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We have undertaken the investigation of ion acoustic solitary waves in both weakly and strongly

quantized degenerate magnetoplasmas. It is seen that a singular point clearly demarcates the

regions of weak and strong quantization due to the ambient magnetic field. The effect of the

magnetic field is taken into account via the parameter g0 ¼ �hxce=eFe and the Mach number, and

their effect on the formation of solitary structures is investigated in both cases and some results are

presented graphically. VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4907222]

I. INTRODUCTION

The nonlinear dynamics of plasma waves in isotropic as

well as magnetoactive plasmas has been fairly well studied

in the last four decades.1–13 More recently, a significant

volume of literature has emerged which has been devoted to

the investigation of collective behavior in degenerate plas-

mas (for a review of works, see Ref. 14 and the references

therein). Quantum or degenerate plasmas are a subject of

increasing interest due to their potential applications in mod-

ern emerging technologies, e.g., metallic and semiconductor

nano-structures which include metallic nano particles, metal

clusters, thin films spintronics, nanotubes, quantum wells

and quantum dots, nanoplasmonic devices, quantum x-ray

free electron lasers, etc.

The properties of linear electron oscillations in a degen-

erate Fermi plasma have been investigated in the recent

past.15–17 Tsintsadze and Tsintsadze18,19 developed new type

of quantum kinetic equations for Fermi particles of various

species and subsequently obtained a set of fluid equations

describing a quantum plasma. The dispersion properties of

electrostatic oscillations were discussed later in Refs. 20 and

21. Based on these studies, the investigation of linear and

nonlinear ion acoustic waves in quantum plasmas has

attracted substantial attention. In particular, the investigation

of ion acoustic solitary structures has attracted special atten-

tion.22–24 The effects of quantization of the electron orbital

motion and electron spin on the propagation of longitudinal

waves in a Fermi gas have been reported recently,25 where a

detailed investigation of the effects of a quantizing magnetic

field was presented. The cases of a weakly quantizing mag-

netic field as well as the case for a strongly quantizing mag-

netic field were presented and the effect of adiabatic trapping

in a quantizing magnetic field was investigated in Ref. 26.

In the present work, we wish to undertake the investiga-

tion of ion acoustic solitary waves in a degenerate electron-

ion plasma by considering the effect of Landau quantization.

The layout of the current work is as follows: In Sec. II,

we consider the effect of a quantizing magnetic field both in

the instances of a weak field and strong field (Landau

quantization). In Sec. III, we consider the effects of the quan-

tizing magnetic field on the linear dispersion relation and in

Sec. IV, the nonlinear evolution equations are developed and

various limiting cases are studied. Finally in Sec. V, we pres-

ent a brief conclusion of our results.

II. LANDAU QUANTIZATION

In an earlier paper it was shown by Tsintsadze25 that

when Landau quantization is taken into account in the non-

relativistic limit, the electron number density and Fermi

energy are determined by

ne ¼
p3

F

3p2�h3

3

2
gþ 1� gð Þ3=2

� �
(1)

and

eFe ¼
3p2ð Þ2=3

�h2n2=3

2me
3

2
gþ 1� gð Þ3=2

� �2=3
; (2)

where g ¼ �hxce=eFe and xce ¼ jejH=mec is the electron

cyclotron frequency, ne is the electron number density and

pF and eFe are the electron Fermi momentum and energy,

respectively, when the electrons are quantized by the

magnetic field.

As was shown by Landau, in a constant magnetic field
~Hð0; 0;H0Þ, electrons, under the action of it, rotate in circu-

lar orbits in a plane perpendicular the field ~H0. Therefore,

the motion of the electrons can be resolved into two parts:

one along magnetic field, in which the longitudinal compo-

nent of energy is not quantized Ez ¼ p2
z

2me
, and the second in a

plane perpendicular to ~H0 (the transverse component) in

which energy is quantized.21,22 Thus, in the non-relativistic

case, the net energy of electron in a magnetic field without

taking in to account its spin is E pz; lð Þ ¼ p2
z

2me
þ �hxc lþ 1

2

� �
,

where xc ¼ jejH0

mec is the cyclotron frequency of the electron, �h
is the Planck constant divided by 2p, and me is the electron

rest mass.
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If the particle has a spin, the intrinsic magnetic moment

of the particle interacts directly with the magnetic field. The

correct expression for the energy is obtained by adding an

extra term ~l~H0 corresponding to the energy of the magnetic

moment ~l in the field ~H0. Hence, the electron energy levels

el;d
e are determined in the nonrelativistic limit by the

expression

el;d
e ¼

p2
z

2me
þ 2lþ 1þ dð ÞlB; (3)

where l is the orbital quantum number (l¼ 0, 1, 2, 3,…), d is

the operator of the z-component which describes the spin

orientation ~s ¼ 1
2
~d d ¼ 61ð Þ, and lB ¼ jej�h

2mec is the Bohr

magneton.

From Eq. (1), one can see that the energy spectrum of

electrons consists of the lowest Landau level l ¼ 0; d ¼ �1,

and pairs of degenerate levels with opposite polarization

d ¼ 1. Thus, each value with l 6¼ 0 occurs twice, and that

with l ¼ 0 once. Therefore, in the non relativistic limit, el;d
e

can be rewritten as

el;d
e ¼ el

e ¼
p2

z

2m0

þ �hxcl: (4)

The number of quantum states27,28 of a particle moving in a

volume V and interval dpz for any value of l is

2Vjejdpz

2p�hð Þ2c
¼ VeF � gm0dpz

2p2�h3
; (5)

where g ¼ �hxc

eF
and eF is the electron Fermi energy. The equi-

librium density of electrons is defined as

ne ¼
m0eFg

2p2�h3

X1
l¼0

ð1
�1

dpz � f pz; lð Þ; (6)

where

f pz; lð Þ ¼ 1

exp
p2

z=2m0 þ �hxcl� l
T

� �
þ 1

;

and l is the electron chemical potential.

Assuming the Fermi degeneracy temperature TF ¼ eF

kB
(kB

is the Boltzmann coefficient) much higher than the Fermi gas

temperature, the Fermi distribution function is in a good

approximation described by the Heaviside step function

Hðl� el
eÞ; which follows l ¼ eF ¼ el

e ¼ p2
z=2m0 þ �hxcl:

This allows us to integrate Eq. (4) by pz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m0ðeF � �hxclÞ

p
.

The last expression reads that the summation along l is limited

by the condition eF > �hxc, so that lmax ¼ eF

�hxc
¼ 1

g.

We see that it is more useful to introduce new parame-

ters g0 ¼ �hxce=eF0 and c ¼ eFe=eF0, where eF0 ¼ ð3p2Þ2=3�h2n
2=3

0

2me

is the Fermi energy and n0 is the equilibrium number density

in the absence of the magnetic field. We now note that g0

explicitly depends on the magnetic field only via the electron

cyclotron frequency xce. The relationship between g0 and g

is given by g ¼ g0= c and Eq. (2) can be rewritten in the fol-

lowing manner:

3

2
g0c

1=2 þ c� g0ð Þ3=2 ¼ r ¼ ne

n0

: (7)

We note here that if r ¼ 1 (as may be the case in metals or

semiconductors), then Eq. (3) reduces to

3

2
g0c

1=2 þ c� g0ð Þ3=2 ¼ 1: (8)

From Eq. (8), it can be seen that the singular point occurs

when �hxce ¼ eFe (g ¼ 1) or when

c� ¼ g�0 ¼
2

3

� �2=3

: (9)

The singular point is clearly elucidated in Ref. 25 and this

clearly marks the separation of the regions of weak g < 1

and strong magnetic fields g > 1, the former being depend-

ent on the orbital quantum number and the latter being

independent of it and corresponding to the case of Landau

ground state or quantization.

For the case c < g0, the Fermi energy depends on the

magnetic field in the following manner:25

c ¼ 2

3 g0

� �2

: (10)

Figure 1 shows the dependence of c on the magnetic field via

go and the * on the curve indicates the singular point, sepa-

rating the weak and strong field regions.

III. PHASE VELOCITY AND MACH NUMBER

Quite recently in Ref. 25, the spectra of longitudinal

waves were considered for the case of a strongly magnetized

FIG. 1. Plot of cð¼ eFe

eF0
Þ against magnetic field g0. The * on the figure indi-

cates the singular point for c� ¼ g�0.
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spatially homogeneous collisionless plasma with degenerate

electrons and classical ions. It was seen that in the intermedi-

ate frequency range where the phase velocity v/ ¼ x=k sat-

isfies the inequality

vTi � v/ � vFe

ffiffiffiffiffiffiffiffiffiffiffi
1� g

p
; (11)

where vFe is the Fermi velocity in the presence of the

magnetic field (which can be obtained from Eq. (2)) and

vTi ¼
ffiffiffiffiffiffiffiffiffiffiffi
Ti=mi

p
is the ion thermal velocity. Furthermore,

under the assumption that the quasineutrality condition is

satisfied, i.e., ne � ni, for the real part of the spectra

x0 ¼ ReðxÞ, is given by25

v2
/ ¼

x0

k

� �2

¼ me

3mi
v2

Fe

3gþ 2 1� gð Þ3=2

gþ 2
ffiffiffiffiffiffiffiffiffiffiffi
1� g
p : (12)

If g ¼ 0, i.e., in the absence of the magnetic field, we obtain

the standard expression for the phase velocity

v/0 ¼
ffiffiffiffiffiffi
me

3mi

q
vF0: , where vF0 is the Fermi velocity in the ab-

sence of the magnetic field. However, in the case of a strong

magnetic field g > 1, we obtain a new type of a phase veloc-

ity v/ ¼
ffiffiffi
3
p

v/0.

Using Eq. (12), we can obtain an expression for the

Mach number

M2 ¼ u

v/

� �2

¼ u

v/0

� �2 gþ 2
ffiffiffiffiffiffiffiffiffiffiffi
1� g
p

3gþ 2 1� gð Þ3=2

¼ M2
0

gþ 2
ffiffiffiffiffiffiffiffiffiffiffi
1� g
p

3gþ 2 1� gð Þ3=2
; (13)

where M0 ¼ u=v/0 is the Mach number without the magnetic

field.

Let us further explore the possibilities about recasting

certain quantities through the new variables g0 and c ignor-

ing as above the variation in the number density ne � n0,

thus allowing us to write down the Fermi momenta pFðHÞ
and pF0ðH ¼ 0Þ in the following way:

PF

PF0

¼ 1

3

2
gþ 1� gð Þ3=2

� �1
3

¼ c1=2:

Thus, we obtain the following expression for the Mach number:

M2 ¼
M2

0ðg0 þ 2c
1
2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
c� g0

p Þ
2 c1=2

: (14)

We note here that we must use Eqs. (8) and (14) for the defi-

nition of the Mach number.

Further we see that if the magnetic field is strong enough

so that inequality g0 > c is satisfied, then the Mach number

becomes

M2 ¼ 3

4
M2

0g
2
0: (15)

In Fig. 2, we have plotted M2=M2
0 versus g0, here as in Fig. 1

the * (where the red and green lines meet) on the curve

denotes the singular point. In fact in Fig. 2, the singular point

clearly demarcates the weak and strong field regions.

IV. BASIC EQUATIONS

In this section, we give the basic mathematical formula-

tion for considering the propagation of one dimensional non-

linear ion sound waves in a plasma with degenerate electrons

and classical ions, in the presence of an ambient quantizing

magnetic field. The electron motion is quantized via the

Landau quantization in the direction parallel to the ambient

magnetic field which is also the direction of propagation of

the ion acoustic wave. The ions by comparison are consid-

ered classical, due to their relatively heavy mass. We begin

by recalling Poisson’s equation which is

@2

@x2
u ¼ 4pe ne � nið Þ; (16)

where u is the electrostatic potential.

The ion number density is obtained from the ion equa-

tions of motion and continuity under the quasistationary

assumption,23,25 i.e., shifting to a co-moving frame of refer-

ence which in normalized form is given by X ¼
ffiffiffi
2
p

xpi

u

x� utÞð . Such solution describes wave’s propagating with

speed u and without change of profile. From equation of con-

tinuity nivi ¼ noiu and from energy conservation 1
2

miv
2
i

þeu ¼ miu
2

2
(ions are cold) for the ion density, we get the fol-

lowing expression:

ni ¼
n0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2eu
miu2

r ¼ n0 1� Uð Þ�1=2
; (17)

where U ¼ 2eu
miu2, u is the ion velocity at u ¼ 0, and xpi is the

ion plasma frequency. On the other hand, we have for the

FIG. 2. Mach number M2

M2
0

plotted against magnetic field g0. The * on the fig-

ure indicates the singular point for c� ¼ g�0.
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electron number density,25 in the weak magnetic field limit

g < 1

ne ¼
3

2
g 1þ eu

eFe

� �1
2

þ 1� gþ eu
eFe

� �3
2

( )
: (18)

Using the expression for U given above, we can rewrite Eq.

(18) in normalized form as

ne ¼
3

2

g0

c
1þM2

0

3c
U

 !1
2

þ 1� g0

c
þM2

0

3c
U

 !3
2

8<
:

9=
;: (19)

This is the expression of the electron number density taking

trapping of the electron distribution into account for the

weak magnetic field case. We now use Eqs. (16), (17), and

(19) and casting them into dimensionless form, we obtain the

Poisson equation

d2

dX2
U ¼ 3

2
g0 cþM2

0

3
U

� �1
2

þ c� g0 þ
M2

0

3
U

� �3
2

( )

� 1� Uð Þ�1=2
: (20)

In Eq. (20) above, we have introduced the dimensionless

coordinate X ¼
ffiffi
2
p

xpi

u x� utÞð and this along with Eq. (4)

forms a close set of equations which define the potential field

U. We note here that a similar expression can be obtained for

the strong magnetic field g0 > c limit by using Eq. (10).

Small Amplitude Limit: In order to illustrate that a sin-

gular point exits which demarcates the weak and strong

regions of magnetic field quantization, we consider here for

the case of the weak magnetic field region, the small ampli-

tude limit, i.e., when U < 1. We expand Eq.(20) and retain

terms up to U2 to obtain the standard KdV equation which

reads as

d2

dX2
U� 1

2
M2 � 1ð ÞUþ 3

8
bU2 ¼ 0: (21)

Here, M is given by expression (14) and b ¼ 1þ M4
0

9 c3=2

g0

2
� c3=2ffiffiffiffiffiffiffiffi

c�g0

p
	 


and we see from here that we formally have a

singularity when c ¼ g0. The above equation has a standard

solution given by

U ¼ 2
M2 � 1ð Þ

b
sec h2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 � 1
p

2
ffiffiffi
2
p X

 !
: (22)

V. SAGDEEV POTENTIAL

In order to obtain solitary wave solutions in the arbitrary

amplitude case, we follow the Sagdeev potential approach

[e.g., Ref. 25] and note that for such potentials obtainable

from Poisson’s equation, certain conditions must be fulfilled.

These conditions are29 that at U ¼ 0, the Sagdeev potential

VðUÞU¼0 ¼ 0 and at this point the Sagdeev potential must

also have a maximum, i.e., the fixed point is unstable at the

origin if
d2VðUÞ

dU2 < 0. Thus, expressions for the Sagdeev

potentials in the weak and strong field limits are given by

VWðUÞ and VSðUÞ, respectively.

Thus for the weak magnetic field case (see, e.g., Ref.

25), we obtain from Eq. (20)

VW Uð Þ ¼ 3g0

M2
0

c
3
2 � cþM2

0

3
U

� �3
2

" #

þ 6

5
M2

0 c� g0ð Þ
5
2 � c� g0 þ

M2
0

3
U

� �3
2

( )

� 2 1� 1� Uð Þ1=2
h i

: (23)

Equation (23) is complete only when read with Eq. (8) and

g0 >
2
3

� �2=3
.

In order to obtain the expression for the Sagdeev poten-

tial in the strong magnetic field limit, we obtain from Eqs.

(9) and (20)

VS Uð Þ ¼ 3g0 �
3

2g0

� �3

� 3

2g0

� �2

þM2
0

3
U

 !3
2

2
4

3
5

� 2 1� 1� Uð Þ1=2
h i

: (24)

Further we note here that Eq. (24) is valid only when g0 >
2
3

� �2=3
which is obtained from Eq. (9).

We have investigated the dependence of the Sagdeev

potentials in both the weak and strong magnetic field regions

and these are shown in Figs. 3 and 4, respectively. In both

cases, the depth and the maximum value of the potential

increase with increasing Mach number M, but the relative

value of the Sagdeev potential is larger for the weak field

case and so is the maximum value of the potential for the

same Mach number M. A similar trend can be seen in Fig. 5

where the maximum value of the potential Umax is plotted

against the magnetic field strength g0 for different values of

M0. Here, we see that in the weak field region, Umax

decreases with increasing g0 (i.e., with increasing magnetic

field strength), at first slowly then rather rapidly as it

approaches the singular point. However, in the strong field

limit when g0 > c, the maximum value of the potential Umax

increases with increasing magnetic field strength, i.e., with

FIG. 3. Sagdeev potentials for the case of weak magnetic field g0 < c when

M ¼ 1:05; 1:41; and 1:58.
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increasing g0. This increase is quite fast as it increases from

the singular point but then the increase becomes more grad-

ual. We also note the maximum value of the potential Umax

increases with increasing M0 as shown in Fig. 6. The trend

was observed in Figs. 3 and 4 also where Sagdeev potential

plots were shown for different values of the Mach number

for the weak and strong field regions, respectively.

VI. SUMMARY

We have investigated the effect of Landau quantization

in a dense degenerate plasma in the presence of trapped elec-

trons. Both the weak and strong magnetic field regions are

considered. In the nonlinear regime, it is seen that solitary

structures are formed in both regimes. It is also seen that the

Sagdeev potential in both cases depends dramatically on the

quantizing magnetic field strength. In our novel approach,

we see that a singular point separating the weak and strong

field regimes is present. We feel that the results presented in

this work can find applications in astrophysical and laser

plasma interactions when high powered lasers are employed.

Our results are specifically applicable to neutron stars

where surface magnetic fields can be of the order of

H � 1011 � 1013 G and internal fields can be higher still due

to the rotation of neutron stars, which can produce additional

effect of the order of H � 105 G.19,29–32 Here effects of

Landau quantization would be expected to play a very im-

portant role. Also the effects of adiabatic trapping make the

inclusion of nonlinearities more realistic.
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