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Abstract
The separate spin evolution quantum hydrodynamics (SSE-QHD) model is used to investigate the
energy behavior for ion acoustic waves in degenerate quantum plasma. Numerical results show
that the energy flow speed decreases with spin polarization parameter. It is also shown that it
decreases with the increasing rate up to a certain range of wave number and then it goes to zero
asymtotically. It is observed that Bohm potential suppresses the energy flow speed. It is also
noticed that the energy flow speed deviates from the group velocity even in the absence of Bohm
potential effect. However, the contribution of of Bohm poential effect in spin polarized plasma
reduces the extent of deviation.
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1. Introduction

In the last two decades, theoretical plasma physicists extensively
studied quantum plasma which has several applications both in
laboratory plasma (in microelectronic devices, laser produced
plasma, nano-systems) [1–3] and in astrophysical environments
like extremely dense systems (e.g. interior of the Jovian planets,
white and brown dwarfs, neutron stars, pulsars and magnetars)
[4, 5]. The overdense plasmas, in which the Fermi temperature is
higher than the thermal temperature, require the quantum treat-
ment for their description. The quantum statistical effects are
included through the Fermi degenerate pressure. In such systems
the de Broglie wavelength exceeds the inter-particle distance and
thus the pure quantum interactions result into the diffraction and
tunneling effects which are taken into account by including the
Bohm potential term in the momentum equation. The spin is an
intrinsic property of fundamental particles. The charge particles
behave like tiny magnetic dipoles. In the presence of external
magnetic field, these magnetic dipoles get oriented which leads
to interactions among the electrons. The quantum hydrodynamic
(QHD) model and quantum kinetic model have been developed
for the description of spin-1/2 quantum plasmas in [6–10]. Using

these models various linear and nonlinear wave phenomena have
been discussed for both the classical and degenerate plasmas
[11–16]. The electronic structure in matter is governed by the
electron spin. The spin polarization plays a fundamental role for
functioning of spintronic devices and magnetoelectronic devices.
In the magnetically ordered metals (like Fe, Co, Ni, or MnAs),
used in developing spintronic devices, the electron gas is spin
polarized [17]. A spin-polarized plasma also occurs in semi-
conductor plasma [18] which has beenr verified experimentally
in [19]. Recently, highly intense laser pulses have been employed
to produce a high degree of spin polarization in electron gas.
Furthermore, it is well known that the concept of spin-polarized
electrons is used to study particle physics as well as electron
spectroscopy [20]. It has also been found using traditional
hydrodynamics and kinetic set of equations that the spin polar-
ization of electrons changes significantly the properties of the
collective excitations like Langmuir and zero sound waves pro-
duced in degenerate semiconductor plasma. Additionally, it has
been noticed that the spin polarization reduces the decelerating
ability of a plasma [21]. Inastrophysical environments where the
magnetic field is sufficiently strong a spin polarized electron gas
is produced [22]. Now it is well established that the study of spin
polarization effect is important in both the laboratory and
astrophysical environments.
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Recently, another QHD model for spin-1/2 particles has
been proposed by Andreev [23] based on separate spin evol-
ution. According to this model, electrons are assumed to form
two separate fluids comprising of spin-up electrons and spin-
down electrons. Therefore, on the basis of the separate spin,
such a model is termed as separated spin evolution quantum
hydrodynamic (SSE-QHD) model. This model has recently
attracted the attention of researchers because it not only modi-
fies the linear and nonlinear properties of plasma waves but also
gives birth to new wave solutions and nonlinear structures in the
degenerate magnetized plasma [23–30] . For instance SSE gives
the existence of spin electron acoustic wave which is useful to
explain the phenomenon of high temperature superconductivity
in the magnetically ordered mediums [31]. Recently using SSE-
QHD model the oblique propagation of electromagnetic waves
has been studied for spin polarized plasma and it was found that
SSE gives two new spin dependent obliquely propagating
waves in the spectrum of the earlier reported electromagnetic
waves [32]. The effect of spin polarization on growth rate of
various electrostatic and electromagnetic instabilities has been
discussed in [33–39].

Recently, several authors have shown interest in the study of
energy transport of various waves in quantum plasma. The energy
transport speed is found by taking the overall energy flux density
divided by total stored energy density. As we know different
types of energy may be involved in the transport phenomenon in
a wave [40, 41]. In case of electromagnetic waves, Poynting
theorem relates the energy flow rate with the time rate of energy
density [42]. This theorem has also been used for energy transport
by electrostatic wave [43]. It is obvious that energy transferred by
an electrostatic wave in a quantum plasma is shared by the
electric potential energy and quantum interaction energy. Cur-
rently, a number of works on this subject have been done for
electrostatic and electromagnetic waves for electron-ion, magne-
tized/unmagnetized quantum Fermi plasmas [44, 45]. In these
works the energy densities and energy flow speed for both the
electrostatic and electromagnetic waves have been investigated in
quantum plasma in which only Bohm potential effect was taken
into account. It is obvious that spin of the electrons causes their
mutual interactions in the presence of external magnetic field.
Consequently, the overall energy density is also shared by the
spin interaction energy and hence the energy flow speed is
modified. Therefore, it is important to include the electron spin
effect in the study of energy behavior. Ion acoustic wave is one of
the fundamental mode in plasma which is equally important in
both the space andlaboratory environments. An important aspect
of energy transport through the ion acoustic wave has not yet
been studied for the spin-1/2 degenerate quantum plasma. In this
manuscript, we discuss the energy densities and energy flow
speed for low frequency ion wave in a magnetized electron-ion
quantum degenerate plasmas on the basis of SSE.

The manuscript is ordered as follows: in section 2, the
mathematical formalism for the derivation of different energy
densities and energy flow speed for ion acoustic wave is
presented. Results and discussion are given in section 3.
Section 4 is devoted for the summary and conclusion.

2. Mathematical formalism

For the study of energy behavior for the low frequency ion
wave in a spin polarized plasma, first of all, we work out the
dispersion relation. We consider an electron-ion plasma with an
ambient magnetic field along the z-axis. In order to include the
dynamics of bulk electrons, we use the SSE-QHD equations
[23] which are developed in the presence of external magnetic
field for each of the species with spin-up and spin-down by
considering them as separate fluids. The discontinuity equation
due to the spin projection of each specie is presented as

· ( ) ( ) ( )¶ + = -vn n T1 , 1t es es es
i

ezs

where s=u, d denotes the spin-up and spin-down state of
electrons, nes and ves are the electron number density and their
velocity being in the spin state s, ( )= -g
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z-projection of spin torque, γe=−μB, where μB is the Bohr
magneton, is: iu=2, id=1, with the spin density projections
Sex and Sey, each representing the evolution of the spin-up and
spin-down states of electrons. Therefore, the functions Sex and
Sey need not to have subindices u and d. In this model, the z-
projection of the spin density Sez is not an independent variable,
it is the function of difference in number densities of spin-up
and spin-down electrons i.e. Sez=neu−ned. Normally the
right hand side of the continuity equation is zero which shows
the conservation of the particle number. If we treat the spin-up
electrons and the spin-down electrons as different fluids, we see
that the particle numbers change due to the spin interaction.
However, the total number of the particles conserves i.e.
n=nu+nd. The equation of motion for electron species is
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where ( )p= P n m6 5es es
2 2 3 5 3 2 is the degenerate pressure for

spin-up and spin-down electron fluids, ÿ2-term is the Bohm
potential, the number 1/9 appears in the front of Bohm term for
three dimensions and the low-frequency waves [46]  =Tez
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the convective parts of the spin current tensor. We suppose that
the ions are cold, unmagnetized and classical due to their larger
mass. The momentum and continuity equations for ions are,
respectively, expressed as
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The Gauss’s law of electrostatics, which connects the pertur-
bation in charge density to the electric field, is written as

( ) ( ) = - -


e
n n nE. . 5i eu ed

0

We assume plane wave solution for all the perturbed quantities
( ) ( )~ w-n v E, , e z tki in equations (1)–(4) and by using rela-
tionship Ez=−ikΦ we obtain the relations for the perturbed
velocity and number density of bulk spin-up, spin-down elec-
trons, and ions as given by
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Now by using equations (7) and (9) in (5) we get the dispersion
relation for ion acoustic wave with spin polarization effect as

Here ( )( ) w h w= 1 2,pe u d pe,
2 2 where ωpe is the usual

electron plasma frequency, ( )
( )

 h=v v 1 3F F
2 2
e u d e,

2
3 ,

( )p= v n m3Fe e e
2

0
1 3 is the ordinary Fermi velocity of

electrons. The spin polarization parameter is defined
by ( ) ( )h m e= - = -n n n B3 2e u e d e F0 0 0 B 0 e

, where e =Fe

( )p n m3 2e e
2

0
2 3 2 is the Fermi energy of the electrons.

The equilibrium number densities of spin-up and spin-down
electrons can be expressed as ( )( )  h=n n 1 2e u d e0 , 0 where
ne0 is the the total electron number density. The group
velocity of the ion acoustic wave is obtained from
equation (10) as

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

( )
( )

( )

( )=

å

+ å

w w

w

=

+

+

=
+







v

1

. 11g

k s u d

v

v

s u d
v k

,

,

pi
pes Fes

k

m

Fes
k

m

pes

Fes
k

m

3

2 2 2
9

2 2

4 2

2 1
9

2 2

4 2

2

2

2 1
9

2 2

4 2
2

3
2

The Poynting theorem can be expressed within the electro-
static framework as follows,
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We assume that ( )wF = F -kz tcos .0 Now we use
equations (6)–(10) to express the energy conservation law
as follows
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where Γ=ΓzE+ΓzQ and ε=εE+εK+εQ. Here the
subscripts E, K and Q represent the electric, kinetic and
quantum contribution in the energy. We can easily identify
the different contributions in energy density and energy flow
density from the energy conservation law equation (14):
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Now we find the time-averaged values eá ñ =
e e eá ñ + á ñ + á ñE K Q and áG ñ = áG ñ + áG ñ + áG ñx E K Q of
energy density and energy flux density, respectively, given by
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Finally, we use =
e
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á ñ

vf
x for the determination of energy flow

speed for ion acoustic wave in spin polarized quantum
plasma, which turns out to be

In the next section we analyze equations (11) and (22)
numerically for the characterization of group velocity and
energy flow speed.

3. Numerical results and discussion

The electron spin effects in plasma play an important role
when the Zeeman energy attributed to the magnetic field is
comparable or larger than the thermal energy i.e.
m B k T 1.B B0 We choose the parameters from astrophysical
environment i.e. density n0=(1023–1024) cm−3and magn-
etic field B0=(108–109)G for which the Fermi temperature
TF of the system corresponding to this density is
4.23× 105 K.Moreover, for the qualification of degenerate
plasma the condition T<TF=4.23×105 K must to be
satisfied. The above mentioned conditions are only fulfilled
when T<103 Kand B0>105G.Within these limits the
spin effect plays significant role in the dispersion of waves.
We have analyzed numerically the energy flow speed for an
ion acoustic wave in comparison with the group velocity in a
spin polarized quantum plasma including the Bohm potential
effect. We have plotted the energy flow speed versus wave
number in figure (1) for different values of spin polarization
factor e.g. η=0.23 (blue), 0.47 (red), 0.71 (green). It is clear
from the figure (1) that the energy flow speed is supressed
with the spin polarization factor.The acoustic wave is driven
by the electron Fermi pressure which is modified due to spin
polarization effect. Thus the main reason for the change in

dispersion of ion acoustic wave as well as its energy flow
speed is the difference in Fermi pressures of spin-up and
spin-down electrons. The solid curves are drawn by taking the

Figure 1. Figure represents the effect of spin polarization on the flow
speed for ion acoustic wave. In this figure solid curves show the flow
speed with Bohm potential effect whereas dashed ones represent the
same without Bohm potential effect. The different values of η
corresponding to magnetic field B0=(1–3)×109G and density
n0=1024 cm−3 are used for plotting.

Figure 2. Figure shows the comparison of energy flow speed and
group velocity for ion acoustic wave in spin polarized plasma
without Bohm potential effect. Here we used parameter
B0=(1–3)×109G, density n0=1024 cm−3 and η=0.23.
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Bohm potential effect in account whereas the dashed ones are
traced without Bohm potential effect. It is evident from the
figure that energy flow speed decreases with increasing rate
initially with the wave number and then becomes zero
asymtotically. The difference in the energy flow speed at
different values of η is significantly large in long wavelength
limit which then decreases gradually with the wave number. It
is clear from the diagram that the Bohm potential is ineffec-
tive in the long wavelength limit but plays an important role
in short wavelength range. In a spinless quantum plasma, it
was reported that the energy flow speed and group velocity
differ from each other in the presence of Bohm potential
effect while in its absence both appear to be the same [44]. In
our present study of spin polarized plasma, it is observed in
figure (2) that the energy flow speed and group velocity are
different even in the absence of Bohm potential. Figure (3)
depicts that the deviation of energy flow speed from the group
velocity reduces in the presence of Bohm potential effect.

Further, it is also noticed that the energy flow speed is smaller
than the group velocity in a small domain of long wavelength
but this trend flips over around k=0.5. The main result of
our present work is that, in a spin polarized quantum plasma,
the energy transport is no longer governed by the group
velocity. The spin polarization parameter ηappears when the
electrons are treated as two different fluids and is defined as
η= (n0u− n0d)/n0= 3μBB0/2εFe. By changing spin polar-
ization factor via magnetic field means actully we change the
concentration of spin-up and spin-down particles. Thus if we
treat the electrons as single fluid then there is no spin effect on
the dispersion of ion acoustic wave as well as the energy flow
speed. Further, the energy flow speed for ion acoustic wave
without spin effect [44] is given as
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We have compared the energy flow speed for ion acoustic
wave with and without spin polarization effect in figure (4).
It is clear from the figure that spin polarization effect
reduces the energy flow speed. We have also plotted the
flow speed as shown in figure (5) for low values of density
and magnetic field, for instance, n0=1020 cm−3and
B0=106Gwhich are typically found in the semiconductor
plasma. We took the electron effective mass, replaced ions
with holes and e2in the expression of ωpeis replaced by
e2/ò0(where ò0is the lattice dielectric constant of the
crystal) to obtain the results for solid state plasma. We
conclude that, energy flow speed of ion acoustic wave is
driven by the pressure which is now modified by spin
polarization effect. It is clear that the flow speed is sup-
peressed for both the high and low values of density and
magnetic field in a spin polarized plasma.

Figure 3. Figure shows the comparison of energy flow speed and
group velocity for ion acoustic wave in spin polarized plasma with
the Bohm potential effect. Here we used the parameter
B0=(1–3)×109G, density n0=1024 cm−3 and η=0.23.

Figure 4. Figure shows the comparison of energy flow speed without
(dashed green curve) and with (solid green curve) spin polarization
effect. The parameter are same as used in figure 2.

Figure 5. Figure shows the comparison of energy flow speed for the
solid state parameters: B0=1×106G, density n0=1020 cm−3 and
η=0.11. In this figure dashed green curve shows flow speed
without spin polarization while the solid curve shows flow speed
with spin polarization.
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4. Summary and conclusion

In the present work, we have investigated the energy flow
speed for an ion acoustic wave in a spin quantum plasma. We
have used SSE-QHD model for taking the spin dynamics of
electrons into account. It is observed that energy flow speed
reduces when spin polarization parameter η increases. The
change in speed due to η is appreciably large in short
wavelength limit. Further, the speed falls rapidly with k in the
presence of Bohm potential effect in comparison with the case
when it is absent. Finally, the energy flow speed and the
group velocity are shown to be different in both the situations.
Thus, we conclude that in SSE-QHD model the energy
transport is governed by energy flow speed rather than the
group velocity.
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