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Abstract

Inclusion of a quantizing magnetic field in a partially degenerate plasma has interesting effects on the
propagation of solitary and nonlinear periodic structures in coupled kinetic Alfven acoustic waves. In
this paper, we use two-potential theory to investigate the nonlinear structures using Sagdeev potential
approach and further analyze it using nonlinear dynamical methods. It is shown that the existence of
solitary structure is sensitive to small temperature effects and quantizing magnetic field in a dense
plasma with adiabatically trapped electrons. The work presented here is useful in understanding the
low frequency wave propagation in a dense astrophysical environment like white dwarf stars and in
low beta laboratory plasmas e.g. intense laser-plasma interactions.

1. Introduction

Quantum plasmas have received much attention in the recent decades due to its presence and applications in
various interesting physical domains, including but not limited to quantum dots, carbon nanotubes and micro-
electronics [ 1-4]. Degenerate plasmas are also observed naturally in astrophysical environment such as neutron
stars, white dwarfs, active galactic nuclei [5, 6] etc Linear electron oscillations in a quantum plasma have been
studied in the past decade or so [7-9]. Following up on this work, Tsintsadze developed a set of fluid equations
for degenerate Fermi plasmas and discussed the dispersion relations of electrostatic waves propagating in that
medium [10]. Later on, nonlinear behavior of electrostatic waves in a degenerate plasma gained substantial
attention, including the effect of adiabatic trapping in the propagation of solitary waves in quantum plasmas
[11-14].

Trapping as a microscopic phenomenon began with the seminal paper by Gurevich [15, 16] who proposed
that, in a slowly applied field, particles can get adiabatically trapped in a potential. This has a drastic effect on the
number density of the trapped particles, creating a peculiar 3 /2 power non-linearity rather than the usual
quadratic one. Extension of the concept of trapping to quantum plasmas changes the nature of non-linearity
(from 2 to (1 + )2). Some authors have expanded (1 + ): expression to get an exact solution for the
system, losing the fractional non-linearity in the process, to a trapping co-efficient (as in %(p) [17]. In certain

cases [11-14, 18], (1 + ¢)> type of non-linearity is taken as it is, and the system is investigated without
expanding that expression so that the 3/2 power nonlinearity be maintained. Effect of trapping has been
extensively studied in the past decade for quantum plasmas, starting with the work of Shah et al[11] for ion
acoustic waves in a dense plasma. This work was later extended to a relativistic degenerate plasma [12] in the
presence of a quantizing magnetic field [13]. Effect of trapping is also investigated for self-gravitating dusty
plasma [14], and for kinetic Alfven waves (KAWs) in the classical case [19] and later for a fully degenerate plasma
[18]. Recently, adiabatic trapping was investigated in a dissipative medium for ion acoustic waves in a
magnetized plasma, where Burgers equation was derived, and nonlinear shock wave formation of different kinds
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was observed [20]. 3D propagation of such waves was also studied recently in a homogeneous multi-ion
magnetized quantum plasma [21].

Most of the work for the effect of trapping in quantum plasmas for low frequency regimes is done for
electrostatic waves, even in the presence of the quantizing and super-strong magnetic fields [11-14, 17, 18, 22].
Since most dense astrophysical environments have a strong ambient magnetic field, investigating the effect of
trapping in coupled kinetic Alfven-acoustic waves (CKAAWSs) may yield more practical results. In this paper,
two-potential theory [23] is used to investigate nonlinear CKAAWs in degenerate plasmas. This theory is valid
for alow frequency (w? < w? )andlow beta plasma. Previously, finite amplitude solitary structures in
CKAAWSs were studied using the two-potential theory with Maxwellian distribution [24, 25] and later with
adiabatic trapping in a classical plasma [19]. Lately, much promising work is still ongoing for the propagation of
KAWSs in non-Maxwellian kappa distributed electrons in space and upper atmospheric plasma [26, 27], but not
much is done for the aforementioned waves in quantum plasmas or dense astrophysical plasmas. This concept
was extended by Sabeen et al [ 18] to quantum plasmas, where solitary structures were investigated for CKAAWs
in a fully degenerate plasma.

The presence of a sufficiently strong magnetic field leads to Landau quantization [16], whereby the magnetic
field of electrons are quantized and the magnetic field affects the electron dynamics, even if only parallel
propagating waves are considered.

In this paper, we will discuss the effect of trapping in nonlinear CKAAWs for a partially degenerate plasma in
the presence of quantizing magnetic field [13, 22]. In section I, the basic set of equations is discussed, and the
linear dispersion relation is derived. In section III, non-linear properties of the system are observed using the
Sagdeev potential approach. In section IV, both solitary and non-linear periodic structures are investigated using
dynamical system analysis. Using fixed points-analysis, we determine the nature of waves that may propagate in
such asystem [28, 29]. Section V contains results and discussions.

2. Mathematical preliminaries and linear analysis

In the present section, we begin by briefly introducing the two-potential theory [23] This approach is valid for

. 2y
low 3 plasmasonly (1 > 3 > m,/m;).In the case of quantum plasmas the plasma (3 is defined as 3y = Vc’fz ,
‘A
where ¢y = | % is the ion acoustic velocity for a quantum plasma, m; is theion mass, v4 = uBni — is the
i oMo

Alfven velocity and f1, is the magnetic permeability constant . We consider motion in the x—z direction, taking
By in the z direction and further by using the two -potential theory, the electric field E is represented in terms of
two potentials ¢ and ® in the following manner [23],

L0 g 0%
ox’ ‘ oz’
Using the effect of adiabatic trapping in a dense plasma and keeping the effects of temperature and quantizing

magnetic field into account, the number density of partially degenerate electrons using Fermi—Dirac statistics
[13]is given as,

EX: E}’:()’ BZ:BO

3 1 3 T? _3 ) 1
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Where the potential ¥ is normalized as, ¥ = i—“ﬁ and the temperature is normalized as, T = where Ty is
.

2, 2 Z
h(zﬂTnm’ the effect of quantizing

the ambient temperature in energy units. Fermi energy is given by ef =

hwge

magnetic field is given through the parameter n = ==, w,, = %B‘) is the electron cyclotron frequency, By

&
represents the ambient magnetic field, which is a constant and the number density is normalized as n = =,

Meo

where 1, is the background number density.
Ions are treated classically due to their heavy mass (m; > m,) and, therefore, the equation of motion of ions
is taken to be classical in nature. Thus, the ion equation of motion for the case of low beta plasma is given by,

mi(?: + (Vi-v)vi) = e(E + v; X By) (2)
The Ampere’s law, modified with the two-potential theory, gives us [19],
o* 0% .
—(® — @) = py—— 3
oo TP T g ©

Here j, is the current density.
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The ion continuity equation, in the given geometry reads as,

on
— + _(an) + (ﬂvz) =0 4)
ot 0z
From the electron continuity equation, we obtain the expression for the current density in z direction, which
can be expressed as,

0j, 811

0
0z 3t +63 (nv2) ®)

Linearizing the above set of equations and solving them simultaneously by using a plane wave solution gives us
the following linear dispersion relation for CKAAWs,

2 : 2k22
(1 ~nk )((1 + 132 Y —(1 — 2 - —(1 — i - waz )

w?

B AstA kz 2

w2

(6)

Where A is the coupling parameter and is defined as Ay = ’, where Q= —" is the ion cyclotron

Sz’

frequency. Here
ke =ksinf, k,=kcos0

Where 0 is the angle between ambient magnetic field and propagation vector.
Itis clear from the linear dispersion relation of CKAAWS for partially degenerate and magnetically quantized

plasma that, for very high values of plasma beta (ﬁf = ) v4 becomes insignificant in equation (6) and we are

left with ion acoustic mode only.

We note that here < 11is taken for strong magnetic fields and n > 11is taken for super-strong magnetic
fields, which is not considered here and is beyond the scope of the present work.

If we put the normalized temperature and quantizing magnetic field to be equal to zero, we retrieve the linear
dispersion for a fully degenerate plasma, in accordance with Sabeen et al [ 18]. Unlike the classical cases, the effect
of trapping remains visible as a 3/2 coefficient in the linear dispersion relation as well. The coupling term
appears on the right-hand side of equation (6). In the limiting case of k, = 0, equation (6) decouples and gives us
the linear dispersion relations for the ion acoustic waves and Alfven waves. In the next section, we shall
investigate the nonlinear behavior of CKAAWs.

3. Non-linear behavior and Sagdeev potential

Due to the nature of nonlinearity in the system of equations, it is not possible to find the exact solution. One may
expand the non-linear terms into leading orders, in terms of the potential ¥, but because of such an
approximation, the fractional nature of nonlinearity is lost. Retaining the fractional non-linearity makes it
impossible to find the exact solution of the system, therefore, we use the Sagdeev potential method to investigate
the allowed regions of solitary wave propagation and nonlinear periodic waves. We shift to the co-moving frame
of reference, which is defined as,

a=K,x+ K,z — Mt

Here K, and K, are the directional cosines, The condition for directional cosinesis K, 2 + K, 2 = 1; where

K, = sin0and K, = cos . We have used the following normalized parameters, M = %, n = ", t = Q;t
CSf U
and v = *. Thenceforth, the dimensionless form of the system of equations is as follows,
o
v, Ov, Ov, or
—-M +Kx x_+Kz 12 :*Kz_ 7
Oa da Oa Oa 2
0%®
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4 2y 2
w2k @ - vy = By MZa— Y e )
oo 3(1
On O(nvy) 8(nvz)
-M — + K, ——=+K,——= =0 10
Oa Ooa Ooa (10)

Integrating equation (7) using the boundary conditions thatas & — oo, the perturbed quantities v, ®, ¥ — 0
and the number density n — A, yields
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ma2% — g 2% (11)
ox ox

Where A is the integration constant given by
3 3 _1
AZEU—F(I—T])Z—I-TZ(I—U) 2

Here it is worth noting that, all the terms with n?T?, 7T?, n?T*, T*and 5? are ignored since for a quantum
plasma 7, T < 1and such terms will have little to no contribution to the results. Plugging the value of
equation (1) in equation (11) and integrating once gives,

MAv, = Kz(n(l + )2+ %(1 FU— s + 2T 4+ 0 — )y — B) (12)
Where the integration constant B is given by
B=n+ 20— 3+ 272 -}
Using equation (10), and integrating once and using the boundary conditions given above, we obtain

ve = M(1 — é) - K (13)
n K,

Integrating equation (9) twice and then using equation (12) gives

v v b
902 KM 2K.K,2

[M2(n — A) — MK, nv,] (14)

Substituting the values of equations (2), (12) and (13) in equation (14) gives us,

2
22Y 4 ((1 FU ) — 24U — T4 U — n)—%)
Oa? 2
Kzzﬂf( 32 5 1
— 1+U)2 4+ 20 +T —n)2 +27T*Q + 0 — 2—B)
NEA n( ) 5( ) ( )
2 (3 1 3 ) 1
—Kz577(1—&-\11)2—5-(1—1—\1/—77)2+T(1+\I/—n)2—A
ﬁf(s 2 12
——=nQ + PP+ QA+ T -+ =T>1 + T — n)?
24 STI( ) S( ) - ( 7
3 3 1 1
—B((1+\If—n)5+ En(1+\If)z+T2(1+\1/—n)‘z)) (15)

In the above expression, we have Taylor expanded the 1/1 term with respect to temperature and ignored the
higher order terms. Moreover, we have used the Alfvenic Mach number which is defined as M, 2 = % BrM 2and
is the ratio of the speed of wave to the Alfven velocity. We express equation (15) through the Sagdeev potential
V (¥) in the usual manner [11],

0% ov
Z - -z 16
da? ov (16)
Integrating equation (16) gives,
1 1 32 5
V(\I'):—F[\If—l—A(Z(l-&-\If—n) 2 —n(1 4+ )2 —gTz(l—l—\If—n) 2)
X
K> B (2 5 4 74 3
— A 4+U2 +—A+¥—n2+-T?Q+ 7T - 5—\113)
2MjA(577( ) 35( ) 3 ( m
2
724/*2(7;(1 £ )+ %(1 FU ) 42T+ U — )7 — \IIA)
By (2 2 4
+——| A+ + =0 +T -’ +=-T>0+7T —n)’
>4 577( ) 25( ) 5 ( )
3 2 5 1
—B(n(l + U2 + E(l + U — )2 + 27?1 + ¥ — n)z)) + C] (17)

Where, C is the constant of integration, which is found by using the standard boundary condition [11],
V(¥) — 0,when ¥ — 0andisgiven by,
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1 1 2 s
C= @[A(Z(l -2 —n— ETZ(I —-n) 2)
K ﬂf( +—(1—n)2+ Tz(l—n)z)
C2M2A 5
2
—%(n + 3(1 — 3 + 277 — 77)%)
6f( 5 2 3
2= T _
LA (1 n’ + =T —n)
2 s 1
—B(n + E(l -2 +27%(1 — 77)2))] (18)

In order to carry out numerical and graphical analysis of our results of the section above, we use the data from
the precincts of white dwarf stars [30]. It is believed that in the outer shells of supernovae, electrostatic structures
may exist [31]. Studying electromagnetic waves in such dense plasmas may have more interesting outcomes in
the future. We now examine nonlinear CKAAWs with adiabatically trapped electrons in the presence of
quantizing magnetic field, numerically. For the above-mentioned model, we have plotted the effective Sagdeev
potential, phase portraits and corresponding structures.

We find the range of mach number for which solitary waves exist. This is determined numerically for
np = 1.8 x 1032 m=3, By = 1 x 10°T, § = 75°.Itis found that both compressive and rarefactive solitary
waves are obtained for 0.05 < My < 0.07 and 0.18 < M, < 0.24, and only rarefactive solitary structures are
obtained for 0.08 < My < 0.17 as shown in figure 1(a). This shows that CKAAWSs under the given conditions is
asub-Alfvenic wave. The variation of Sagdeev potential over the complete range of Alfvenic Mach number is
clear in 3-dimensional plot as seen in figure 1(b).

Itis observed that for the existence of solitary structure the range of Alfvenic Mach number strongly depends
on the angle of propagation. As we increase the angle of propagation, the range of Alfvenic Mach number
narrows down. For § = 85°, the range of Mach number is from M, = 0.015to My = 0.085 and for § = 86°,
the range of Alfvenic Mach number decreases and is from M, = 0.012 to My = 0.068. Figure 2 shows that at
M, = 0.07 the depth of Sagdeev potential decreases at 85° and § = 86° in comparison to 75°.

Itis noted that the solitary structures are only found for a specific value of parameters and for the other
values, we have observed the existence of nonlinear periodic waves. This behavior was also investigated by Yu
et al where solitary KAWs were studied in a classical plasma [25].

4. Dynamical analysis

In this section, we investigate the non-linear wave propagation using dynamical system analysis. The
significance of using this method is that it helps in understanding the wave trajectory in phase space and such
trajectories provide information about the solution. Dynamical equations corresponding to ordinary
differential equation (15) are as follows

=22
o
19
o _ 0w o
da  Oa?
Where % is given in equation (15). We write the Hamiltonian for this dynamical system as
z? 1 _1 32 _5
H(Z’W):T_F U+ A20+TY —n) 2 —n(Q +¥) 2 — ETZ(I—I—\I’—U) 2
K.* ﬂf( n(1 + 0)2 +—(1+\Il—77)2 + T2(1+\I/—77)z —B\I/)
2M2A
M2
—K—( 1+ \I/)z + —(1 + 0 — 77)2 +2T*1 + ¥ — 77)2 —A\I!)
+ﬁ—£( Zn(l + W) + —(1 +U— )+ T2(1 + T — p)
3 2 El L
—B(n(l +¥)2 + g(l + U —n)2 + 27?0 + ¥ — 77)2)) + C] (20)
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V(y)

-0.20

(b)

0.20 ./

Figure 1. Solitary structure for ny = 1.8 x 10> m=, By =1 x 10°T, § = 75°and T = 0.24. (a) Sagdeev potential different for
values of Alfvenic Mach No. (b) 3-dimensional plot of Sagdeev Potential over the complete the complete range of Alfvenic Mach
Number.

The value of constant C is given in equation (18). The second term in Hamiltonian shows effective potential [32]
which in our case is the Sagdeev potential given in equation (17). The dynamical system in equation (19)
comprises of transcendental equations. In order to solve nonlinear equations for the fixed point, we opt for the
numerical approach.

The Jacobian matrix of dynamical system in equation (19) gives eigenvalues and is given by

J= (g (1)) 1)
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-0.20

Figure 2. Sagdeev potential for different value of anglesat np = 1.8 x 102 m=3, By =1 x 10°T, My = 0.07and T = 0.24.

Where
2
p_ 9 [0
ov \ da?
1 3 5 15 7 7 9
P= —|-Al-Z(04+T -2+l +T) 2+ -T201+7T — **)
sz[ (2(+ 77)2+477(+)2+2 ( n 2

Kzzﬁf
2 MiA

3 1 3 1
(577(1 +02 + (1 +V -2+ T?1+T -~ n)ﬁ)

2
z

M; (3 13 1 T? 3
- N1+ 2+ -1+¥V—n2—-—>0A+¥ -1 2
X (477( ) 2( ) 2( n))

6f(24 8 24
=4+ 02+ QA+ T -+ =T°(1+ ¥ -
A 517( ) 5( ) - ( )

2
—B(%(l T Zn(l 0y - %(1 U n)im (22)

If ‘I’ is the identity matrix, then the characteristics equation is given as
det(J — M) = 0
Using equation (21) in characteristic equation, we get the required eigenvalues
- 1
=0
I

=Ny = £VP (23)

Here, the eigenvalues are again calculated numerically for different values of , M, , K, K,and Tbykeeping
the normalized density and background magnetic field constant. We get different eigen values for different
equilibrium points. It is clear from equation (23) thatif P < 0 for a given equilibrium point, we get centers and
for P > 0, we obtain saddle points [33].

Using the above-mentioned dynamical system, we first plot the phase portraits (equation 19) for different
values of the Mach number. We obtain homoclinic orbits (Thick black line) for My = 0.1and M, = 0.2,
corresponding to solitary structure as seen in figures 3(a) and (b) respectively. The closed orbits within these
homoclinic orbits show nonlinear periodic waves. For these trajectories, equilibrium or fixed points have been
calculated numerically. Eigenvalues for the equilibrium or fixed points are also calculated numerically using
equation (22). Figure 3(a) shows rarefactive solitary structure for My = 0.1. Eigenvalues show that fixed point
(0, 0) is a saddle point and fixed point (—0.586 13, 0) is a center. Figure 3(b) shows both compressive and

7
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da

(b) s

Figure 3. Phase portraits for 7y = 1.8 x 102 m™=3, By = 1 x 10°T, § = 75°and T = 0.24. (a) For My = 0.1 (b) For M, = 0.2.

rarefactive solitary structures for My = 0.2. Eigenvalues for these equilibrium points using equation (22) show
that fixed point (0, 0) is a saddle point and fixed points (—0.571 38, 0) and (0.371 84, 0) are centers.

Itis observed that for given values of density and magnetic field, we get a particular temperature for which
solitary structure exists. Once solitary structure forms, it sustains itself only for the variation of Alfvenic Mach
number M, and not for any variation of other parameters. We note that Yu and Shukla [25] have examined the
conditions for existence of solitary structures for KAWs and have shown that solitary KAWs exist only for
specific values of parameters in the classical plasma as well. In case of e—p—i plasma, Kakati and Goswami [34]
also investigated the existence conditions for solitary KAWs. In the present case when ny = 1.8 x 10*2 m~?,
By =1 x 10°T, weget T = 0.24 for which solitary structure exists. For 0.24 < T < 0.35and 0 < T < 0.24
we obtain homoclinic orbits which corresponds to non-linear pulses. For T > 0.35, we get periodic waves only.

8
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WL 17 | B . v AT < [ — a
10 20 30 40

Figure 4. Dynamical plots for np = 1.8 x 102 m=3, By =1 x 10° T, § = 75°and M, = 0.06. (a) Homoclinic orbitsat T = 0.35
(b) Periodic orbitsat T = 0.4 (c) Nonlinear pulsesat T = 0.35 corresponding to figure 1(a). (d) The corresponding periodic wave
profileat T = 0.4.

Phase plot (from equation 19) in figure 4(a) shows a homoclinic orbit enclosing non-linear periodic orbits for
T = 0.35. Eigenvalues for these equilibrium points using equation (22) show that fixed point (—0.152 52,0) isa
saddle point and (—0.285 65,0) and (0.332 99, 0) are centers. Figure 4(b) shows only periodic orbits for
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Vig)

(b) 0.2

-0.570

-0.572

Figure 5. (a) Phase portraitat 7 = 0.1for ngp = 1.8 x 102 m=3, By =1 x 10°T, § = 75°and M, = 0.06. (b) Effective potential
V () versus V. (c) The periodic wave profile corresponding to (a) and (b).

nonlinear periodic waves with center at (0.331 63,0). For T = 0.35and T = 0.4, the corresponding amplitude

profiles are shown in figures 4(c) and (d), respectively.

Phase portrait of dynamical system in equation (19) for different values of quantizing magnetic fields gives
homoclinic orbits, enclosing the periodic orbits. At = 0.1, for background density ny = 1.8 x 10°2 m~3,
magnetic field By = 1 X 10°T, normalized temperature T = 0.24 , Alfvenic mach number M, = 0.06 and
angle of propagation is § = 75°.we get homoclinic trajectory, which is corresponding to the solitary structure in

figure 5(a). Eigenvalues using equation (23) show that fixed point (0, 0) is a saddle point and fixed points

10
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(b) 6f:t

Figure 6. (a) Phase portraitat 7 = 0.2 (b) phase portraitat 7 = 0.3 (c) Nonlinear pulses at ) = 0.2 corresponding to figure 6(a) (d)
Nonlinear pulsesat 77 = 0.3 corresponding to figure 6(b). For ny = 1.8 X 10 m™3, By =1 x 10°T, § = 75°and M, = 0.06.

11
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(a) op

(b) vig)

Figure 7. (a) Phase portraitat 7 = 0 for ng = 1.8 x 102 m™>, By =1 x 10°T, § = 75°and M, = 0.06. (b) Effective potential
V (D) versus V.

(—0.5537,0) and (0.3407, 0) are centers. We get both compressive and rarefactive solitary structures that can
clearly be shown in the phase portraits and Sagdeev potential V () profiles in figures 5(a) and (b), respectively.
Figure 5(c) shows one of the corresponding time series of the plots of figure 5(a).

In figures 6(a), (b), we see the variation in phase portrait and corresponding structures for quantizing
magnetic field when and 1 = 0.3. For a fixed value of 119, My, T and 6 we note that the increase in 7 is a result of
the increasing ambient magnetic field By. ,we get a homoclinic trajectory in phase portrait of dynamical system.
When 7 = 0.2, fixed point (0.0456, 0) is a saddle point and fixed point (—0.4785, 0) is a center in figure 6(a).
Figure 6(b) shows When 1 = 0.3, fixed point (0.1247, 0) is a saddle point and fixed point (—0.3786,0) isa
center. Amplitude profiles for n = 0.2 and = 0.3 show nonlinear pulses in figures 6(c), (d).

12
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In the absence of quantizing magnetic field, we again get homoclinic trajectory corresponding to solitary
structure as shown in figure 7(a). In that case, the fixed point (0, 0) is a saddle point and fixed points
(—0.735 66,0) and (0.351 76, 0) are centers. Both compressive and rarefactive solitary structures are obtained
that can clearly be shown in phase portrait and Sagdeev potential V (¥) profiles in figures 7(a) and (b),
respectively.

Itis also examined that for fully degenerate plasma (I' = 0) and in the absence of quantizing magnetic field
(n = 0), we retrieve the results of Sabeen et al [18].

5. Conclusions
In this paper, we have investigated the effect of adiabatic trapping of electrons on the linear and non-linear
behavior of CKAAWSs. These waves have not been investigated before for a partially degenerate plasma in the
presence of a quantizing magnetic field. Since these waves are expected to be found in dense astrophysical
environments which have strong ambient magnetic field and maybe partially degenerate. Taking Landau
quantization into account may lead to more practical applications and to a better understanding of the
formation of non-linear structures in degenerate plasmas. We have observed through Sagdeev potential
approach that solitary structures exist only within a specific range of Alfvenic Mach numbers, and this range
varies with the change of other parameters, including the angle of propagation. This result was confirmed by
using non-linear dynamical analysis. We have shown the existence of solitary pulses by obtaining homoclinic
orbits for certain parameters, and in general we observe the existence of nonlinear periodic waves.

We note that had we Taylor expanded the expression which yields Sagdeev potential in equation (15), we
would have clearly seen the competition between dispersion and non-linearity that can yield a KdV equation.
We have kept the problem general by preserving the degree and form of non-linearity in equation (1).
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