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Abstract: The local metric basis and local metric generator can play a significant role in deciding
optimal locations for many facilities like hospitals, fire stations, medical labs, and grocery stores.
The local metric basis generates codes in terms of distance for each node of the graph in such a way
that no two adjacent nodes have the same code, which allows for the optimal allocation of resources.
In the current manuscript, the local metric basis (LMB) for three families of graphs, P(n,1), P(n,2),
and P(n,3), which are generalized Petersen graphs and commonly employed in interconnection
networks, are determined. The manuscript also proposes an algorithm to compute the local metric
basis and its application in the optimal placement of different facilities in a region.

Keywords: generalized Petersen graphs; metric dimension; local metric dimension

MSC: 05C12; 05C90

1. Introduction and Preliminaries

The metric basis (MB) established by Slater [1] and Melter et al. [2] has a variety of
applications in many fields like robotics [3], sensor networks [4], chemistry [5], optimization [6]
and in identifying intruders in the networks [1]. The MB assigns codes to the nodes of a
graph in terms of distances to give unique identification to each node of the graph, whereas
LMB identifies only the adjacent nodes introduced by Okamoto et al. [7]. The research on
MB started in 1975 is still ongoing. In the last few years, a number of articles have been
published on MB. The relation between the MB of a bipartite graph and its projections are
investigated in [8]. The MB of bicyclic graphs have been computed recently in [9]. The
latest research on MB can be seen in [10-12].

The use of LMB can been seen in delivery services [13]. The LMB can optimize the
facility location problems, where we can build facility sites like hospitals or fire stations at
the nodes of LMB, giving the minimum number of nodes (facility locations). Yang et al. [14]
characterized some graphs having constant LMB. Abrishami et al. [15] computed the
LMB of graphs that have small clique numbers. The LMB of generalized wheel graphs
was investigated in [16]. Further study on LMB is discussed in [13,17-20]. Besides these,
researchers also developed other versions of metric dimension like mixed, simultaneous,
and k-metric dimension [21-23].

The generalized Petersen graphs belong to the family of cubic graphs and have been
extensively studied for MB [24-27]. The computation of LMB is NP hard [28] for general
graphs but at the same time, it also provides room for computing it for different families
of graphs using their structural symmetry and combinatorial techniques. The LMB of
generalized Petersen graphs has not been discussed in the literature, which motivated us
to compute LMB for its three families P(n,1), P(n,2), and P(n,3).

Consider a connected graph G with the node set V(G) and edge set E(G). The distance
between two nodes x and y is d(x, i), which gives the length of the shortest path connecting
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these nodes. The distance of a node x from a set of nodes © is d(x, ®) = min{d(x,y)|y € ©}.
If ©® = {x1,x3,...,x,} is an ordered set of nodes, then r(v|©) = (d(v,x1),d(v, x2),...,d(v,x,))
is called the code or representation of the node v with respect to ®. The set ® is known as
a resolving set, if the codes r(v|®) are distinct for each v € V(G). The least cardinality of
a resolving set © is called the metric dimension (MD) of G symbolized as dim(G), and ©
itself is called MB. If the codes r(v|®) are distinct for each pair of adjacent nodes, then © is
known as a local metric generator (LMG). The least cardinality of a LMG @ is called the
local metric dimension (LMD) of G symbolized as dim;(G), and © itself is called LMB. The
LMB is the set of minimum number of nodes, whereas LMD gives the number of nodes
in LMB.
The following result by Okamoto et al. [7] gives some basic results on LMD.

Proposition 1 ([7]). If G is a connected graph with n number of nodes, then

(a) Forn>2,dim(G)=1 <= G isabipartite graph.
(b)  dim)(G) =n—-1 <= G = K, where K, is the complete graph.

The article is further divided into the following sections. In Section 2, an algorithm is
proposed to compute LMB and LMD. The graphs P(n,1), P(n,2), and P(n,3) are defined,
and the exact values of LMD for these families are computed in Section 3, whereas the
application of LMB in the facility location problem is given in Section 4 and the conclusion
with an open problem is provided in Section 5.

2. Research Methodology

Though the computation of MB and LMB is NP hard, for a small sized problem, we
can devise an algorithm that can exhaust all the possible resolving sets. Our research
methodology is to compute the LMB of a smaller family of generalized Petersen graphs or
any family by the following Algorithm 1 and then, by using pattern recognition and the
graph theoretic properties of these graphs, computing the generalized expression for LMB
of these families. The techniques used to compute LMB in this research work can be used
to compute MB. The methodology used here is unique and gives the exact values of these
parameters, whereas the existing approaches do not use algorithms. Our technique can be
extended to compute other distance-based parameters of graphs. The following algorithm
can be applied in any programming language to compute the LMB and LMD of a graph.

Let G be a connected graph having n number of nodes. The number of subsets of
nodes is an exponential function, so as the value of n increases, Algorithm 1 may not give
the answer in polynomial time, but for small sized problems, it will work. Figure 1 for
Algorithm 1 given below will further clarify the computational procedure used to compute
LMB and LMD.

Algorithm 1 Algorithm for the computation of LMB and LMD.

Require: A = [a;j] > a;; = 1 for adjacent nodes; otherwise, a;; = 0.
[STEP-1] Compute the distance matrix D = fdl-]-] > where d;; is the distance between
nodes v; and v;.

[STEP-2] Fori =1ton

ComputeI'; = {©1,0,,...,0,}.

> where each @ is a subset of nodes containing i nodes and m = (7).
[STEP-3] Forj =1tom
Compute r(v|®;) for each pair of adjacent nodes
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Algorithm 1 Cont.

if (v|©;) are distinct for each pair of adjacent nodes then
STOP

else
REPEAT STEP-3 with j = j+ 1

end if

if no ®; gives a distinct 7(v|©;) then
REPEAT STEP-2 withi =i+ 1

end if

[STEP-4] ©; is the LMB and i is the LMD.

‘ Start ’

/ Input - Distance Matrix /

Compute I

Compute 7(v|®;)

!

If j = m then
i =i+1

If j < m then
j=j+1

r(v|®;) are distinct

/ ®]~ is the LMB and i is the LMD /

‘ Stop ’

Figure 1. Flowchart for Algorithm 1.

3. Local Metric Dimension of Generalized Petersen Graphs

Coxeter introduced the generalized notion of Petersen graphs P(#,k) in [29]. The
node set V(P(n,k)) = {x1,%2,...,Xn, Y1, Y2, .., Yn } and the edge set E(P(n,k)) = {x;x; f :
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1 <i<n}U{yiyisn:1<i<n—-1}U{yan}tU{xyy;: 1 <i < n}, wheren > 3,
1 <k < [(n—1)/2] and subscripts are taken under modulo n. The nodes x; form the inner
cycle, whereas nodes y; construct the outer cycle of these graphs.

3.1. LMD of P(n,1)

The current subsection computes the exact values of LMD of generalized Petersen
graphs P(n,1). Figure 2 below illustrates P(6,1).
In the forthcoming result, we compute the LMD of P(#,1).

Y2 Kt

Y3 Yo

Y4 Y5

Figure 2. P(6,1).
Theorem 1. Consider generalized Petersen graphs P(n,1) with n > 2, then

1, ifniseven;

dim (POt 1)) = 5 it is odd

Proof. The proof is split into two parts.

Case 1: When 7 is even with n = 2t and T > 1 then P(n,1) is a bipartite graph and
Proposition 1 implies that dim;(P(n,1)) = 1 that is a set consisting of a single node
would be the LMB.

Case 2: Whennisodd withn =27+ 1and 7 > 1.
For 7 = 1, the set ©® = {x1, x2} with codes given below is LMG.
r(111©) = (0,1),7(x2|®) = (1,0),7(x3]@) = (L1),r(11]0©) = (1,2),7(12|®) =
(2,1),7(y3|©) = (2,2).

For T > 2, consider the subset ® = {x1,x2} of V(P(n,1)). The codes for all the nodes
of P(n,1) with respect to ® are illustrated in Table 1.

Table 1. Codes of nodes forn =2t +1and T > 2.

Nodes Codes

X (e=1) (0,1)

X (0=2) (1,0)
yB<e<t+1) (e-Le-2)

Xp (0= T+2) (t,7)
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Table 1. Cont.

Nodes Codes
Xo(T+3<¢0<n) (mn—o+1,n—0+2)
Yolo=1) (1,2)
Yo(0=2) (2,1)
YoB<o<TH1) (e0—1)
Yolo=1+2) (t+1,7+1)
Yo(t+3<¢0<n) (n—o0+2,n—0+3)

The codes above clearly specify that ® is LMG; therefore, dim;(P(n,1) < 2. Hence,
from Proposition 1, it can be inferred that dim;(P(n,1) = 2, as P(n,1) is not a bipartite
graph when nis odd. O

3.2. LMD of P(n,2)

The current subsection computes the exact values of LMD of generalized Petersen
graphs P(n,2). Figure 3 below illustrates P(6,2).

In the forthcoming results, we compute the LMD of P(n,2).

Y2 Kt

Y3 Yo

Y4 Y5

Figure 3. P(6,2).

Theorem 2. Consider generalized Petersen graphs P(n,2) with n > 5, then dim;(P(n,2)) > 3
whenn =4t +1fort=1andt > 7.

Proof. Suppose dim;(P(n,2)) =2 such that |®@| =2withn =47 +1fort=1and T >7,
then the possible cases of proof are given as follows.

Case 1: When both nodes of @ are from x/s, we may assume that one of the two nodes is
x1 and the other is x,, where 2 < ¢ < n.

Case 1.1 When o =2t,and 1 <t < 7,thenfort =1, r(y2:41|®) = (t+ 1, 7+1) =
r(Y27r42|®) and for T > 7, r(y2741|©) = (T + 1,7 — t +2) = r(y2742|®), which
is a contradictory fact.

Case1.2 When g = 2t,and 7+ 1 <t < 27, thenfor 7 = 1, 7(y2,|®) = (t+ 1,7+
1) = r(y2r+1|®) and for T > 7, 1(y2¢|®) = (t+ 1L, t — 1+ 1) = r(y2:41|0),
which is a contradictory fact.

Case1.3 When o = 2t+1. Fort = 1, r(y4|®) = (t+ 1,7+ 1) = r(ys5/®) when
o=3and r(y3|®) = (t+1,7+1) =r(y4|®) when o = 5.
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Fort>7and1<t<t1—1,7r(y2|®) = (t+1,T—t+1) = r(y2r+1/©), which
is a contradictory fact for both subcases.

Case14 When ¢ = 2t+1. Fort > 7and t = T, r(y2r2/®) = (t+1,2) =
r(Y2r+3/0).
Fort>7and 71+1 <t <27, 7(yp:11|0) = (1+ 1Lt — 7+ 1) = r(y2r42|9®).

Case 2: When both nodes of © are from y’s. We may assume that one of the two nodes is
y1 and the other is y,, where 2 < ¢ < n.

Case2.1 When ¢ = 2t. Fort = 1land 1 <t < 7, r(x:41|®) = (t+1,7+1) =
r(x2T+3‘®)‘
Fort>7and1 <t <7—2,1(y2r41|®) = (1+2,7T—t+3) = r(y2r42/9).
This is a contradictory fact in both subcases.

Case2.2 Wheno =2t Fort =land 7+ 1 <t <27, 7(x:|®) = (t+ 1, 7+1) =
r(x2742(0).
Fort>7and 71 —1<t<27—4,7r(y1|0) = (t—2,t — 1) = r(y|®).
Fort>7and 1 —3 <t <27, r(y;—1|®) = (1 —2,31 —t — 1) = r(y]|O).
This is a contradictory fact in the above subcases.

Case23 Wheng =2t+1. Fort =1land1 <t < 1,7(x|®) = (t+1,7+1) =
r(x2r12|©).
Fort>7and1 <t <7—2,1(y2r42/09) = (1+2,7—t+3) = r(y2r43/9).
This is a contradictory fact in both subcases.

Case24 Wheno =2t+1. Fort > 7and 71— 1 <t < 741, r(y3041|©) = (t —
1,2t — £ —1) = r(yar42/0).
Fort>7andt =1+2,7(y3r43|®) = (71 — 2,7 —2) = (Y37 44|O).
Fort>7and 1 +3 <t <27, 7(Y2r41|©) = (T+2,t — T+ 2) = r(Y2r42|O).

Case 3: When one of the nodes of © is from x/s and other from y’s. We may assume that
one of the two nodes is x1 and the other is y,, where 1 < ¢ < n.

Case 3.1 Wheng =2f. Fort =1and 1 <t <1+ 1, we have:
r(yg|®) = (t+1,7+1) = r(ys5/@) whent = 1, 7(x2|®) = (t+1,7+1) =
r(y2|®) when t = 2,
Fort>7and1 <t <7—2,7(y2:41|®) = (1+ 1,7 —t+3) = r(y2r42/9).
This is a contradictory fact in the above subcases.

Case 3.2 When ¢ = 2t.
Fort>7and 7 —1<t<27—4,7r(y-1|0) = (t=3,t — 1) = r(y|®).
Fort>7and 2t —3 <t <27, 7(y;-1|®) = (t = 3,3t —t — 1) = r(y-|©).
This is a contradictory fact in the above subcases.

Case 3.3 Wheng =2t —1. Fort =1and 1 <t <271+ 1 we have:
r(y3|®) = (t+1,t+1) = r(y4|®) whent = 1, r(x5|0@) = (t+1,7+1) =
r(ys|®) when t =2, 7(y2|@) = (t+ 1,7+ 1) = r(y3|©) when f = 3.
Fort>7and1 <t <7—2,7(y|®) = (t+ 1,7 —t+3) = r(y2r41/9).
This is a contradictory fact in both subcases.

Case34 When o = 2t—1. Fort > 7andt = 71— 1, r(ys|®) = 2,7+ 1)
r(Yar41©).
Fort>7andt =1, 1(ysr|®) = (2, T+ 2) = r(Yar+1/9).
Fort>7and 71+1 <t <27 —4,r(ys:|®) = (2,21 — t + 3) = (Y47 +1|©). For
T>7and 21 —3 <t <27+ 1, 7(y2r4+1|®) = (T + 1, t =T+ 1) = r(y2r42|0O).

The above cases prove our assertion that dim;(P(n,2)) > 3whenn =4t +1fort =1
andt>7 0O
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Theorem 3. Consider generalized Petersen graphs P(n,2) with n > 5, then

2,
2,
dim;(P(n,2)) =< 2
2,
3

Proof.

ifn=4tfort > 2;
ifn=4t+2fort>1;
ifn=4t+3fort>1;
ifn=4t+1fort € {2,3,4,5,6};
fn=4t+1fort=1landt > 7.

Case1l: When n = 4t and T > 2, For T = 2,3,4,5, it is easy to check that the sets

{ve ys}, {v10, 12}, {y9, 16}, {y12, y20} are the LMG.
For T > 6, consider the subset © = {y1,y2r—3} of V(P(n,2)). The codes for all the

nodes of P(n,2) with respect to © are illustrated in Table 2.

Table 2. Codes of nodes for n = 4t and T > 6.

Nodes Codes
xp-1(1<e<71-1) (et—0)
x(1<o<T1-2) (e+Lt—0)
X (T—1<0<71) (0+1,0—T+3)
X 1(T<e<T+1) (eo—T1+2)

x29(7+1§9§27—2)

(2Tt —0+2,0—7+3)

X1 (T+2<¢<21-1)

(2t —0+2,0—1+2)

xZQ(ZT—1§Q§2T)

(2t —0+4+2,31—0)

X291 (0 = 27) (2,7)
Yole=1) (0,7)
Yo(0=2) (L)
Yo(@=3) (2,t-1)
Yolo=4) (3 7t-1)

Yoor1 2 <0< T—4) (e+2,t—-0)
Y20B<e<T-412>7) (0+2,t—0+1)
Yoo (@=T7-3) (t—-13)
Y2o+1(@=T-3) (t-12)
Y20 (0=T—2) (t,1)
Yog+1 (@ =T—-2) (7,0)

Yoo le=7-1) (t+11)
Yoo+1 (@=T—1) (T+1,2)

Yo (0 =7) (1+2,3)

Y2o+1 (T <0 <21-2)

(2t —0+2,0—1+4)

Y2 (TH+1< <21 -2)

(2T —0+3,0—1+4)

Yo (0 =271-1) (31+2)
Yag+1 (0 =271—1) (2,7t+1)
Y20 (0=2t1) (1/T+1)
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Case 2: When n = 47 + 2 and 7 > 1. Consider the subset ® = {x1,x,} of V(P(n,2)). For
T=1,2,3,4,5,itis easy to check that ® is a LMG. For T > 6, the codes for all the nodes of

P(n,2) with respect to © are illustrated in Table 3.

Table 3. Codes of nodes forn = 4t +2and T > 6.

Nodes Codes
xo(0=1) (0,3)
X (0=2) (3,0)
X041 (1<0<7T) (e0+2)
X0 2<0<T+1) (0+2,0—1)
(2t—0+1,21—0+4)

X20+1 (T+1<0<L27)

(2t —0+4,21—-0+2)

Yoo (T+2<0<214+1)
Yolo=1) (1,2)
Yoor1 1 <0< 71) (e+Leo+1)
Yo(1<o<T+1) (0+1,0)
(2t —0+22t1—0+3)

Y2o+1 (T+1<¢0<27)

(2t—0+3,21—0+3)

Y2 (T+2<09<27+1)

Case 3: When n =47 + 3 and 7 > 1. Consider the subset ® = {x1,x,} of V(P(n,2)). For
T = 1,2, itis easy to check that ® is a LMG. For T > 3, the codes for all the nodes of P(n,2)

with respect to © are illustrated in Table 4.

Table 4. Codes of nodes for n = 4t + 3 and T > 3.

Nodes Codes
xg(g=1) 0,3)
Xo(0=2) (3,0)

Xpo41 (1 <0< T) (0,0+2)
X202<0<T) (0+2,0-1)
2t-0+2¢-1)

X0 (T+1 <0< T+3)

(2t —0+2,21—0+5)

Yoo (T+4<0<21+1)

Xop41 (0 =T+1) (t+1,7+1)
X0p+1 (T+2<0<2T1+1) (2t —0+4,21—0+2)
Yolo=1) (1,2)

Yo(l<e<T7+1) (e+1,0)
Y1 1<o<7+1) (e+1,0+1)
(2t —0+3,21—0+4)

Y2 (T+2<¢<21+1)
Y241 (T+2<¢<2T1+1)

(2t —0+3,21—0+3)

Case4: Whenn =4t +1and 7 > 1. For T = 2,3,4,5,6, it is easy to check that the sets

{yl’ 3/3}/ {ylryll}/ {ylryS}r {yll ys}, {}/1, le} are LMG.
For T = 1and t > 7, consider the subset @ = {x1,x2, X2¢ 42} of V(P(n,2)). Fort =1,

itis easy to check that © = {x1, x2, x4 } is a LMG. The codes for all the nodes of P(n,2) with
respect to @ for T > 7 are illustrated in Table 5.
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Table 5. Codes of nodes forn =4t +1and v > 7.

Nodes Codes
x@=1) (0,3,71)
X (0=2) (3,0,7)
Xo (@=3) (1,3,7+1)

Xpo(2<0<T-1)

(e+2,0-1Tt-0+1)

X1 2<0<T-1)

(0,0+2,T—0+3)

X2 (0=7T) (t+1,7—-1,1)
X241 (@ =T) (t,T+1,3)
X2 (0 =T+1) (7,7,0)
x+1(@=T+1) (t+1,1,3)
X0 (@ =T+2) (t—1,7t+1,1)

X041 (T+2<g<2r—1)

2t—0+32t1—0+1,0—T+2)

X0 (T+3 < 0 <21)

2t—0+1,21—0+40—71—-1)

X20+1 (0 = 27)

(3,1,7+1)

Yele=1)

(1,2,7+1)

Yo 1<0<T)

(0+1,0T—0+2)

Y2011 (1<e<T)

(0+1,0+1,7T—0+2)

yZQ(Q:T+1)

(t+1,7+1,1)

Y2041 (T+1<0<27)

2t —0+4+22t1—0+2,0—71+1)

Yoo (T+2<0<21)

2t—0+221—04+3,0—1)

The codes in the above cases clearly specify that © is LMG and, as (P(n,2) is not a
bipartite graph, both Proposition 1 and Theorem 2 prove our assertion. [

Example 1. To illustrate how the codes of nodes can be generated, we consider an example of
P(24,2). Here, n = 47 and T = 6. Now, the codes for all the nodes can be generated from Table 2.
The codes for all the nodes of P(24,2) are given in Table 6.

Table 6. Codes of nodes for P(24,2).

Codes Codes Codes Codes
x1(1,5) v1(0,6) x13(7,3) v13(8,4
x2(2,5) y2(1,6) x14(7,4) y1a(8,
x3(2,4) y3(2,5) x15(6,4) v15(7,
x4(3,4) va(3,5) x16(6,5) Yy16(7,
x5(3,3) ys5(4,4) x17(5,5) v17(6,
x6(4,3) Y6(5,3) x15(5,6) y1s(6,
x7(4,2) y7(5,2) x19(4,6) Y19(5,
x3(5,2) ys(6,1) x20(4,7) Yy20(5,
x9(5,1) Y9(6,0) 1(3,7) yn (4,
x10(6,2) y10(7,1) x2(3,7) y22(3,
x11(6,2) y1(7,2) x23(2,6) y23(2,
x12(7,3) y12(8,3) x24(2,6) ya (1,
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We can easily check from these codes that each pair of adjacent nodes has distinct codes.

3.3. LMD of P(n,3)
The current subsection computes the exact values of LMD of P(#,3) graphs. Figure 4

below illustrates P(8,3).
In the forthcoming result, we compute the LMD of P(n,3) graphs.

Figure 4. P(8,3).
Theorem 4. Consider generalized Petersen graphs P(n,3) with n > 7, then

1, ifniseven;
dim;(P(n,3)) = 2, ifnisodd.

Proof. The proof is split into two parts.

Case 1: When n is even, then P(n,3) is a bipartite graph and Proposition 1 implies that
dim;(P(n,3)) = 1, which is a set consisting of a single node, would be the LMB.

Case 2: When 7 is odd, then there are three subcases.

Case 2a: Whenn = 67+ 1and 7 > 1. For T = 1, it can verified easily that the set {x1,y3}
isa LMG. For T = 2,3,4, it can also be verified easily that the set {xl, x4} is a LMG.

For T > 5, consider the subset © = {x1, x4} of V(P(n,3)). The codes for all the nodes
of P(n,3) with respect to © are illustrated in Table 7.

Table 7. Codes of nodes forn = 6t +1and T > 5.

Nodes Codes

X (e=1) (0,1)

X (0=2) (3,4)

Xo (0=3) (4,3)

Xg(0=4) (1,0)
X302 (1<0<1-2) (0+30+2)

3 2<o=<t-1) (0+3,0+2)
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Table 7. Cont.

Nodes Codes

Y3041 (2<0<T+1) (0,0—-1)
Y2041 (@ =T) (t,T+13)

X0 (@=T+1) (t,7,0)
Xop+1 (0 =T+1) (t+1,7,3)

X0 (@ =T+2)

(t—1,7+1,1)

Xoo41 (T+2<0<27-1)

2t—o0+32t1—0+1,0—T+2)

X2 (T+3<0<27)

2tr—o0+1,2t1—0+40—1-1)

X20+1 (0 = 27) (3,1, t+1)
Yole=1) (1,2,T+1)

Yoo (1<o<T) (e+LoT—0+2)

Yoor1 (1 <0< T) (e+Lo+1,1—0+2)

Yoo (0 =71+1) (t+1,7t+1,1)

2t—0+4+22t1—0+2,0—71+1)
2t—0+221—0+3,0— 1)

Y2011 (T+1<0<27)
Y20 (T+2<0<27)

Case 2b: Whenn = 6t +3and 7 > 1. For T = 1,2, 3,4, it can verified easily that the set
{xl, X4} is a LMG.

For T > 5, consider the subset © = {x7, x4} of V(P(n,3)). The codes for all the nodes
of P(n, 3) with respect to @ are illustrated in Table 8.

Table 8. Codes of nodes forn = 67 + 3 and T > 5.

Nodes Codes

X (0=1) (0,1)

Xo(@=2) (3,4)

Xp(0=3) (4,3)

Xo (@ =4) (1,0)
X342 (1< 0<7) (e+3,0+2)
3 2<0<T) (0+3,0+2)
X3041(2<0<7T) (0,0—1)
x3(@=1+1) (t+3,7+3)
X341 (@=T+1) (t,7)
X30+2 (0 =T+1) (T+3,7+3)

(2t —o0+4,2T1—0+5)
(2t—0+1,21—0+2)
(2t —o0+4,21—0+5)

X3 (T+2<0=21+1)

X3041 (T+2<¢<27)

X3Q+2(T+2§Q§2T)

Yolo=1) (1,2)
Yol0=2) (2,3)
P, 1<0<T1) (e+20+1)
Yao41 (1 <0< 1) (e+1,0)
Yage2 (1 <0< T) (e+20+1)

Y3 (@=7+1) (14+2,7+2)
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Table 8. Cont.

Nodes Codes
Yag+1 (0 =T+1) (T+1,7t+1)
Yagr2 (@ =T+1) (T+2,7+2)

Y3 (T+2<¢<21+1)

(2t —0+3,21—0+4)

Yag+1 (T+2< 0 <21)

(2t—0+4+221—-0+3)

Y3042 (T+2<0<27)

(2t —0+3,21—0+4)

Case 2c: Whenn = 67+ 5and v > 1. For T = 1,2, 3, it can verified easily that the set

{x1,x4} is a LMG.

For T > 4, consider the subset © = {x1, x4} of V(P(#n,3)). The codes for all the nodes

of P(n,3) with respect to © are illustrated in Table 9.

Table 9. Codes of nodes forn = 6t +5and T > 4.

Nodes Codes
X (0=1) (0,1)
Xg(0=2) (3,4)
3(l<e<t-1) (e+3,0+2)
X302 (1 <0< 7T) (e+3,0+2)
X311 2<0<T+2) (0—1)
X3 (@=T) (t4+2,7+2)

X3 (T+2<0<214+1) (2t—0+4+221—0+3)
X3042 (0 =T+1) (t+3,7+3)
X3042 (T+2<0<21+1) (2t —0+4,2T1—0+5)
X30+1 (0 =T+3) (t+2,7+2)
X30+1 (T+4<0<21+1) (2t —o0+52t1—0+6)
Yolo=1) (1,2)
Yo(e=2) (2,3)
ysp(1<eo<t) (e+20+1)
Yaor1 1 <o <T+1) (e+1,0)
Y3pr2(1 <0< 1) (e+20+1)

Yz le=1+1) (t+2,7+2)
Yapr2(@=T+1) (t+2,7+2)
Yapr2(@=T+1) (t+2,7+2)

Y30 (T+2<0<21+1) (2t —0+3,21—0+4)

Y3or1 (@ =T+2) (t+2,7+2)

Y312 (T+2<¢<271+1)

(2t —0+3,21—0+4)

Y3o41 (T+3 <0 <271+1)

(2t —0+4,21—0+5)

The codes above clearly specify that © is LMG; therefore, dim;(P(n,3) < 2. Hence,
from Proposition 1, it can be inferred that dim;(P(n,3) = 2, as P(n,3) is not a bipartite

graph when nis odd. [
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4. Applications of Local Metric Basis

We extend this study by applying LMB in the optimal placement of facilities like
hospitals, fire stations, and grocery stores in a locality. The objective is to access these
facilities in optimal time, which can be converted into a graph theory problem if we assume
different regions as nodes connected by edges where the length of each edge gives the
average distance between two regions. For further explanation, we give an example.

Example 2. Consider a locality in which different regions are in the form of a P(6,2) graph
as shown in Figure 3. The LMB is the set {x1,xy} which contains the smallest number of
nodes such that each pair of adjacent nodes gets different codes. Here, we can construct facil-
ities like grocery stores at nodes x1 and x,. The codes are x1(0,3),x2(3,0),x3(1,3),x4(4,1),
x5(1,4),x6(3,1),y1(1,2),y2(2,1),y3(2,2),y4(3,2),y5(2,3),y6(2,2). The codes of each node
clearly identify the closest facility. The distinct codes of adjacent nodes help to use each facility
optimally. The same codes for non-adjacent nodes indicate the alternate solutions and help to keep
the code length shorter.

5. Conclusions

In this manuscript, we infer that the LMD of the generalized Petersen graphs P(n, 1),
P(n,2), and P(n,3) is constant and does not depend on the number of nodes in these
families. The applications of LMB can be realized in identifying the optimal location for
different facilities in an area. The prior knowledge of LMB of certain graphs, which can
be distributed systems, would help in improving these systems. The algorithm proposed
in the manuscript can be used to compute other versions of LMB for different families of
graphs with minor modifications.

Open Problem 1. Compute the LMD of generalized Petersen graphs P(n,k) for
different values of n and k.
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