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Abstract
Using the semi-classical model, the piezoelectric coupling of Langmuir waves with lattice ion
vibrations has been studied in linear as well as nonlinear regime in n-type piezoelectric
semiconductors. It is shown that there is not any significant coupling in the linear regime. In the
nonlinear regime, we have developed a set of coupled nonlinear evolution equations whose
solution leads to cusp solitons. These equations are analyzed numerically to investigate the
conditions for the significant coupling using the standard parameters for n-type piezoelectric
semiconductor plasmas.
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1. Introduction

The piezoelectric effect was first observed in a variety of solid
materials [1]. The reverse piezoelectric effect, that is the
change in the dimensions of a crystals by applying the electric
field, was later proposed on the basis of the thermodynamic
principles and then experimentally confirmed by Curie
brothers [2–4]. Voigt [5], developed the theory of elasticity
and made two major contributions by pointing out the relation
between piezoelectricity and crystal structure by giving the
fundamental equations for crystal vibrations. He later found
out the effect of internal electric field on the elastic stiffness of
the medium and also expressed the electrical and mechanical
states of a crystal as eighteen piezoelectric constants, as there
are three possible components of electric polarization and six
components of the stress. Kyame [6] studied the propagation
of plane waves in piezoelectric crystals and illustrated that
a simultaneous solution to mechanical-piezoelectric and
Maxwell’s field equations provide the propagation conditions
in a medium. He worked out five-by-five secular determinant
for any given direction corresponding to the coupling of three
acoustic waves and two shear electromagnetic waves by vir-
tue of the piezoelectricity. For a certain propagation direction
and piezoelectric tensor, the acoustic waves accompanied by
the longitudinal electric field can increase the elastic stiffness

significantly. The solutions of this determinant gave three
acoustic waves and two shear electromagnetic waves propa-
gating with the speed of sound and speed of light, respec-
tively. These velocities were found to be frequency
independent. Depending on the considered mode and piezo-
electric tensor, the acoustic waves generate an electric field.
The longitudinal component of this electric field has a sig-
nificant effect which has been observed in most of the
piezoelectric materials. For the electromagnetic wave, its
electric component may produce stress in the crystal. Since
this forced acoustic wave traversing at speed of light has a
very small amplitude so its effect is negligible on electro-
magnetic wave propagation. It was later found that the
piezoelectric stiffening could be relaxed if electrical con-
ductivity was taken into account [7].

Plasmons were first discovered in metals by Ruthemann
[8] which introduced the study of solid state plasmas. After
the seminal papers on collective effects or plasma like
behavior in solids [9, 10], the detailed characteristics of the
normal modes were investigated theoretically. It is exten-
sively reported in literature [11–13] that the interplay between
the acoustic waves and carriers lead to three novel effects due
to the momentum and energy exchange between the carriers
and lattice ions; these effects are (i) the amplification or
attenuation of acoustic waves, (ii) the electrons will tend to
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shield out any electric field produced due to elastic defor-
mation which will modify the elastic constant and thus the
speed of sound and (iii) the electrons experience an additional
force due to the transfer of momentum from the sound wave
which gives rise to the so called electroacoustic field that
causes the electroacoustic current in semiconductors.

Hutson [14] took a leap forward by discovering the
piezoelectric effect in semiconductors and developed the
linear theory for both the intrinsic and extrinsic semi-
conductors with the effects of diffusion, trapping and drift of
carriers taken into account. It was argued that these electric
fields generate the space charge and currents which leads to
acoustic loss and dispersion. The effect of these results and
directional properties were demonstrated for GaAs and CdS.
A year later, the converse piezoelectric effect in piezoelectric
semiconductor was studied to probe the amplification and
attenuation properties of ultrasonics [15]. It was seen that an
ultrasonic wave in a particular direction can be attenuated or
amplified if a dc electric field is applied to the medium unlike
the non-piezoelectric medium. Amplification was observed
when the drift velocity of the carriers exceeded the char-
acteristic sound velocity for CdS. However, gain was reduced
at high frequencies due to the diffusion of carriers. This lead
to the new arena of the ultrasonic studies as well as its
applications [16].

Piezoelectric semiconductors since then have found
widespread applications in industry and certain of their
aspects have been experimentally very well investigated.
From the point of view of MEMS and using piezoelectrics for
harvesting energy have been very thoroughly investigated
[17–19] and many of these findings have been reviewed in
literature [20]. More recently, with advent of nanotechnology
piezoelectric materials have found new applications which are
being actively pursued [21, 22].

Durkan et al [23] (and references therein) have provided
a comprehensive review of nonlinear piezoelectricity and
pointed out its need keeping in view new theoretical under-
standings related to the nature of piezoelectric polarization
and electric fields. We are, however, concerned here with the
interplay of normal modes due to electromechanical coupling
factor in the crystal. For plasma to interact with lattice waves
(employing hydrodynamic or Vlasov model) it was asserted
that the plasmons will resonate with lattice waves provided
the frequencies are close to the characteristic plasma fre-
quency if temperature is kept low enough [12]. The theor-
etical work was extended to incorporate nonlinear effects by
Ridley and Wilkinson [24–26] to investigate the sound waves
in the nonlinear regime by modifying the Krylov–Bogolui-
bov–Mitropolskii technique for nonlinear oscillations to
illustrate the propagation nonlinear sound waves in piezo-
electric semiconductor media [27]. This method is based on
asymptotic expansions of two space and time scales segre-
gating the slow change in amplitude which happens due to the
nonlinear interactions with local density perturbations. The
expressions for the nonlinear frequency shifts, wave vectors
and growth rates were also obtained by incorporating the self-
interaction and coupling with other linear modes existed in
the crystals. The amplitudes and growth constants were said

to be slowly varying functions of time and space. Non-
linearities sought to modify phase, amplitude as well as group
structure owing to the energy exchange between the modes.
The nonlinearity of acoustic waves was further probed by
using the modified perturbative method [28] which yielded
the evolution equation of wave envelope whose amplitude
was found to satisfy the well-known nonlinear Schrodinger
(NLS) equation having complex coefficients and cubic non-
linearity [29]. Furthermore, the modulational instability was
studied using NLS equation having a solitary wave solution
[30, 31]. For the plasmas, the NLS equation with the deri-
vative of cubic nonlinearity was first derived for the circular
polarized Alfven wave [32]. The stationary solutions of this
derivative NLS give peculiar spiky soliton which exhibits a
cusp at the crest in contrast to ordinary soliton [33] and
explains nonlinear modulation of its field. The exact solutions
of derivative NLS were found by Kaup and Newell [34]. This
opened a new research avenue of studying the nonlinear mode
coupling to obtain the ordinary, periodic wave trains and
singular spiky soliton solutions [35].

As can be seen that investigations in the area of coupled
mode nonlinear interactions have been few and far between,
thus in the present work we consider the coupling between the
lattice ions and electrons and then attempt to find the singular
spiky soliton solutions in a piezoelectric semiconductor media
for the first time by employing the semi-classical hydro-
dynamic model. We will consider the conditions and com-
parisons for their coupling in the linear as well as nonlinear
regime. The layout of the manuscript is given as follows. In
section 2, the basic theoretical framework is introduced fol-
lowed by the linear dispersion relation for the coupled lattice
ion waves with electron waves. In section 3, we carry out the
nonlinear analysis. Section 4 deals with the solitary solutions
of resulting nonlinear equations. In section 5, results and
conclusions are discussed.

2. Theoretical formulation

In the present section we start by giving the mathematical
formulation necessary for studying the coupled lattice-elec-
tron waves in an n-type piezoelectric semiconductors. We
consider the following piezoelectric equations of state along
with the one-dimensional hydrodynamic fluid equations for
electrons [16, 35]
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Here equations (1), (2) are the piezoelectric equations of state
and equations (3), (4) are the electron’s continuity and
momentum equations, respectively; where T is the stress, c is
the elastic constant, S is the strain, b is the piezoelectric
constant, E is the electric field, D is the electric displacement,
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e is the relative permittivity, n is the number density, ve is the
velocity of electrons, e is the electronic charge, me is the
effective electron mass which incorporates the quantum
mechanical effects and the electron pressure is given as
P n Te ebk= where bk is the Boltzmann’s constant and Te is
the electron’s temperature. It should be noted that all the
variables in equations (1) and (2) are scalar quantities as we
have considered one-dimensional propagation (x-direction)
only. The strain S may be written as S u xi= ¶ ¶/ where ui is
the physical displacements of lattice ions. This gives us the
elastic wave equation for the medium as follows
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Here c cs ir= / is the speed of sound and ir is the lattice ion
density. Equation (2) yields the following modified Poisson
equation which accounts for the effect of charge separation.
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From equations (3)–(6), using plane wave solution for all the
perturbed quantities of the form e kx ti i~ w- we derive the fol-
lowing linear dispersion relation for the coupled ion-electron
mode due to piezoelectricity.
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where v T mTe e eBk= is the electron thermal velocity and

e n mpe e
2

0w e= is the electron plasma frequency. The first
term on the left-hand side of equation (7) is the linear dis-
persion relation of lattice acoustic waves in a piezoelectric
semiconductor and the second term is the linear dispersion of
electron plasma waves. The term on the right-hand side of
equation (7) is the coupling term. It is interesting to note that
under the limiting case 0b  this dispersion relation
decouples into the lattice acoustic mode and Langmuir mode.

Generally, the piezoelectric coupling constant b for such
materials ranges from 0.045 to 0.35 C m 2- [36, 37]. We have
used the parameters of InSb n m10 , 15.8 ,21 3 e= =/
T v77 K, 2.9 10 m s ,Te

5 1= = ´ - 3.7 10 rad s ,pe
12 1w = ´ -

5.8 10 kg m ,i
3 3r = ´ - c0.054 C m , 2500 mss

2 1b = =- -

and m m0.014e 0= (m0 is the rest mass of the electron). The
right-hand side is a very small in comparison to the right-hand
side of the equation (7), thereby signifying the in the linear
regime the coupling between the lattice acoustic and electron
plasma modes is not effective.

3. Nonlinear analysis

From the preceding section, it is clear that there is no effective
piezoelectric coupling in the linear regime between the lattice
and electron modes. Thus in this section we advance our
problem to nonlinear regime where we expect that the cou-
pling will be more effective. In order to investigate the cou-
pling of two modes (lattice ions wave with electron wave)
which excite at two different time scales owing to the ions and

electron mass difference, we split all the variables into low ‘l’
and high ‘h’ frequency components. The inclusion of these
two time scales makes it possible to derive the nonlinear
evolution equation [35, 38]
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It may be noted that the motion of the lattice ions is only
slowly varying due to their large mass. However the electron
motion has the freedom to respond at both time scales.
Solving the equations (3), (4) and (6) for the high frequency
part only, we get
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We note here that the nonlinear effect is included in the
second term via the slow variation of the electron number
density n .le Proceeding further in the standard manner, we
write the fast-time scale electric field as [35, 38]
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1

2
, e c.c. , 13h

ti 0= +w-( ) [ ˜ ( ) ] ( )

where c.c. refers to the complex conjugate, E x t,˜( ) is slowly
varying in time and assume that pe0w w»( ) for the long
wavelength, small finite amplitude electron wave and thus
approximate 2pe0

2 2w w w- = D and .pe0w w wD = - Since
we have defined Ẽ to be the slowly varying amplitude so we
can neglect its second derivative in equation (12) to obtain the
complex nonlinear evolution equation
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This equation depicts the slow variation of local electron
number density with the complex amplitude E x t,˜ ( ) of the
rapidly oscillating electric field. Next, we consider the slow
frequency part of electrons by averaging over the fast oscil-
lations which gives us the following set of equations
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The last term on the rhs of equation (15) is the nonlinear
ponderomotive force which acts to direct the particles away
from the regions of high electric field and predominantly acts
on the lighter particles at lower frequencies. This term basi-
cally arises from the convective derivative term as described
by Thornhill and ter Haar [39]. Eliminating El and vle from
equations (15)–(17), we get
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The contribution of lattice ions on the slow scale
dynamics is given by equations (5), (6) as
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The equations (14), (18) and (19) are the set nonlinear evol-
ution equations coupling the electron wave with lattice ion
wave in a piezoelectric medium.

4. Soliton solutions

In an attempt to find the solitary solution of the coupled
nonlinear evolution equations equations (14), (18) and (19),
we shall limit ourselves to traveling wave solutions which
have been extensively studied in gaseous plasmas in com-
parison to other plasma like media. So, we define a co-
moving frame given by x v tgx = - moving with velocity
v k v kd d .g Te

2
0w w= =/ / Transforming the equation (14) by

introducing E e ti~ wD˜ where wD is defined above and fur-
ther by eliminating ui from equations (18), (19) to get
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The equations (20) and (21) are the modified Zakharov equations
for the electron waves coupled to the lattice ion vibrations due to
piezoelectricity. The classical Zakharov equations reduces to
nonlinear Schrodinger equation under the static limit which
admits soliton solutions. Under this limit for our case, we consider
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obtain the expression for perturbed number density from
equation (21) which comes out to be proportional to the second
derivative of electric field strength
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It shows that the regions of higher amplitude of electric field
correspond to highly depleted regions of local number density.
Substituting this equation (22) in equation (14), we have
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Integrating it once and using the boundary condition that all the
perturbations vanish at infinity i.e. E 0˜ as x  ¥
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observe from the above equation (24) that the conditions
v c1 g s i

2 2 2b r e~ -( )/ and v cg s< must hold for the piezo-
electricity to have a substantial effect and the last term retains the
negative sign to obtain the standard form of cusp equation. This
shows that this equation only holds for subsonic case. The above
expression shows that Ed dx  ¥˜/ at the maxima ( 0x = ) and
thus here E b1 8 .=

~
Integrating equation (24), we obtain

a
bE b E

bE

1

2
1 8 Log 8

Log 1 1 8 25

2

2

x = - +

- + -

[ ˜ ∣ ˜ ∣

∣ ˜ ∣] ( )

which is a singular spiky soliton solution (cusp soliton) [32, 40].

5. Results and conclusion

We have studied the coupling of the electron wave with the
lattice ions via nonlinear ponderomotive force using the two
time scale theory in a piezoelectric semiconductor plasma.
The piezoelectric effects, nonlinearities and the plasma effects
in semiconductors have been extensively studied owing to its
widespread technological and industrial applications but to
the best of the author’s knowledge, their stationary cusp
soliton solution and the condition under which piezoelectric
effect become crucial have been studied for the first time. In
this section, we analyze the cusp soliton solution numerically
and for that we have used the same physical parameters of
n-type piezoelectric semiconductors that were used to evalu-
ate the equation (7).

In the figure 1, we have plotted the equation (25) to trace the
variation in the profile of cusp soliton by altering the piezo-
electric constant. As it has been mentioned that the piezoelectric
coupling constant ranges from 0.045 C m to 0.35 C m2 2- - [36]

Figure 1. Cusp soliton with the variation of piezoelectric coupling
constant.
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therefore we have used 0.21 C m 2b = - for GaSb and
0.054 C m 2b = - for InSb to keep our work applicable for

piezoelectric semiconductors in general. We observe from the
graphical analysis here that the amplitude of the electric field is
significantly affected by the change in strength of the piezo-
electric coupling constant.

In the figure 2, we have examined the trend of variation
in the cusp with number density at constant coupling factor
0.21 C m .2- The pattern shows that the amplitude of the
electric field varies substantially as the number density
changes. It is shown that electric field amplitude decreases
with decreasing number density. This result is in accordance
with the equation (21) which shows that the perturbed density
is proportional to the second derivative of the electric field.

Our work shows that for coupled lattice-electron plasma
waves, piezoelectricity plays a significant role in the nonlinear
regime. The nonlinear evolution equation that we have
derived gives the subsonic cusp soliton solution.

Although we have presented a simplified one-dimen-
sional analysis, our investigations fill a gap in theoretical
work as theoretical work in this area has not been actively
studied, as stated in section 1. This may also have a bearing in
experimental and device fabrication work.
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