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Fully relativistic analysis of anomalous skin effects for parallel propagating waves in a weakly

magnetized degenerate electron plasma is presented and a graphical comparison is made with the

results obtained using relativistic Maxwellian distribution function [G. Abbas, M. F. Bashir, and G.

Murtaza, Phys. Plasmas 18, 102115 (2011)]. It is found that the penetration depth for R- and

L-waves for degenerate case is qualitatively small in comparison with the Maxwellian plasma case.

The quantitative reduction due to weak magnetic field in the skin depth in R-wave for degenerate

plasma is large as compared to the non-degenerate one. By ignoring the ambient magnetic field,

previous results for degenerate field free case are salvaged [A. F. Alexandrov, A. S. Bogdankevich,

and A. A. Rukhadze, Principles of Plasma Electrodynamics (Springer-Verlag, Berlin/Heidelberg,

1984), p. 90]. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4894698]

I. INTRODUCTION

Collisionless wave penetration is a fundamental phe-

nomenon that is important for a number of applications, in

particular, as a mechanism of collisionless heating of mag-

netically confined, laser and low temperature (industrial)

plasmas. The effect was first identified by Landau,1 who dis-

covered the temporal collisionless damping of an infinite (in

space) wave. This is particularly known as Landau damping.

He also considered the boundary value problem, yielding a

spatial decay of the longitudinal wave launched from the

plasma boundary. The spatial decay of the transverse (elec-

tromagnetic) wave due to the wave-particle interaction was

studied later2,3 and is usually referred to as the anomalous

skin effect. In the normal skin effect regime in metallic plas-

mas, the wave vector of the electromagnetic wave obeys the

relation kn� (ix/�)1=2. On the other hand, at low tempera-

tures, the interaction between the current and the electric

field becomes non-local, and the skin effect becomes anoma-

lous.4,5 The wave vector is independent of the electron colli-

sional frequency � and become proportional to kas� (ix)1=3.

Here x is the frequency of an electromagnetic wave. For

ordinary metals, the electron gas obeys Fermi statistics. At

the frequencies usually employed in radio engineering

(e.g., x� 1010 s�1 and xp� 1015 – 1010 s�1), the condition

for anomalous skin effect x � xp is satisfied within a large

margin.

The theory of anomalous skin-effect was originally

developed for metals6 and for plasmas.7 The developed theo-

retical methods were naturally extended to metals in the

presence of external magnetic field.8,9 It was shown that the

presence of the magnetic field weakly affects the anomalous

skin effect in a certain region of fields and frequencies. The

application of static magnetic fields to thin metal films has

resulted in a variety of finite size and resonance effects.10

The anomalous skin effects in solid state plasmas have

been studied by number of authors, e.g., Dragila11 studied

the surface waves in the regime of the anomalous skin effect.

Mattie12 numerically analyzed the laser energy absorption

and transmission by the anomalous skin effect in hot plasmas

and compared results with Weibel.13 In some applications,

e.g., in the interaction of ultrashort laser pulses with solid

targets, the relativistic effects also become important in

describing the anomalous skin effects.14–16

In an earlier investigation, the anomalous skin effects in

a classical relativistic parallel propagating weakly magne-

tized electron plasma waves have been discussed using rela-

tivistic Maxwellian distribution function.18 Subsequently,

the high frequency parallel and perpendicular propagating

modes were investigated in a weakly magnetized relativistic

degenerate plasma having number densities of the order of

1026–1034 cm�3 and an ambient magnetic field of the order

of 109–1010G. This investigation was carried out in the lim-

its, i.e., x> k.v, X.19,20 However, these have not been dis-

cussed yet to describe the anomalous skin effects for

relativistic weakly magnetized degenerate plasmas. A useful

formulation of anomalous skin effect has been given for non

relativistic and ultrarelativistic unmagnetized degenerate

plasma.17 In the present investigation, we derive an explicit

expression for the anomalous skin effects for weakly magne-

tized parallel propagating relativistic degenerate plasma

waves and compare it with our previous results.18 The modes

may be useful to describe the linear behavior of the plasma

wave absorption exist in the superdense objects having

weakly magnetized plasma, i.e., X0/x0p< 1.

II. DISPERSION RELATIONS OF RELATIVISTIC
R-& L-WAVES IN A WEAKLY MAGNETIZED
DEGENERATE PLASMA

In this section, we analyze anomalous skin effects in

degenerate plasma. Earlier, Abbas et al.19 discussed parallel

propagating R-& L-waves in relativistic degenerate plasma

using Vlasov Maxwell’s model. The investigation was car-

ried out in the high frequency (i.e., x> k.v) and weakly

magnetized (i.e., jx� k:vj > XÞ limits. In the higha)Electronic mail: gohar.abbas@gcu.edu.pk
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frequency limit x> k.v, it is not possible to investigate space or time scale of damping. This is possible only when the phase

velocity of wave becomes less than particle thermal velocity (Maxwellian plasma) or the Fermi velocity (Degenerate plasma)

(i.e., x < k � ðv; vFÞ. The dispersion relations for left and right circularly polarized waves are given by

x2 � c2k2
z þPxx6iPxy ¼ 0; (1)

where

Pxx ¼ Pyy ¼
8p2e2x2

k2
z

ð1
0

dp
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(2)

where H 1� x
kzv

� �
is the Heaviside function. Here, we mention that we have rewritten Eq. (2) given in Ref. 19 by including

pole contribution under the limit jx� k � vj > X. Rewriting the above components in terms of relativistic energy
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where we have written velocity and derivative of momentum distribution function in terms of relativistic energy as v ¼
c
E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 � m2

oc4
p

; @fo
@jpj ¼

@fo
@E

c
ffiffiffiffiffiffiffiffiffiffiffiffiffi
E2�m2

oc4
p

E and @fo
@jpj dp ¼ @fo

@E dE. In a fully degenerate plasma, the derivative of Fermi distribution

(Heaviside function) is

@f0

@E
¼ � 2

2p�hð Þ3
d EF � Eð Þ: (4)

Applying relativistic Heaviside distribution function Eq. (4) in Eq. (3), the polarization tensor components take the form as
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(5)

where �h ¼ h=2p is a Plank’s constant, EF¼ cFm0c2 is the Fermi energy, cF ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

F

c2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

F

m2
0
c2

r
is the relativistic factor

for degenerate plasma, x0pF and X0 are the non-relativistic plasma and cyclotron frequencies, respectively.
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Inserting Pxx and Pxy from Eq. (5) in Eq. (1), we obtain the relativistic transverse permittivity given by
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A. Skin depth in relativistic un-magnetized case

We now proceed to evaluate the expression of skin depth for a fully relativistic degenerate unmagnetized plasma given by
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It is worth discussing here that in cylindrical geometry, we

get plasma dispersion functions (which can be expanded for

large/small arguments in order to get principle/pole

contribution, respectively). On the other hand, in spherical

geometry, we obtain logarithmic functions which also

behave like plasma dispersion function. Here we note that

in the limit ckz

x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

F � 1
p

=cF

� 	
> 1 implies

c2k2
z

x2 	 c2
F

c2
F�1

, the

Heaviside function H 1� x
kzc

ffiffiffiffiffiffiffiffi
c2

F�1
p

=cF

� 	
¼ 1. The principle

part containing the logarithmic terms yields �2x=

ðkzc
ffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

F � 1
p

=cFÞ þ H:O:T. (Higher order terms) and there-

fore the resulting series is neglected under the condition
c2k2

z

x2 > 1. Thus, the right hand side of the fully relativistic dis-

persion relation Eq. (7) takes the form

k3
z ¼ ip

3

4

xx2
0pF

c3
ffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

F � 1
p : (8)

Equation (8) is cubic in kz having three roots, two of them are

complex conjugate having form (6aþ ib) and one is purely

imaginary. The space scale of damping Im(kz) in degenerate

plasma is obtained by the same positive imaginary parts of the

two complex roots of the equation. The relativistic skin depth

1/Im(kz) for degenerate unmagnetized plasma yields

krel
skF ¼ 1=Im kzð Þ ¼ 2

4

3

c3
ffiffiffiffiffi
c2

F

p
pxx2

0pF

 !1
3

: (9)

The non-relativistic version of the above Eq. (9) discussed

ahead is reported in Ref. 17. It is worth mentioning here a

graphical comparison of the skin depths obtained using rela-

tivistic Maxwellian distribution function (Eq. (27) (Ref. 18))

and the above Eq. (9) for degenerate plasma. Fig. 1 illus-

trates the difference of the anomalous skin effects between

degenerate and non degenerate plasma in a weakly relativis-

tic (a¼ 10 (Solid line)), relativistic (a¼ 1 (Dashed)), and

strongly relativistic (a¼ 0.1(dotted)) regimes. Where the

purple graphical lines are for degenerate plasma and blue

lines for non-degenerate (Maxwellian) plasma. From the

figure, it can be observed that the skin effects for degenerate

plasma are relatively low as compare to non degenerate

FIG. 1. A plot of normalized skin depth “
kskx0p

c ” vs normalized frequency

“ x
x0p

” for transverse wave at ac, aF¼ 10 (solid line), 1 (dashed line), 0.1 (dot-

ted line) showing comparison of penetration depths of non-degenerate (blue

lines) and degenerate (purple lines) plasma.
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(Maxwellian) plasma. The difference between two penetra-

tion depths is less in the weakly relativistic regime and goes

on increasing as we move from weakly relativistic to

strongly relativistic regime. For convenience, we list a com-

parison of the different relativistic regimes. For non-

degenerate case, the factor ac decides the different tempera-

ture ranges for different relativistic regimes given in the

following equation:

T ¼ m0c2=acKB; (10)

whereas for degenerate case, aF decides different density

ranges by the equation

n ¼ 1

a3
F

8pm3
0c3

3h3

� �
; (11)

where ac is the factor for classical plasmas and aF is for

degenerate plasmas. Note that the range 0< (ac, aF) 
 1

corresponds to the strongly relativistic case whereas

(ac, aF)> 1 related to weakly relativistic regimes.

Table I shows the temperature ranges T (MeV) for

non-degenerate plasma and density ranges (n (cm�3)) for

degenerate plasma regimes, where we have taken all the

numerical values in cgs units.

Fig. 2 shows the density/temperature variation for

weakly relativistic ((ac, aF)> 1) and for strongly relativistic

(0 < (ac, aF) < 1) regimes. Here, we have normalized the

variable density/temperature (n/T) with the relativistic den-

sity/temperature (n0� 1029 cm�3/T0� 0.51 MeV) correspond

to ((ac, aF)¼ 1). It can be observed that for greater values of

a0s, the degenerate plasma goes to non relativistic regime

more abruptly as compared to non-degenerate plasma.

Similar behavior can be observed for the strongly relativistic

regime, i.e., in the range 0 < (ac,aF) < 1.

B. Skin effect in relativistic weakly magnetized
degenerate plasma

In some previous investigations,19–21 the applied approxi-

mation
c2k2

z

x2 < 1 is close to the cutoff frequency. While in the

present case, the condition
c2k2

z

x2 > 1 is suitable to discuss pene-

tration depth. In the presence of weak magnetic field and

under the conditions c2k2
z > x2, the transverse permittivity

Eq. (6) takes the form

c5k5
z

x5
0pF

¼3

4
ip

x=x0pFffiffiffiffiffiffiffiffiffiffiffiffi
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F�1
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c2
F�1
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 !

:

(12)

Equation (12) is quintic in kz. Solving equation numerically,

we obtain five roots, one pure imaginary and four complex

having the form �ie; ð6a= þ ib=Þ; ð6c� idÞ. Like unmagne-

tized case discussed before, the space scale of damping is

obtained from the same positive imaginary parts of the two

complex roots, i.e., b/¼ Imkz. Moreover, the transverse skin

depth obtained from the imaginary parts of the roots has

additional weak magnetic field effects. We have plotted
kskx0pF

c vs x
x0pF

in Figures 3 and 4 for weakly relativistic and

strongly relativistic case, respectively. Both the figures show

a comparison of weak magnetic field effects for degenerate

and non degenerate plasma. Again like the unmagnetized

case, the skin depth for R-& L-waves in degenerate plasma

is less than the non-degenerate plasma. From Fig. 3, it is

observed, that, the rise in the values of X0/x0pF (from 0.01 to

TABLE I. Temperature/density ranges for different relativistic regimes

defined by classical/degenerate factor ac/aF.

(ac, aF) 0.1 0.5 1 5 10

T (MeV) 5.116 1.023 0.511 0.10 0.0511

(n (cm�3)) 5.84� 1032 4.67� 1030 4.67� 1029 4.67� 1027 5.84� 1026

FIG. 2. Illustrates the density/temperature variation for the weakly relativis-

tic ((ac, aF)> 1) and for the strongly relativistic (0 < (ac, aF) < 1) regimes.

FIG. 3. A plot of weak magnetic field dependence a ¼ X0

x0p
¼ ð0:01 (dotted),

0.1, (dashed) and 0.15 (solid)) showing the penetration depth for (i) R-wave

and (ii) L-wave in weakly relativistic case ac, aF¼ 10. Blue/purple lines are

for non-degenerate/degenerate plasma, respectively.
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0.15), the skin depth goes on decreasing in case of R-wave,

while it tends to increase in case of L-wave. Furthermore,

the quantitative reduction in the skin depth in R-wave for

degenerate plasma is large as compared to the non-

degenerate one. Whereas the relativistic effects suppress the

magnetic field effects on plasma and resultantly we obtain

minor shifts of the curves in the strongly relativistic regime

in comparison with the weakly relativistic case (Fig. 3).

C. Limiting cases

In ultra-relativistic range (pF 	 m0c), the relativistic

factor takes the form

cF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

F=m2
0c2

q
’ pF=m0c; (13)

therefore the plasma and the cyclotron frequencies, respec-

tively, become

x2
0pF

cF

¼ 4pn0e2c

pF
¼ x2

pF;
X0

cF

¼ eB0c

pF
¼ xcF: (14)

Using the above expressions (Eqs. (5) and (6)), the

dispersion relations for R-& L- waves (Eq. (4)) therefore

become

c2k2
z

x2
¼ 1� 3

2

x2
pF

c2k2
z

1� x2 � k2
z c2

2xkzc
log

xþ kzc

x� kzc

����
����

"

� ipkzc

2x
1� x2

k2
z c2

 !
H 1� x

kzc

� �#
63

x2
pF

c2k2
z

xcF

x

� 1� x
2kzc

log
xþ kzc

x� kzc

����
����� ipkzc

4

@

@x

"

� 1� x2

k2
z c2

 !
H 1� x

kzc

� � !#
; (15)

thus

kultra�rel
skF ¼ 1=Im kzð Þ ¼ 2

4

3

c3

pxx2
pF

 !1
3

: (16)

Similarly in the non-relativistic case (pF � m0c) cF

’ 1þ p2
F=2m2

0c2 � 1Þ, Eq. (4) yields

c2k2
z

x2
¼ 1� 3

2

x2
0pF

v2
Fk2

z

1� x2 � k2
z v2

F

2xkzvF
log

xþ kzvF

x� kzvF

����
����

"

� ipkzvF

2x
1� x2

k2
z v2

F

 !
H 1� x

kzvF

� �#

63
x2

0pF

k2
z v2

F

X0

x
1� x

2kzvF
log

xþ kzvF

x� kzvF

����
����

"

� ipkzvF

4

@

@x
1� x2

k2
z v2

F

 !
H 1� x

kzvF

� � !#
: (17)

In the non-relativistic limit, the factor
ffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

F � 1
p

� vF=c,

therefore

knon�rel
skF ¼ 1=Im kzð Þ ¼ 2

4

3

c2vF

pxx2
0pF

 !1
3

: (18)

The above results for non-relativistic and ultra-relativistic

skin depth are in agreement with the results reported in

Ref. 17.

III. RESULTS AND DISCUSSION

Using the Vlasov-Maxwell’s model, we have derived

the generalized polarization tensor for weakly magnetized

degenerate electron plasma and have obtained relevant com-

ponents for parallel propagation. Under the condition

c2k2
z > x2, we have obtained relativistic anomalous skin

effects in the transverse permittivity in both the field free

and weakly magnetized case. We have presented a graphical

comparison of our present results of the skin depths with the

results reported previously for non degenerate plasmas. It is

observed that the skin effects for degenerate plasma are rela-

tively low as compared to the non degenerate (Maxwellian)

plasma. The difference between two penetration depths

becomes less in the weakly relativistic regime and goes on

increasing in the strongly relativistic regime. In Figure 2, a

general graphical comparison of the different relativistic

FIG. 4. A plot of weak magnetic field variation a ¼ X0

x0p
¼ ð0:01 (dotted),

0.1, (dashed) and 0.15 (solid)) showing the penetration depth for (i) R-wave

and (ii) L-wave in highly relativistic regime ac, aF¼ 0.1. Blue/purple lines

are for non-degenerate/degenerate plasma, respectively.

092108-5 Abbas, Sarfraz, and Shah Phys. Plasmas 21, 092108 (2014)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

150.135.239.97 On: Thu, 18 Dec 2014 07:00:16



ranges (weakly relativistic (a¼mc2/T> 1), strongly relativ-

istic (0< a 
 1)) is shown for density/temperature variation

for degenerate/non-degenerate plasma, respectively. It is

observed that a> 1 the degenerate plasma goes to non rela-

tivistic regime more abruptly as compared to non-degenerate

plasma. Similar behavior can be observed for the strongly

relativistic regime, i.e., in the range 0< a 
 1.

We have plotted
kskx0p

c vs x
x0p

in Figures 3 and 4 for

weakly relativistic and strongly relativistic case, respec-

tively. Both the figures show comparison of weak magnetic

field effects for degenerate and non degenerate plasma.

Again like unmagnetized case, the skin depth for R-&

L-waves in degenerate plasma is less than the non-

degenerate plasma. Looking at magnetic field effects on skin

depth in weakly magnetized plasma (Fig. 3), it is observed

that the rise in the values of X0/x0p (from 0.01 to 0.15), the

skin depth goes on decreasing in case of R-wave, while it

tends to increase in case of L-wave. Furthermore, the quanti-

tative reduction in the skin depth in R-wave for degenerate

plasma is large as compared to the non-degenerate one.

Whereas the relativistic effects suppress the magnetic field

effects on plasma and resultantly we obtain minor shifts of

the curves in comparison with the weakly relativistic case

(Fig. 4).

By switching off the magnetic field, our results reduce

to those reported earlier17 in the non-relativistic and ultra-

relativistic limits.

Thus, we conclude that the skin depth for R-& L -waves

decreases as we move from fully relativistic to weakly rela-

tivistic regime and that the ambient magnetic field enhances

the skin effect for R- wave but reduces it for L- wave.

Moreover the weak magnetic field effects are more

pronounced in the weakly relativistic regime than in other

relativistic regimes.

The available densities (n� 1026 cm�3(nonrelativistic)

to 1031 cm�3(highly relativistic)) corresponding to the mag-

netic field strengths (B0¼ 109–10 G) satisfy the condition

x0p>X0 and cover a wide range of astrophysical environ-

ments like white dwarf and neutron stars. Depending upon

the physical scenario, our results have wide range of applic-

ability to all temperatures ranging from keV to MeV and to

the magnetized plasmas having ratio X0

x0p
< 1. The white

dwarf and pulsars consist of dense relativistic degenerate

electron gas having number densities exceeding 1027 cm�3

and above together with the magnetic fields of the order

of l07 G and above.22–24 The values can be considered in a

weak-magnetic field approximations. These ranges can also

be found in a number of environments like gamma ray burst

afterglow plasmas.25 In laboratory, these results can be

applied to highly dense laser induced plasmas,26 radio

frequency field penetration effects into the plasma27 and

magnetically inductively coupled plasmas,28 etc., where

weak magnetic field effects may play a significant role.
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