

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-[(E)-({4-[(4,6-Dimethylpyrimidin-2yl)sulfamoyl]phenyl}iminio)methyl]-6-hydroxyphenolate

M. Nawaz Tahir,^a* Abdul Haleem Khan,^b Mohammad S. Igbal,^c Hazoor Ahmad Shad^d and Muhammad Yagub^e

^aDepartment of Physics, University of Sargodha, Sargodha, Pakistan, ^bDepartment of Pharmacy Services, Jinnah Hospital, Lahore, Pakistan, ^cDepartment of Chemistry, Forman Christian College, Lahore 54600, Pakistan, ^dDepartment of Chemistry, Government Post Graduate College, Gojra, Punjab, Pakistan, and ^eDepartment of Chemistry, Bahauddin Zakariya University, Multan 60800, Pakistan Correspondence e-mail: dmntahir_uos@yahoo.com

Received 21 July 2012; accepted 5 August 2012

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.005 Å; R factor = 0.054; wR factor = 0.151; data-to-parameter ratio = 14.7.

The title compound, $C_{19}H_{18}N_4O_4S$, exists as a zwitterion in the solid state, with nominal proton transfer from a phenol group to the imine N atom. The 2,3-dihydroxybenzaldehyde fragment is oriented at a dihedral angle of $35.51 (11)^{\circ}$ to the adajacent aniline group and makes a dihedral angle of $76.99(6)^{\circ}$ with the 4,6-dimethylpyrimidin-2-amine group. Intramolecular O-H···O and N-H···O hydrogen bonds close S(5) and S(6) rings, respectively; the same O atom accepts both bonds. In the crystal, polymeric chains along [001] are formed from molecules joined end-to-end by N-H···O and O-H···N hydrogen bonds; these feature $R_2^3(6)$ loops. The polymeric chains are linked by C-H···O interactions and there are $\pi - \pi$ interactions between the pyrimidine rings with a centroid-centroid distance of 3.446 (2) Å.

Related literature

For related structures, see: Chohan et al. (2008); Shad et al. (2009); Tahir et al. (2012). For graph-set notation, see: Bernstein et al. (1995).

Experimental

Crystal data C19H18N4O4S

 $M_r = 398.43$

organic compounds

Z = 8

Mo $K\alpha$ radiation

 $0.34 \times 0.28 \times 0.15$ mm

16627 measured reflections 3796 independent reflections

1778 reflections with $I > 2\sigma(I)$

 $\mu = 0.20 \text{ mm}^{-1}$

T = 296 K

 $R_{\rm int}=0.069$

Orthorhombic, Pbcn a = 24.7506 (12) Å b = 12.1689 (6) Å c = 12.8408 (5) Å V = 3867.5 (3) Å³

Data collection

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.054$	H atoms treated by a mixture of
$wR(F^2) = 0.151$	independent and constrained
S = 1.01	refinement
3796 reflections	$\Delta \rho_{\rm max} = 0.21 \text{ e } \text{\AA}^{-3}$
259 parameters	$\Delta \rho_{\rm min} = -0.28 \text{ e} \text{ Å}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1 - H1 \cdots O1$	0.78 (4)	1.88 (4)	2.569 (5)	148 (4)
$O2-H2\cdots O1$	0.82	2.34	2.768 (5)	113
$O2-H2 \cdot \cdot \cdot N3^{i}$	0.82	2.16	2.862 (5)	144
$N2-H2A\cdots O1^{ii}$	0.86	1.94	2.790 (4)	172
$C18-H18A\cdots O4^{iii}$	0.96	2.52	3.469 (5)	171

Symmetry codes: (i) $-x + \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$; (ii) $-x + \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$; (iii) $x, -y, z - \frac{1}{2}$.

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.

The authors acknowledge the provision of funds for the purchase of the diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6908).

References

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.

- Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chohan, Z. H., Tahir, M. N., Shad, H. A. & Khan, I. U. (2008). Acta Cryst. E64, 0648.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

Shad, H. A., Tahir, M. N. & Chohan, Z. H. (2009). Acta Cryst. E65, 098-099. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Tahir, M. N., Khan, A. H., Iqbal, M. S., Munir, C. & Aziz, T. (2012). Acta Cryst. E68. o2125.

supplementary materials

Acta Cryst. (2012). E68, o2687 [doi:10.1107/S1600536812034757]

2-[(*E*)-({4-[(4,6-Dimethylpyrimidin-2-yl)sulfamoyl]phenyl}iminio)methyl]-6-hydroxyphenolate

M. Nawaz Tahir, Abdul Haleem Khan, Mohammad S. Iqbal, Hazoor Ahmad Shad and Muhammad Yaqub

Comment

We have reported the crystal structure of 4-{[(E)-(2,3-dihydroxyphenyl) methylidene]amino}-N-(5-methyl-1,2-oxazol-3-yl)benzenesulfonamide (Tahir *et al.*, 2012) and the title compound (I), (Fig. 1) has also been synthesized for the biological studies and forming different metal complexes.

The crystal structures of 4-(5-chloro-2-hydroxybenzylideneamino)-*N*- (4,6-dimethylpyrimidin-2-yl)benzenesulfonamide (Chohan *et al.*, 2008) and 4-[(5-bromo-2-hydroxybenzylidene)amino]-*N*-(4,6-dimethylpyrimidin- 2-yl)benzene-sulfonamide–4-bromo-2-[(*E*)-($\{4-[(4,6-dimethylpyrimidin-2-yl) sulfamoyl]phenyl\}iminio)methyl]phenolate (Shad$ *et al.*, 2009) have been published which are related to the title compound.

In (I) the parts of 2,3-dihydroxybenzaldehyde A (C1—C7/O1/O2), annilinic group B (C8—C13/N1) and 4,6-dimethylpyrimidin-2-amine C (C14—C19/N2/N3/N4) are planar with r.m.s. deviation of 0.0105, 0.0070 and 0.0216 Å, respectively. The dihedral angle between A/B, A/C and B/C is 35.51 (11)°, 76.99 (6)° and 88.92 (6)°, respectively. The sulfonyl group D (O3/S1/O4) is of course planar. The dihedral angle between A/D, B/D and C/D is 62.20 (13)°, 47.66 (17)° and 50.34 (15)°, respectively. In (I), S(5) and S(6) ring motif (Bernstein *et al.*, 1995) are present due to H-bondings of O—H…O and N—H…O types, respectively (Table 1, Fig. 1). The molecules are interlinked from end to end due to Hbondings of N—H…O and O—H…O types (Table 1, Fig. 2). Due to these bondings $R_2^3(6)$ loops are also formed. The molecules are interlinked in the form of polymeric chains along the *c*-axis. The polymeric chains are also interlinked due to C–H…O bondings (Table 1, Fig. 2), Where CH is of methyl group and O-atom is of sulfonyl group. There exist π - π interaction between Cg1… $Cg1^i$ [i = 1 - *x*, *y*, 1/2 - *z*] at a distance of 3.446 (2) Å, where Cg1 is the centroid of pyrimidin ring (C14—C17/N3/N4).

Experimental

Equimolar quantities of 4-amino-*N*-(4,6-dimethylpyrimidin-2-yl) benzenesulfonamide (Sulfamethazine) and 2,3-dihydroxybenzaldehyde were refluxed in methanol along with few drops of acetic acid as catalyst for 3 h. The solution was kept at room temperature which afforded dark red plates after four days upon slow evaporation of the solvent.

Refinement

The coordinates of H1 were refined. The H-atoms were positioned geometrically (C–H = 0.93–0.96 Å, N—H= 0.86 Å, O —H= 0.82 Å) and refined as riding with U_{iso} (H) = xU_{eq} (C, N, O), where x = 1.5 for hydroxy & methyl and x = 1.2 for other H-atoms.

Computing details

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT* (Bruker, 2007); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997) and *PLATON* (Spek, 2009); software used to prepare material for publication: *WinGX* (Farrugia, 1999) and *PLATON* (Spek, 2009).

Figure 1

View of the title compound with displacement ellipsoids drawn at the 50% probability level. The dotted lines represent the intramolecular H-bonds.

Figure 2

The partial packing, which shows that molecules form polymeric chains along [001]. The H-atoms not involved in H-bondings are omitted for clarity.

2-[(E)-({4-[(4,6-Dimethylpyrimidin-2-yl)sulfamoyl]phenyl}iminio)methyl]- 6-hydroxyphenolate

Crystal data	
$C_{19}H_{18}N_4O_4S$	F(000) = 1664
$M_r = 398.43$	$D_{\rm x} = 1.369 {\rm Mg} {\rm m}^{-3}$
Orthorhombic, Pbcn	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2n 2ab	Cell parameters from 1778 reflections
a = 24.7506 (12) Å	$\theta = 1.7 - 26.0^{\circ}$
b = 12.1689 (6) Å	$\mu = 0.20 \mathrm{~mm^{-1}}$
c = 12.8408 (5) Å	T = 296 K
$V = 3867.5 (3) Å^3$	Plate, dark red
Z = 8	$0.34\times0.28\times0.15~mm$
Data collection	
Bruker Kappa APEXII CCD	16627 measured reflections
diffractometer	3796 independent reflections
Radiation source: fine-focus sealed tube	1778 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.069$
Detector resolution: 8.00 pixels mm ⁻¹	$\theta_{\rm max} = 26.0^{\circ}, \ \theta_{\rm min} = 1.7^{\circ}$
ω scans	$h = -30 \rightarrow 29$
Absorption correction: multi-scan	$k = -15 \rightarrow 15$
(SADABS; Bruker, 2005)	$l = -15 \rightarrow 14$
$T_{\min} = 0.935, \ T_{\max} = 0.971$	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.054$	Hydrogen site location: inferred from
$wR(F^2) = 0.151$	neighbouring sites
S = 1.01	H atoms treated by a mixture of independent
3796 reflections	and constrained refinement
259 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0534P)^2 + 1.0105P]$
0 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} < 0.001$
direct methods	$\Delta \rho_{\rm max} = 0.21 \text{ e } \text{\AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.28 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
S1	0.33210 (4)	0.16234 (8)	0.39452 (7)	0.0639 (3)
01	0.14274 (12)	0.0303 (2)	-0.1123 (2)	0.0874 (11)
O2	0.07789 (15)	-0.0466 (3)	-0.2721 (3)	0.1110 (16)
03	0.30024 (11)	0.2317 (2)	0.46012 (18)	0.0765 (10)
O4	0.36264 (12)	0.0762 (2)	0.43976 (18)	0.0799 (10)
N1	0.19699 (14)	-0.0123 (3)	0.0534 (3)	0.0683 (14)
N2	0.37120 (13)	0.2493 (3)	0.3342 (2)	0.0719 (11)
N3	0.42863 (12)	0.3128 (3)	0.2071 (2)	0.0638 (11)
N4	0.41470 (12)	0.1191 (3)	0.2320 (2)	0.0650 (12)
C1	0.15104 (16)	-0.1524 (3)	-0.0429 (3)	0.0673 (17)
C2	0.13077 (16)	-0.0756 (3)	-0.1170 (3)	0.0683 (16)
C3	0.09721 (18)	-0.1143 (3)	-0.1978 (3)	0.0783 (17)
C4	0.08434 (18)	-0.2239 (4)	-0.2017 (4)	0.091 (2)
C5	0.10447 (18)	-0.2985 (3)	-0.1295 (4)	0.0843 (19)
C6	0.13772 (17)	-0.2643 (3)	-0.0517 (3)	0.0773 (17)
C7	0.18412 (16)	-0.1152 (3)	0.0396 (3)	0.0700 (17)
C8	0.22986 (15)	0.0266 (3)	0.1351 (3)	0.0567 (14)
C9	0.27177 (16)	-0.0346 (3)	0.1735 (3)	0.0667 (16)
C10	0.30228 (15)	0.0054 (3)	0.2545 (3)	0.0653 (14)
C11	0.29108 (14)	0.1070 (3)	0.2961 (2)	0.0523 (12)
C12	0.24920 (16)	0.1698 (3)	0.2564 (3)	0.0633 (14)
C13	0.21849 (16)	0.1290 (3)	0.1757 (3)	0.0653 (14)
C14	0.40682 (15)	0.2243 (3)	0.2534 (3)	0.0613 (16)
C15	0.46458 (16)	0.2897 (3)	0.1314 (3)	0.0663 (16)
C16	0.47691 (16)	0.1837 (3)	0.1050 (3)	0.0730 (16)
C17	0.45058 (16)	0.0989 (3)	0.1559 (3)	0.0683 (16)

C18	0.45913 (17)	-0.0204 (3)	0.1284 (3)	0.0923 (19)	
C19	0.48948 (18)	0.3859 (3)	0.0768 (3)	0.0920 (19)	
H1	0.1840 (16)	0.024 (3)	0.010 (3)	0.0821*	
H2	0.08717	0.01670	-0.25928	0.1666*	
H2A	0.36975	0.31672	0.35398	0.0861*	
H4	0.06153	-0.24894	-0.25413	0.1089*	
Н5	0.09512	-0.37230	-0.13437	0.1011*	
H6	0.15163	-0.31479	-0.00446	0.0928*	
H7	0.19743	-0.16678	0.08640	0.0841*	
Н9	0.27959	-0.10292	0.14484	0.0801*	
H10	0.33052	-0.03633	0.28130	0.0782*	
H12	0.24188	0.23889	0.28391	0.0759*	
H13	0.19016	0.17036	0.14875	0.0779*	
H16	0.50251	0.16893	0.05389	0.0876*	
H18A	0.43576	-0.04011	0.07173	0.1383*	
H18B	0.45100	-0.06537	0.18778	0.1383*	
H18C	0.49606	-0.03159	0.10819	0.1383*	
H19A	0.46303	0.42001	0.03270	0.1379*	
H19B	0.51940	0.36133	0.03535	0.1379*	
H19C	0.50198	0.43815	0.12743	0.1379*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S 1	0.0759 (7)	0.0645 (6)	0.0512 (5)	-0.0047 (6)	0.0066 (5)	-0.0030 (5)
01	0.112 (2)	0.0531 (16)	0.097 (2)	0.0023 (16)	-0.0265 (17)	-0.0057 (15)
O2	0.141 (3)	0.080(2)	0.112 (3)	0.012 (2)	-0.051 (2)	-0.016 (2)
O3	0.090(2)	0.0805 (18)	0.0591 (15)	-0.0076 (15)	0.0199 (14)	-0.0167 (14)
O4	0.099 (2)	0.0790 (18)	0.0618 (16)	0.0104 (16)	-0.0146 (15)	0.0079 (14)
N1	0.083 (3)	0.060 (2)	0.062 (2)	0.0034 (19)	-0.0070 (19)	0.0035 (18)
N2	0.081 (2)	0.0598 (18)	0.075 (2)	-0.0124 (17)	0.0241 (19)	-0.0180 (17)
N3	0.066 (2)	0.068 (2)	0.0573 (19)	-0.0040 (17)	-0.0016 (16)	0.0028 (16)
N4	0.065 (2)	0.068 (2)	0.062 (2)	-0.0039 (17)	0.0091 (17)	-0.0125 (17)
C1	0.066 (3)	0.062 (3)	0.074 (3)	-0.001 (2)	0.005 (2)	-0.007 (2)
C2	0.071 (3)	0.057 (2)	0.077 (3)	-0.002 (2)	-0.001 (2)	-0.019 (2)
C3	0.079 (3)	0.070 (3)	0.086 (3)	0.003 (2)	-0.010 (3)	-0.015 (3)
C4	0.090 (4)	0.073 (3)	0.109 (4)	-0.009 (3)	-0.010 (3)	-0.029 (3)
C5	0.084 (3)	0.059 (3)	0.110 (4)	-0.011 (2)	0.009 (3)	-0.017 (3)
C6	0.080 (3)	0.059 (3)	0.093 (3)	-0.006 (2)	0.016 (3)	0.000 (2)
C7	0.071 (3)	0.062 (3)	0.077 (3)	0.003 (2)	0.009 (2)	0.005 (2)
C8	0.068 (3)	0.051 (2)	0.051 (2)	-0.003 (2)	-0.0007 (19)	0.0017 (19)
C9	0.076 (3)	0.051 (2)	0.073 (3)	0.009 (2)	-0.002 (2)	-0.004 (2)
C10	0.072 (3)	0.055 (2)	0.069 (2)	0.008 (2)	-0.007 (2)	-0.002 (2)
C11	0.061 (2)	0.047 (2)	0.049 (2)	-0.0016 (18)	0.0038 (17)	0.0042 (17)
C12	0.086 (3)	0.048 (2)	0.056 (2)	0.006 (2)	0.013 (2)	-0.002 (2)
C13	0.076 (3)	0.060 (2)	0.060 (2)	0.015 (2)	-0.001 (2)	0.005 (2)
C14	0.061 (3)	0.066 (3)	0.057 (2)	-0.008 (2)	0.002 (2)	-0.008(2)
C15	0.061 (3)	0.087 (3)	0.051 (2)	-0.006 (2)	-0.004 (2)	0.006 (2)
C16	0.071 (3)	0.091 (3)	0.057 (2)	0.001 (2)	0.009 (2)	-0.004 (2)
C17	0.068 (3)	0.081 (3)	0.056 (2)	0.002 (2)	-0.002 (2)	-0.004 (2)

supplementary materials

C18	0.106 (4)	0.088 (3)	0.083 (3)	0.011 (3)	0.017 (3)	-0.018 (3)
C19	0.095 (4)	0.104 (3)	0.077 (3)	-0.013 (3)	0.018 (2)	0.023 (3)

Geometric parameters (Å, °)

Geometric parameters (A, ^o)			
<u></u> <u></u> <u></u> <u></u> <u></u> <u></u>	1.430 (3)	C8—C13	1.380 (5)
S1—O4	1.417 (3)	C9—C10	1.374 (5)
S1—N2	1.630 (3)	C10—C11	1.375 (5)
S1—C11	1.755 (3)	C11—C12	1.385 (5)
O1—C2	1.324 (4)	C12—C13	1.378 (5)
O2—C3	1.348 (5)	C15—C16	1.368 (5)
O2—H2	0.8200	C15—C19	1.497 (5)
N1—C7	1.304 (5)	C16—C17	1.385 (5)
N1—C8	1.409 (5)	C17—C18	1.509 (5)
N2—C14	1.395 (5)	C4—H4	0.9300
N3—C15	1.347 (5)	С5—Н5	0.9300
N3—C14	1.343 (5)	С6—Н6	0.9300
N4	1.324 (5)	С7—Н7	0.9300
N4—C17	1.343 (5)	С9—Н9	0.9300
N1—H1	0.78 (4)	C10—H10	0.9300
N2—H2A	0.8600	C12—H12	0.9300
C1—C2	1.425 (5)	С13—Н13	0.9300
C1—C6	1.406 (5)	C16—H16	0.9300
C1—C7	1.413 (5)	C18—H18A	0.9600
C2—C3	1.410 (6)	C18—H18B	0.9600
C3—C4	1.372 (6)	C18—H18C	0.9600
C4—C5	1.390 (7)	C19—H19A	0.9600
C5—C6	1.360 (6)	C19—H19B	0.9600
C8—C9	1.369 (5)	C19—H19C	0.9600
03—S1—04	119.31 (15)	N3-C14-N4	128.6 (3)
03—S1—N2	102.96 (16)	N2-C14-N3	114.1 (3)
	109.37 (16)	N3-C15-C19	116.5 (3)
04—S1—N2	111.00 (17)	C16—C15—C19	122.0 (4)
04—SI—CII	108.66 (17)	N3-C15-C16	121.5 (4)
N2—S1—C11	104.50 (15)		118.7 (4)
C3—O2—H2	109.00	N4—C17—C18	116.0 (3)
C/-NI-C8	124.4 (4)		122.7 (3)
S1—N2—C14	126.0 (3)	N4—C17—C16	121.2 (3)
C14—N3—C15	114.7 (3)	C3—C4—H4	119.00
C14—N4—C17	115.2 (3)	C5—C4—H4	119.00
C7—N1—H1	110 (3)	С4—С5—Н5	120.00
C8—N1—H1	125 (3)	C6—C5—H5	120.00
C14—N2—H2A	117.00	С1—С6—Н6	120.00
S1—N2—H2A	117.00	C5—C6—H6	120.00
C2—C1—C7	119.6 (3)	N1—C7—H7	118.00
C2—C1—C6	119.9 (4)	C1—C7—H7	118.00
C6—C1—C7	120.4 (3)	С8—С9—Н9	120.00
C1—C2—C3	118.7 (3)	С10—С9—Н9	120.00
O1—C2—C1	122.0 (3)	C9—C10—H10	120.00

O1—C2—C3	119.4 (3)	C11—C10—H10	120.00
C2—C3—C4	119.2 (4)	C11—C12—H12	120.00
O2—C3—C2	121.7 (3)	C13—C12—H12	120.00
O2—C3—C4	119.1 (4)	C8—C13—H13	120.00
C3—C4—C5	121.8 (4)	C12—C13—H13	120.00
C4—C5—C6	120.5 (4)	C15—C16—H16	121.00
C1—C6—C5	119.8 (4)	C17—C16—H16	121.00
N1—C7—C1	123.4 (4)	C17—C18—H18A	109.00
N1—C8—C9	121.5 (3)	C17—C18—H18B	109.00
C9—C8—C13	120.7 (4)	C17—C18—H18C	109.00
N1-C8-C13	117.8 (3)	H18A—C18—H18B	109.00
C8—C9—C10	119.8 (3)	H18A—C18—H18C	109.00
C9—C10—C11	120.1 (3)	H18B—C18—H18C	109.00
S1—C11—C10	120.5 (3)	С15—С19—Н19А	109.00
S1—C11—C12	119.1 (3)	C15—C19—H19B	109.00
C10—C11—C12	120.3 (3)	C15—C19—H19C	109.00
C11—C12—C13	119.4 (3)	H19A—C19—H19B	109.00
C8—C13—C12	119.8 (4)	H19A—C19—H19C	109.00
N2—C14—N4	117.3 (3)	H19B—C19—H19C	109.00
O3—S1—N2—C14	-173.5 (3)	C2-C1-C6-C5	-1.6 (6)
O4—S1—N2—C14	57.7 (3)	C7—C1—C6—C5	177.9 (4)
C11—S1—N2—C14	-59.3 (3)	C2-C1-C7-N1	1.0 (6)
O3—S1—C11—C10	-149.8 (3)	C6—C1—C7—N1	-178.5 (4)
O3—S1—C11—C12	34.1 (3)	O1—C2—C3—O2	1.6 (6)
O4—S1—C11—C10	-18.0 (3)	O1—C2—C3—C4	-179.2 (4)
O4—S1—C11—C12	165.9 (3)	C1—C2—C3—O2	-178.1 (4)
N2—S1—C11—C10	100.5 (3)	C1—C2—C3—C4	1.1 (6)
N2—S1—C11—C12	-75.6 (3)	O2—C3—C4—C5	177.8 (4)
C8—N1—C7—C1	180.0 (4)	C2—C3—C4—C5	-1.5 (7)
C7—N1—C8—C9	34.0 (6)	C3—C4—C5—C6	0.3 (7)
C7—N1—C8—C13	-146.0 (4)	C4—C5—C6—C1	1.2 (7)
S1—N2—C14—N3	170.9 (3)	N1-C8-C9-C10	-178.8 (4)
S1—N2—C14—N4	-8.9 (5)	C13—C8—C9—C10	1.1 (6)
C15—N3—C14—N2	177.7 (3)	N1-C8-C13-C12	179.3 (4)
C15—N3—C14—N4	-2.5 (6)	C9—C8—C13—C12	-0.7 (6)
C14—N3—C15—C16	0.3 (5)	C8—C9—C10—C11	-0.7 (6)
C14—N3—C15—C19	179.4 (3)	C9—C10—C11—S1	-176.4 (3)
C17—N4—C14—N2	-178.0 (3)	C9—C10—C11—C12	-0.3 (5)
C17—N4—C14—N3	2.2 (6)	S1—C11—C12—C13	176.9 (3)
C14—N4—C17—C16	0.1 (5)	C10-C11-C12-C13	0.8 (5)
C14—N4—C17—C18	-178.5 (3)	C11—C12—C13—C8	-0.3 (6)
C6-C1-C2-O1	-179.3 (4)	N3-C15-C16-C17	1.7 (6)
C6—C1—C2—C3	0.4 (6)	C19—C15—C16—C17	-177.3 (4)
C7—C1—C2—O1	1.2 (6)	C15—C16—C17—N4	-1.9 (6)
C7—C1—C2—C3	-179.1 (4)	C15—C16—C17—C18	176.6 (4)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
N1—H1…O1	0.78 (4)	1.88 (4)	2.569 (5)	148 (4)
O2—H2…O1	0.82	2.34	2.768 (5)	113
O2—H2···N3 ⁱ	0.82	2.16	2.862 (5)	144
N2—H2A····O1 ⁱⁱ	0.86	1.94	2.790 (4)	172
C18—H18A····O4 ⁱⁱⁱ	0.96	2.52	3.469 (5)	171

Hydrogen-bond geometry (Å, °)

Symmetry codes: (i) -*x*+1/2, -*y*+1/2, *z*-1/2; (ii) -*x*+1/2, -*y*+1/2, *z*+1/2; (iii) *x*, -*y*, *z*-1/2.