j = e for electrons and j = i for ions, m j is the mass,
V F j = (2kB T F j/m j)

1/2 is the Fermi speed, kB is the Boltzmann con-
stant, and T F j is the Fermi temperature. Here, n j is the total num-
ber density with its equilibrium value n j0. It may be mentioned
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that in a three-dimensional quantum plasma, the total pressure
should be proportional to n(N+2)/N where N = 3. However, ac-
cording to Manfredi [1] this choice is not good as the results of
QHD model differ from Wigner–Poisson model. Therefore, the total
pressure of the three-dimensional quantum plasma is described by
Eq. (1). Similar pressure law was employed by Shukla and Ali [20]
for three-dimensional quantum plasmas.

The linearized equation of motion with Bohm potential and
Fermi temperature for the jth species in a homogeneous quantum
plasma in the presence of an external magnetic field B0 is

∂v j1

∂t
= − q j

m j
∇φ1 + q j

m jc
v j1 × B0

− ∇p j1

m jn j0
+ h̄2

4m2
j n j0

∇(∇2n j1
)
, (2)

and the continuity equation is

∂n j1

∂t
+ n j0∇ · v j1 = 0, (3)

where q j and m j are the charge and mass of the jth species. Here,
φ1 is the perturbed potential of an electrostatic wave, h̄ is the
Planck’s constant divided by 2π . The quantum effect in Eq. (2) ap-
pears through the Fermi temperature T F j and the last term known
as the Bohm potential.

Following the standard techniques [19] and assuming the per-
turbations in the form ∝ e−i(ωt−k·r) , the dielectric susceptibility of
the plasma can be obtained by solving Eqs. (2) and (3) to yield

χ j = k2⊥
k2

ω2
pj f j

ω2
cj − ω2 f 2

j

− k2‖
k2

ω2
pj

ω2

1

f j
, (4)

where the quantum factor is given by

f j = 1 − k2 V 2
F j

ω2
(1 + γ j), (5)

and

γ j = h̄2k2

8m jkB T F j
. (6)

Here, both the electrons and ions are considered thermal and mag-
netized. Taking k2 V 2

F e(1 + γe) � ω2 for electrons, we obtain

χe � 1

k2λ′2
F e

, (7)

where

λ′
F e = V F e

ωpe

√
1 + γe. (8)

For ions, we assume k2 V 2
F i(1 + γi) 
 ω2 
 ω2

ci , and consequently,
f i ≈ 1.

Thus, the dielectric function of the quantum magnetoplasma re-
duces to

ε(ω,k) = 1 + 1

k2λ′2
F e

+ k2⊥
k2

αi − k2‖
k2

ω2
pi

ω2
, (9)

where αi = ω2
pi/ω

2
ci . For consistency, we analyze keeping quan-

tum effects for both electrons and ions for an ultracold quan-
tum plasma. However, for typical conditions k2 V 2

F e � ω2 and
k2 V 2

F i(1 + γi) 
 ω2 
 ω2
ci , we obtained the dielectric function of

the quantum magnetoplasma given by Eq. (9).
Now, the electrostatic potential around a test charge in the

presence of an electrostatic mode (ω,k) in a uniform plasma,
whose dielectric response function is given by Eq. (9) is [27,28]
Φ(x, t) =
∫

qt

2π2k2

δ(ω − k · vt)

ε(ω,k)
exp(ik · r)dk dω, (10)

where r = x − vtt,vt is the velocity vector of a test charge particle,
and qt is its charge. Substituting Eq. (9) into Eq. (10), we obtain
the potential due to the test charge as

Φ(x, t) = qt

2π2

∫
δ(ω − k · vt)eik·rk⊥ dk⊥ dθ dk‖ dω

k2‖ + k2⊥(1 + αi) + k′2
F e − k2‖ω2

pi/ω
2
, (11)

where k′
F e ≡ 1/λ′

F e . Assuming vt ‖ ẑ and evaluating ω- and θ -
integrations, we obtain

Φ(ρ, ξ) = qt

π

∫
J0(k⊥ρ)eik‖ξk⊥ dk⊥ dk‖

k2‖ + k2⊥(1 + αi) + k2
F e[1/(1 + γe) − M−2] , (12)

where M = vt/C F s, C F s = ωpiλF e and λF e = V F e/ωpe = 1/kF e .
Now, we consider two specific cases of the quantum plasma, viz.
the weak and the strong quantum considerations.
Case I: γe 
 1.

This condition γe 
 1 is equivalent to neglecting the Bohm po-
tential term. The quantum effect is then taken through the Fermi
temperature. Following Refs. [24,25], we finally obtain after per-
forming the k‖- and k⊥-integrations

Φ(ρ, ξ) = qt√
1 + αi

e−
√

(1−M−2)/(1+αi)(ρ
2+ξ2(1+αi))

1/2/λF e

(ρ2 + (1 + αi)ξ
2)1/2

. (13)

We express Eq. (13) in the dimensionless normalized form as

Φ ′(ρ ′, ξ ′) ≡ Φ(ρ ′, ξ ′)
qt/λF e

= 1√
1 + αi

exp [−
√

1−M−2

1+αi
(ρ ′2 + (1 + αi)ξ

′2)1/2]
(ρ ′2 + (1 + αi)ξ

′2)1/2
,

(14)

where

ρ ′ ≡ ρ

λF e
, ξ ′ ≡ ξ

λF e
. (15)

Case II: γe � 1 (h̄2k2 � 8mekB T F e).
In this limit, the Bohm potential effect dominates over Fermi

pressure effect. We can then write Eq. (12) as

Φ(ρ, ξ) = qt

π

∫
J0(k⊥ρ)eik‖ξk⊥ dk⊥ dk‖

k2‖ + k2⊥(1 + αi) + 1/(λ2
F e + λ4

qek2) − M−2/λ2
F e

,

(16)

where the quantum effect associated with the electrons arises
through Fermi–Debye length λF e and the wavelength associated
with the quantum effect is

λqe =
(

h̄2

4m2
eω

2
pe

)1/4

. (17)

Introducing dimensionless quantities as ρ ′ = ρ/λqe, ξ
′ = ξ/λqe and

K = kλqe , Eq. (16) reduces to

Φ ′(ρ ′, ξ ′)

≡ Φ(ρ ′, ξ ′)
qt/λqe

= 1

π

∫ J0(K⊥ρ ′)eiK‖ξ ′
(K 2

q + K 2)K⊥ dK⊥ dK‖
1 + (K 2‖ + K 2⊥ + K 2

q )[K 2‖ + K 2⊥(1 + αi) − M−2
q ] . (18)

The denominator of Eq. (18) is biquadratic in K‖ , so we can write
it as
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Φ ′(ρ ′, ξ ′) = 1

π

∫ J0(K⊥ρ ′)eiK‖ξ ′
(K 2

q + K 2)K⊥ dK⊥ dK‖
(K 2‖ + K 2

0)(K 2‖ − K 2
1 )

, (19)

where

K 2
0 = K 2

q + K 2⊥(1 + αi) − M−2
q ,

K 2
1 = 1 + K 2

q (K 2⊥(1 + αi) − M−2
q )

M−2
q − K 2

q − K 2⊥(1 + αi)
, (20)

and Mq = vt/Cqs , the quantum ion-acoustic velocity, Cqs = ωpiλqe

and Kq = λF e/λqe . After performing the K‖-integration and follow-
ing Refs. [24–26], we can separate SNS potential from Eq. (19),
which comes out to be

Φ ′
D(ρ ′, ξ ′) = −

1∫
Kq

(
K 2⊥ − K 2

0 + K 2
q

K0(K 2
0 + K 2

1 )

)
J0(K⊥ρ ′)

× e−K0ξ ′
K⊥ dK⊥. (21)

For the strong quantum effect, we must have k2 � 4m2
e V 2

F e/h̄2,
that is K � Kq . Therefore, we choose the lower limit of integration
of Eq. (21) as Kq for the strong quantum consideration. The upper
limit of integration in Eq. (21) is taken as 1 because waves with
wavelength below the effective Debye length do not contribute to
the Debye potential.

Numerical solution and discussion

To better understand the behavior of the potential of a test
charge particle in a quantum plasma, we have numerically solved
Eq. (21). We choose some typical values for laboratory quantum
plasmas [20]: T F e = 300 K and ne ≈ ni = 1.88 × 1019 cm−3 with
arbitrary value of αi = ω2

pi/ω
2
ci . The results of our calculations are

depicted in the form of curves in Figs. 1–4.
Figs. 1 and 2 show the normalized SNS potential as a function

of ρ ′ and ξ ′ in the presence of the static magnetic field. Here, the
quantum effect arises through the Fermi temperature only. Fig. 1
shows the normalized potential as a function of ρ ′ with ξ ′ = 0 for
M = 1.2, αi = 10. In Fig. 2, all parameters are same as in Fig. 1 ex-
cept ρ ′ = 0 and ξ ′ �= 0. Both figures clearly show that the potential
does not remain symmetric with the application of magnetic field.
The screening length in the direction perpendicular to magnetic
field is much increased as compared to that in the direction par-
allel to magnetic field. This result resembles the result of Nambu
and Nitta [25].

Fig. 3 shows the normalized SNS potential with quantum effects
via the Bohm potential and the magnetic field. If we neglect the
magnetic field in our chosen quantum plasma system, we retrieve
the result of Shukla and Eliasson [22]. The normalized potential
of Shukla and Eliasson has been shown by dotted lines in Fig. 3.
The solid line in Fig. 3 shows the effect of the magnetic field on
the potential in the quantum magnetoplasma. We are interested to
explore the effect of the magnetic field in the direction perpendic-
ular to the magnetic field, so we have chosen ξ ′ = 0, Mq = 0.8,
and αi = 10. We observe that with the application of the magnetic
field not only the screening length is increased but also the po-
tential becomes oscillatory in that direction perpendicular to the
magnetic field.

In an unmagnetized ultracold degenerate plasma, the oscilla-
tory behavior of the shielding potential of a static test charge
was already mentioned in Ref. [29]. The oscillatory nature of the
shielding potential pointed out in Ref. [29] is symmetric in all di-
rections in space. Recently, Shukla and Eliasson [22] have shown
Friedel oscillation-like behavior of the symmetric Debye–Hückel
Fig. 1. The plot of the normalized SNS potential Φ ′(ρ ′, ξ ′) without strong quan-
tum effects (Eq. (14)) for ξ ′ = 0, T F e = 300 K, ne ≈ ni = 1.88 × 1019 cm−3, M = 1.2,
αi = 10.

Fig. 2. The variation of the normalized SNS potential Φ ′(ρ ′, ξ ′) without strong quan-
tum effects with ρ ′ = 0. The other parameters are the same as in Fig. 1.

Fig. 3. The plot of Φ ′(ρ ′, ξ ′) (solid line) with strong quantum effects for Mq = 0.8,
αi = 10, and for ξ ′ = 0, T F e = 300 K, ne ≈ ni = 1.88 × 1019 cm−3, λqe = 4.867 ×
10−8 cm. The dashed curve corresponds to Eq. (14) of Shukla and Eliasson [22].

potential of a slowly moving test charge in an unmagnetized quan-
tum plasma ignoring the effect of Fermi temperature. However,
when we take the effect of an external static magnetic field on the
shielding of a slowly moving test charge in a plasma with strong
quantum effect arising through the Bohm potential, we notice that
the symmetry of the Debye–Hückel potential is broken. This is due
to the ion polarization effect in the direction perpendicular to the



2580 M. Salimullah et al. / Physics Letters A 373 (2009) 2577–2580
Fig. 4. The variation of Φ ′(ρ ′, ξ ′) for different values of αi . Solid line corresponds
to αi = 100; dashed line, αi = 50 and αi = 10 for the dotted line. Other parameters
are same as in Fig. 3.

magnetic field [24–26]. In the parallel direction, there is no such
effect observed as the plasma is unaffected by the magnetic field
in this direction. This 1D-oscillatory behavior is due to the ion po-
larization effect in the quantum magnetoplasma.

Fig. 4 shows the effect of the magnetic field on the normal-
ized SNS potential in the quantum plasma via the parameter αi =
ω2

pi/ω
2
ci . From the solid, dashed and dotted curves, we notice that

the amplitude of the oscillatory Debye–Hückel potential increases
with decreasing value of αi .

To summarize, we have explored the effect of the strong quan-
tum limit and the externally applied static magnetic field on
the Debye–Hückel shielding potential of a test particle by using
the quantum magnetohydrodynamic model. The shielding effect
through ion polarization drift also exists in an ultracold degener-
ate plasma similar to classical magnetoplasmas [24,25]. We find
that with the application of magnetic field, the shielding length
is much increased in the direction perpendicular to the direction
of the magnetic field in a degenerate quantum plasma. When a
strong magnetic field is applied, the quantum effect via the Bohm
potential gives rise to an oscillating shielding behavior in the di-
rection perpendicular to the magnetic field. No such effect is found
in the direction parallel to the magnetic field. The shielding due
to strong magnetic field and the quantum effect is independent of
the test particle velocity. Thus, the strong magnetic field and quan-
tum effects modify drastically the usual Debye shielding and show
an oscillating behavior which might give rise to a robust crystal
formation in the quantum magnetoplasma beyond the shielding
cloud. This new oscillatory property of the SNS potential perpen-
dicular to the static magnetic field in the quantum magnetoplasma
is clearly due to the strong quantum effect and the ion polarization
drift contribution.
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