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Abstract

CrossMark

In this work, we have investigated ion acoustic drift waves in the presence of adiabatically
trapped degenerate electrons in both linear and nonlinear regimes. Using quantum
magnetohydrodynamics (QMHD), we have modelled a new nonlinear wave equation with a
fractional nonlinearity in two spatial dimensions and one temporal coordinate. We have carried
out the nonlinear analysis by using Sagdeev potential approach and obtained arbitrary amplitude
rarefactive solitons. The propagation ranges for these solitons are worked out with regard to
inhomogeneity and obliqueness. For illustrative purposes, we have applied our results to neutron
stars [5] where the quantum effects are surmised to be extremely significant.
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1. Introduction

The pioneering theoretical framework to study quantum
plasmas was laid down by Pines by including Pauli’s exclu-
sion term in the Boltzmann collision integral of Boltzmann—
Vlasov model [1, 2]. Ever since, the interest in this field has
grown manifold owing to its several applications in laser
plasma interaction and nanoscale semiconductor devices
which include quantum dots, quantum wells, carbon nano-
tubes and metal clusters [3, 4]. Quantum effects also play a
crucial role in the dynamics of naturally occurring astro-
physical plasmas in neutron stars and white dwarfs and this
drawn significant attention of researchers in recent years [5].
As the dynamics of quantum mechanical systems are gov-
erned by the Fermi-Dirac statistics, the quantum hydro-
dynamic model (also quantum magnetohydrodynamic model)
[6, 7] and transport models were developed by including the
Bohm potential term whereas Wigner—Poisson model, which
is the quantum analogue of classical Vlasov—Poisson model,
was established by incorporating Pauli’s exclusion term and
spin effects [8, 9]. These models were further used to probe
the dispersion properties of different wave modes in quantum
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mechanical arenas [10, 11]. Furthermore, nonlinear theory is
well established in literature to study solitary structures in
quantum plasmas, quantum vortices, wave-electron and
wave—wave interactions. In [12], it was shown that ponder-
omotive force of an electromagnetic wave gives rise to
magnetization and cyclotron motion in cold quantum plasmas
which reduces with the increase in the frequency of the
electromagnetic wave. Haas et. al investigated the quantum
ion acoustic waves by employing the one-dimensional
quantum hydrodynamic (QHD) model and derived the
Korteweg—de Vries (KdV) equation for the weak nonlinear
limit [13]. The travelling wave solutions of the nonlinear
equation were also discussed which showed the nontrivial
dependence on the Bohm Potential term and the wave mode
was shown to reduce to its classical counterpart in the linear
regime by ignoring the quantum effects. Similar treatment for
electron acoustic waves [14] and nonlinear dust acoustic
waves [15] was performed to obtain the KdV and modified
KdV equations using the standard reductive perturbation
technique to investigate the existence of compressive and
rarefactive solitons and shock structures. The numerical
analysis showed that width and amplitude of these structures

© 2020 IOP Publishing Ltd  Printed in the UK
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had significant dependence on the quantum correction terms
and the results were applied for the physical parameters that
are typically found in ultra-dense astrophysical environments.

In 1957, Bernstein et al [16] studied the one-dimensional
nonlinear stationary electrostatic wave in a collisionless
plasma to demonstrate the effect of particles being trapped in
the wave potential. These trapped particles undergo finite
motion in the wave potential trough for which the travelling
wave solutions of arbitrary form, amplitude and width can be
obtained. This problem was extended to nonstationary adia-
batic trapping by Gurevich using kinetic formulation in 1967
which yielded 3/2 power nonlinearity instead of the usual
quadratic nonlinearity [17]. The existence and properties of
such stationary waves critically depend on the number of
trapped particles which are supported by computer simula-
tions and experimental investigations [18]. The trapping
effect was also studied for the formation of vortices in clas-
sical plasmas by deriving the modified Hasegawa—Mima
(HM) equation and analyzing the effect of bounce frequencies
on the properties of trapped particles for both shallow and
deep potential well cases [19, 20]. This work was followed by
formulating the generalized HM for electron, positron and ion
plasmas in order to investigate both the scalar and Jacobian
nonlinearities incorporating the positron and electron temp-
erature inhomogeneities. The addition of positrons was shown
to lead to a broader class of solitary vortices [21]. Ion acoustic
solitons were also studied using Maxwellian and non-Max-
wellian distribution functions. The propagation properties
were significantly modified particularly in the latter case
where cusp solitons were obtained [22-24]. One of the sig-
nificant investigations of trapping in quantum plasmas was
done by Luque et al who studied the quantum corrected
system of electron holes by solving Wigner—Poisson model
using perturbation method [25]. Also, Demeio studied trap-
ping effect for Bernstein—-Greene—Kruskal equilibria in
quantum phase space [26].

Shah et al found the expression for adiabatically trapped
number density of electrons by virtue of an electrostatic scalar
potential in the limits of partially and fully degenerate plas-
mas which we will use in our problem [27]. The effect of
adiabatic trapping on the dispersion properties of ion acoustic
waves in degenerate plasmas and relativistic degenerate
plasmas in the presence of quantizing magnetic field were
studied to obtain both compressive and rarefactive solitary
solutions via Sagdeev potential approach and tangent hyper-
bolic (tanh) method [28-30]. Furthermore, drift solitary
waves with trapped electrons have also been studied for the
variation of electron degeneracy temperature in dense astro-
physical plasmas [31]. Similarly, drift waves were investi-
gated for electron—positron—ion (epi) plasmas with trapped
electrons and positrons and derived KdV and Kadomtsev
Petviashvili (KP) equations [32]. These equations were solved
by tanh method and only compressive solitons were found.
The characteristics of these compressive solitary solutions
were found to have significant dependence on positron con-
centration, magnetic field and degeneracy temperature.

In our present work, we undertake the problem of non-
linear evolution of drift ion acoustic waves with the effect of

trapped electrons in fully degenerate astrophysical plasmas.
The dependence of the propagation characteristics of the
solitary structures on number density, Mach numbers, obli-
queness and inhomogeneity scale length are investigated. The
arrangement of this manuscript is as follows. In section 2, we
give the basic equations governing our problem. In section 3,
we investigate the solitary structures by employing the Sag-
deev potential technique. We discuss and summarize the
results in section 4.

2. Mathematical formulation

We begin by considering a quantum magnetoplasma [7]
consisting of ions and electrons with the ambient magnetic
field B, in the z-direction whereas density inhomogeneity is
taken to be in x-direction i.e. n,(x). The wave phase velocity
is considered to lie in the range vg > w/k > vy
(Ve = h2/m, ;(3m%ng)'/3 are the Fermi velocities of elec-
trons and ions) and ions are taken to be cold and classical on
account of their large mass by comparison with electrons i.e.
m; > m,.
The momentum equation for ions is

m;n;(0; + vi.V)v; = en,-(E + lv,- X B,,) (D
c

here m;, e and n; are the mass, charge and number density of
ions respectively. For the electrostatic wave, electric field
takes the form £ = — V¢, where ¢ is the scalar electrostatic
potential. Assuming the usual drift wave approximation and
the low wave frequency limit (2, > 0J,), the parallel and
perpendicular components of ions velocity from equation (1)
are given as follows

A e
Lviz = _f 2P (2)

1

oV, 3)

ViL = (2 x Vo) —

il BU (Z 90) XoP
where the operator L is defined as [ = 0, + vg.V| + v, 0,
and Q. = e B,/cm; is the ion cyclotron frequency and
Vg = ;%(2 x V) is the E X B drift. The number density for
adiabat(ically trapped degenerate electrons in the presence
of an electrostatic potential ¢ in degenerate plasma [27] is
given as

ne =no{(1 + e /ep)*? + 7°T%/8
xer(1 + e /ep) 12}, “)

where e = h%/2m,(37%ny)*/? is the Fermi energy, T is the
temperature, kg is the Boltzmann’s constant and n, is the
background number density. It may be noted here that
the second term on the RHS in equation (4) can be dropped
for the fully degenerate plasmas as it is a small correction
term for partially degenerate plasmas. The Poisson’s equation
is given by

V3¢ = —4me(n; — n,). 5)
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We substitute equation (4) for the fully degenerate case in
equation (5) to get

1 e\
n=——~y2p + no(l + —*") . (6)
dre €r

The continuity equation for ions reads as

Wi G ) = 0. )
ot

Substituting equations (2), (3) and (6) in equation (7) and
collecting the terms under the condition 9y > 0, > 0., we
obtain the following equation for the coupled drift acoustic
wave with fractional nonlinearity

(1 + @)% — N OXD2 + 9H(1 + D)

3
— p;O;ON(1 + ) + S0 + )

— 2021 + ®) =0, (®)

where & = ¢ ¢/cr is the normalized electrostatic potential,

Are = Jer/4me’ny is Fermi wavelength of electrons,
¢, = +Jer/m; is the quantum ion acoustic speed, p; = ¢;/§2
is the ion Larmor radius and vy = (—2cer/3eB,)k is the drift
velocity in which k = |d, In ng| is the inverse scale length of
density inhomogeneity. Equation (8) is a new ion acoustic
drift wave equation with two spatial dimensions and one time
coordinate that depicts the behavior of drift ion acoustic
waves in fully degenerate plasma with the effect of adiaba-
tically trapped electrons.

For the linear analysis of equation (8), we consider the
sinusoidal perturbation which gives the linear dispersion
relation for the coupled quantum drift ion acoustic wave
(CDIAW) as follows

1 2 8 212 172
w:—w*:t(w*+—skz’y) , ©)
2y 3

where v = 1 + 2/3{(Xg. + pDk; + Ak}, wye = ik, is the
drift frequency, k, = k cos 6 k, = k sin ¢ are the wave numbers
in the respective directions and 6 is the angle between wavevector
k and y-axis. Note that the factor 8/3 comes from the expansion
of the trapping term (1 + ®)3/2 in equation (8). This expression
has no equivalent in classical plasmas as there the potential
appears as ®3/2 and, therefore, cannot be expanded [33]. The
positive root of equation (9) is analyzed graphically in figure 1
by using the astrophysical plasma parameters such as those
found in neutron stars [34] ie. n, ~ 10— 10® cm =3, B, ~
10° — 101" G, ¢, =6 x 100 ecms™!, e =5.9 x 10°cm s},
Qi =95 x 10%sTandf ~ /18 to g which follows from
the drift wave conditions (k, > k. and vy < ¢,) [35]. The den-
sity regimes for the plasma are chosen so that the electrons
remain nonrelativistic and degenerate. If the inhomogeneity is
ignored (or k, — 0), equation (9) reduces into ion acoustic

mode ie. w = 2/3¢k, / 1 + 2/3)\gk? and drift wave
Bllie w=wy/1 4+ 2/3{(\k + p})k}} for k. — 0 in fully

- 03 ]
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Figure 1. Linear dispersion relation of ion acoustic wave in
inhomogeneous fully degenerate plasma for different values of 6
(n, = 109 ¢cm~3 and B, = 10'1 G).
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Figure 2. Linear dispersion relation with the variation in inhomo-
geneity for different values of vy/cy(n, = 10%7 cm™3
and B, = 101 G).

degenerate plasmas. From figure 1, we observe that the frequency
of the coupled drift ion acoustic wave increases as a function 6
for the corresponding wavenumbers but for large values of k,
there is no considerable variation in frequency.

In addition to that, we have plotted w(vy) versus k in
figure 2 at @ = /18 which shows that with the increase in vy
(or larger inhomogeneity k), the frequency of the wave under
consideration increases for the corresponding wavenumber in
the linear pattern but for large k, the frequency becomes
nearly constant.

3. New model equation with fractional nonlinearity

We now proceed to analyze equation (8) which is a new
model nonlinear equation with fractional nonlinearity and
use the Sagdeev potential approach for its nonlinear analysis.
We transform equation (8) by using a co-moving frame
§=4q,y +qz— 1t where g, and g, are the nonlinear
wave numbers and 2 is the nonlinear frequency of nonlinear
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structure. The transformed equation (8) reads as

—< + 3/2 _ _3 +

where A = {(\%, + pf)qy2 + )\%eqzz} and B = (qfqzz/Q2 +
3wy/2€2). Integrating twice using the boundary condition
® — 0 as & — oo for localized bounded solution yields

2
e =0+ 9 B+ D (- B,

(1)

where the last term in the parenthesis on the right-hand side of
equation (11) is the constant of integration. It must be noted
here that the term (1 + ®)3/2 which arises due to trapping
effect in equation (8) is kept intact but in [36], this term had
been expanded to obtain the solitary solutions by tanh
method. Therefore, our selection of Sagdeev potential
approach appears to be more pertinent and general for the
analysis of equation (8). Introducing the Sagdeev potential by
regarding the above expression as an energy law for a unit
mass particle with position ¢ oscillating in a potential well
W(®) gives us the following expression

A+ D) dW (@)

de? do 12)

Equation (12) is integrated using the same boundary
conditions mentioned above to evaluate the constants of
integration which gives the Sagdeev potential W(®) as:

2 B
W(®) = ——(1 + ®)%/2 + —(1 + D)2
(?) 5A( ) 2A( )

1-B 3 B
( )(1+<I>)——+—.
S5A 24

+

(13)

Following the standard method given in [37, 38], the
formation of solitary structures requires the following (i) that

W (®)p_o = 0 and (%) )

point obtains at the origin i.e. (d*W/d®*)s_o < 0 and (ii)
the function W(®) must cross the ®-axis for & < 0; else it
would imply an unbounded solution and no nonlinear struc-
ture would be formed. When W(®) < 0 for 0 < & < P«
it gives compressive solitons and when W(®) < 0 for
DPpin < P < 0 it gives rarefactive solitons where Ppay / min
is the maximum/minimum value of potential for
W(®Ppax / min) = 0 i.e. the point where the curve cuts the
positive/negative ® axis. The sign of the third derivative of
equation (13) tells us whether the Sagdeev potential is posi-
tive potential structure or a negative potential structure [38].
In our case, the third derivative is negative so we will only get
rarefactive structures. The range of propagation velocity
v = 1/q, is given via Mach number which is defined as the
ratio of velocity v to the quantum ion acoustic speed c¢;. Now,
expanding equation (13) and setting the quadratic term
coefficient equal to zero, we obtain the following condition on

= 0 so that an unstable fixed

00004 F v ; , ;
00002 |
00000 |
W(9)
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¢

Figure 3. Plots for variation of Sagdeev potential W (®) versus ¢ for
different Mach numbers M at § = 7/18 and vy/c, = 0.1.
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Figure 4. Rarefactive solitons for different Mach numbers M at
0 = 7/18 and vy/c; = 0.1; M = (Blue, 0.20), (Orange, 0.21),
(Green, 0.22), (Red, 0.23).

the lower limit of Mach number M and is given as:

2 02
M, = l[v* cos 0 + \'/14,< cos” 6 + %sinzé)}, (14)

2 Cs cS2

where M, is the lower Mach number. The condition on the
upper Mach number M, can be obtained by considering a
physically valid solution, i.e. @, < —1 and this gives

5[3\/*0050 \/91@%00529 24
h = +

== + Z—sin?0|. (15
1212 ¢ 4 2 5 ] (13)

s

It is evident from equations (14) and (15) that the pro-
pagation range M; < M < M, depends on the drift velo-
city v and the propagation angle 6. Thus, these solutions
yield a definite propagation range for a specific set of physical
parameters. In figure 3, we present the Sagdeev potential plots
W (®) versus ® for § = n/18 for which the Mach number
range is 0.19 < M < 0.23. These curves exhibit that the
depth and the value of potential increase as the Mach number
reaches its upper propagation limit. The corresponding rar-
efactive solitons ®(¢) versus ¢ are given in figure 4 which
show that for higher values of the Mach number M, the
amplitude of the solitary structure increases.



Phys. Scr. 95 (2020) 045609

A Fayyaz et al

0.0004

0.0002

0.0000
W(¢)

-0.0002

-0.0004

Figure 5. Plots for variation of Sagdeev potential W (®) versus ® for
different Mach numbers M at § = 7/9 and vy/c, = 0.1.
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Figure 6. Plots for variation of Sagdeev potential W (®) versus @ for
different Mach numbers M at §# = 7/6 and vy/c, = 0.1.

Likewise, the Sagdeev potential curves for # = 7/9 and
0 = w/6 are shown in figures 5 and 6 for which propagation
regimes are found to be 0.33 < M < 0.37 and 045 <
M < 0.51, respectively. These curves exhibit a similar
increasing trend of variation in depth and potential as the Mach
number reaches its maximum value for the respective case. It is
also observed that the propagation regimes become a little
broader with respect to M with the increase in obliqueness. On
the other hand, for two slightly different angles with an identical
Mach number (e.g. in figure 7 for § = 0.127 and 8 = 0.13,
the identical Mach number is 0.40), the Sagdeev plots show that
value of potential and the depth decreases drastically for a
small increase in . These results are summed up in figure 8
where @, as a function of # is plotted against the corresp-
onding ranges of the Mach number. Furthermore, if we ignore
the inhomogeneity ~ or set g, — 0, the Mach number range
becomes higher ie. 0.81 < M < 0.91 and corresponds to
(drift free) ion acoustic rarefactive solitons.

Another case pertinent to our problem arises from the
variation in inverse scale length of inhomogeneity x while
keeping the other physical parameters constant. A slight
variation in the inhomogeneity gives a unique propagation
range for rarefactive solitons. The propagation regime when
vs/cg is varied from 0.1 to 0.5 are depicted in figure 9 in
which the change in &, can be seen as the Mach number
slides from its lowest limit to upper limit for each case.

T T T T

0.0002
0.0000
W(9)

-0.0002

-0.0004

Figure 7. Plots for variation of Sagdeev potential W (®) versus & for
Mach number M = 0.40 at@ = 0.127 and 0.137 and vy/c, = 0.1.

ool : : : : :
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_081} J
0.30 035 0.40 045

M

Figure 8. The amplitude of rarefactive solitons ®,;,(#) versus
Mach numbers M for vy/c, = 0.1; (1) 6 = 0.087 , (2)0 = 0.10m,
(3)0 = 0.127, (4)0 = 0.14x, (5) 0 = 0.16m7, (6) 0 = 0.187,
(76 = 0.207.
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Figure 9. The amplitude of rarefactive solitons ®,;,(v«) versus Mach
numbers M for 0 = /9 ; (Dvy/cs = 0.1, (2) vi/c; = 0.2,
3) vi/c; = 0.3, 4) vs/cg = 0.4, (5) v¢/c, = 0.5.

4. Summary and conclusion

We have investigated the propagation of quantum drift ion
acoustic solitary waves in fully degenerate quantum plasmas.
Using QMHD model, we have formulated a new nonlinear
equation for the drift ion acoustic mode in the presence of
trapped degenerate electrons bearing a fractional nonlinear
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term. This equation is analyzed in nonlinear regime by using
Sagdeev potential approach to find the solitary structures.
Further our model equation (equation 10) has been numeri-
cally investigated for neutron star plasma parameters and it is
found that for these chosen parameters rarefactive solitary
structures could exist. These solitary structures appear to have
crucial dependence on angle of propagation and inhomo-
geneity. The nonlinear analysis presented here can be applied
in a variety of physical situations of interest in astrophysical
plasmas. It furthers our understanding of dealing with non-
linearities which appears as (1 + ®)3/2 instead of classical
trapping case where the nonlinearity appears as a ®3/2 term.
We hope to extend this work to investigating shock like
structures in the dense astrophysical plasma environments.
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