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Abstract

Soliton dynamics and nonlinear phenomena in quantum deformation has been investigated

through conformal time differential generalized form of q deformed Sinh-Gordon equation.

The underlying equation has recently undergone substantial amount of research. In Phase

1, we employed modified auxiliary and new direct extended algebraic methods. Trigonomet-

ric, hyperbolic, exponential and rational solutions are successfully extracted using these

techniques, coupled with the best possible constraint requirements implemented on param-

eters to ensure the existence of solutions. The findings, then, are represented by 2D, 3D

and contour plots to highlight the various solitons’ propagation patterns such as kink-bright,

bright, dark, bright-dark, kink, and kink-peakon solitons and solitary wave solutions. It is

worth emphasizing that kink dark, dark peakon, dark and dark bright solitons have not been

found earlier in literature. In phase 2, the underlying model is examined under various chaos

detecting tools for example lyapunov exponents, multistability and time series analysis and

bifurcation diagram. Chaotic behavior is investigated using various initial condition and

novel results are obtained.

Introduction

Nonlinear models have earned considerable amount of attention due to their potential of dem-

onstrating the dynamics of numerous natural and scientific phenomena, such as plasma waves

(acoustic), gravitational waves, shallow water dynamics, fluid dynamics, nonlinear optics, and

surface ocean waves. [1–6]. Nonlinear partial differential equations (NLPDE) are essential for

simulating exciting phenomenon in these areas and numerous real-world problems. Analytic

solution of NLPDE, therefore, have been well researched, ever evolving and challenging field

of exploration. Some eminent contributions are [7–12].
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Quantum physics that regulates microscopic systems is a best example of the q deformed

Sinh-Gordon equation [13]. Numerous partial differential equations in classical calculus that

have important applications in numerous fields have been studied by a number of scholars

[14–16]. These models play an instrumental role both in applied sciences and Mathematics.

With the advent of fractional calculus, it is now possible to explore mathematical models in

a novel manner that incorporates fractional derivatives [17–20]. Many scientists and research-

ers began integrating all the principles and relationships that are seen in fractional and tradi-

tional calculus into q calculus [21, 22]. Quantum calculus also referred as calculus without

limits, is identical to conventional infinitesimal calculus but does not include the concept of

limits. It provides ideas of h-calculus and q calculus where h refers Plank’s constant and q rep-

resenting quantum [23, 24]. Relativity theory, special functions, mathematical physics along

with other areas have witnessed instrumental role of q calculus [25–27] and partial differential

equations generated in q calculus are termed a q-deformed equations.

In this research, the following generalized q deformed Sinh-Gordon equation (Eleuch equa-

tion) [28] is taken into investigation.

@
2n
@x2
�
@

2n
@t2
¼ ½sinhqðn

gÞ�
p
� d; ð1Þ

where the sinhq function is defined by

sinhqðxÞ ¼
ex � qe� x

2
; 0 < q � 1: ð2Þ

For q = 1, Eq (2) gives typical sinh functions. The tanhq(y), coshq(y) and their reciprocal are

thoroughly explained along with their key properties in [28, 29]. Some significant contribution

to the underlying problem are [30–32].

Presently, theory of chaos and bifurcation is extensively used in examining differential

equations. These are typically useful tools for understanding any intricate system that differen-

tial equations may control. A bifurcation is a qualitative shift driven by parameter change in

the behaviour of a dynamical system. A variety of bifurcation schemes exist, including the sad-

dle node bifurcation, Hopf bifurcations, period doubling bifurcation and pitchfork bifurcation.

Examining the complex behaviour of nonlinear waves and investigating chaos theory are inte-

gral components of studying differential equation. The investigation of Chaos, a measure of

stability when an external force is introduced to a nonlinear system, is essential in this contem-

porary era. Autonomous dynamic system’s asymptotic behaviour is exclusively dictated by

their introductory conditions. There are the four types of equilibrium behaviour: an equilib-

rium point, a limit cycle, a torus and chaos.

Recently, Jamal et al. [33] have studied the Novikov Veselov equation through bifurcation

and chaos discovery tools and they also achieved the soliton solutions. Rafiq et al. [34] have

investigated the shallow water waves through bifurcation and chaos analysis and also acquired

the multi solitons. The conformable Fokas Lenells model has been examined by Lie and Huang

[35], employing chaos theory and bifurcation analysis. Zhang et al. [36] carried out a investiga-

tion of bifurcation on the modified FitzHugh Nagumo neuron model and find out the novel

results. Jamal et al. [37] have explored the nerve impulse model by practicing the phase portraits,

quasi periodic, multistability, time series and sensitivity analysis, also obtained soliton solutions.

Liu and Li [38] examined the fractional perturbed Gerdjikov–Ivanov equation. Their

research delved into the chaotic behavior of the model by introducing disturbance factors into

the planar dynamical system. They analyzed various aspects of the model, including two-

dimensional and three-dimensional phase portraits, Poincaré sections, and sensitivity analysis.

Gu et al. [39] explored the (3+1)-dimensional negative-order Korteweg-de Vries-
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alogeroBogoyavlenskii-Schiff (KdV-CBS) equation, which extends the classical Korteweg-de

Vries (KdV) equation and broadens the scope of nonlinear partial differential equations.

The aim of this article is to employ the new extended direct algebraic approach and modi-

fied auxiliary equation method to derive analytical solutions for the given model. As far as we

are aware, this methods have not been used to evaluate Eq (1) in earlier research. The proposed

approaches provides findings in several general and explicit form, covering trigonometric,

exponential, rational and hyperbolic functions. This gives them various advantages over previ-

ously investigated techniques. Travelling wave transformation is used to convert nonlinear

partial differential equation into nonlinear ordinary differential equation. The results are rep-

resented graphically as 3D and 2D charts for particular values of pertinent parameters. There

are various methods for determining chaos [40]. In this study, the most beneficial ones are

emphasised. Here are Lyapunov exponents, multistability, time series and bifurcation diagram

are discussed to review the chaotic behavior of the considered model. The study, in the opinion

of the authors, is intriguing and has never been presented before the system in question.

The paper has been organised according to the format provided below. The mathematical

framework and computation of soliton solution of the examined model have been described in

Segment material and methods. Graphical illustrations and the chaotic behavior is investigated

in Segment results and discussions. The research findings are highlighted in conclusion section.

Materials and methods

The mathematical framework of the model

The subsequent transformation is proposed for the anatomization of the traveling wave solu-

tion of Eq (1):

Z ¼
x � at
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � ðaÞ
2

q ;
ð3Þ

where the symbol α represents the speed of the travelling wave. Consequently, plugging Eq (3)

into Eq (1), below mentioned ordinary differential equation has been derived.

d2nðZÞ
dZ2

¼ ½sinhqðn
gðZÞÞ�

p
� d: ð4Þ

In this article, Eq (4) will be examined for δ = 0, p = 1, and γ = 1 and

mðZÞ ¼ enðZÞ; ð5Þ

use Eq (5) to transform Eq (4) as:

� 2m02 þ 2mm00 � m3 þ qm ¼ 0: ð6Þ

Computation of soliton solutions for Eq (6)

Solutions by employing the extended direct algebraic method

In this segment, the generalized q deformed Sinh-Gordon equation is analyzed employing

extended direct algebraic strategy. The method can be realized by considering the nonlinear

partial differential equation stated below:

Pðp; px; pt; py; pxx; pyy; ptt; pxt; . . .Þ ¼ 0; ð7Þ
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where P is a polynomial involving higher order partial derivatives and nonlinear components

in p(x, y, t). The travelling wave is transformed by a process known as:

pðx; y; tÞ ¼ lnðmðZÞÞ; Z ¼
xþ y � at
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � ðaÞ
2

q ;
ð8Þ

here, α represents a nonzero constant. Eq (7) is transformed into a nonlinear ordinary differ-

ential equation of the following form:

Lðm;m0;m00; . . .Þ ¼ 0: ð9Þ

In Eq (9), the prime denotes the derivative with respect to η. Assume that Eq (9) has a solu-

tion of the following form:

mðZÞ ¼
XQ

i¼0

�

aiPðZÞ
i
�

; ð10Þ

where

P0ðZÞ ¼ lnðrÞðmþ nPðZÞ þ zP2ðZÞÞ; r 6¼ 0; 1; ð11Þ

while z, ν and μ are real constants, the value of Q can be determined by balancing the nonlinear

terms and the highest order derivative appearing in Eq (9).

The following are generic solutions to Eq (11) for the parameters z, ν and μ, where F = (ν2

− 4μz). For further information, see [41, 42].

The value of Q is firstly obtained using homogeneous balance principle method. The value

of Q = 2 is achieved by balancing the nonlinear terms with the highest order derivatives in Eq

(6), which ultimately implies the solution in the known form:

mðZÞ ¼ a0 þ a1PðZÞ þ a2PðZÞ
2
; ð12Þ

where P(η) satisfies Eq (11). Comparing the different powers of coefficients P(η), after plug-

ging Eq (12) with Eq (11) into Eq (6) and have a system of suitable algebraic equations:

P0ðZÞ : 2 ln ðrÞ2m2ð2a0a2 � a2
1
Þ þ 2a0a1 ln ðrÞ

2
mn � a3

0
þ qa0 ¼ 0;

P1ðZÞ : 2 ln ðrÞ2ð2zma0a1 � 2a2a1m
2 þ 6a2a0mn � a2

1
mnþ n2a0a1Þ � 3a2

0
a1 þ qa1 ¼ 0;

P2ðZÞ : 2 ln ðrÞ2ð8zma0a2 þ 3zna0a1 � 2a2
2
m2 � a1a2mnþ 4a0a2n

2Þ � 3a2a2
0

� 3a0a2
1
þ a2q ¼ 0;

P3ðZÞ : 2 ln ðrÞ2ð2a0a1z
2
þ 2zma2a1 þ 10zna2a0 þ zna2

1
� 2mna2

2
þ a2a1n

2Þ

� 6a2a1a0 � a3
1
¼ 0;

P4ðZÞ : 2 ln ðrÞ2ð6z2a2a0 þ z
2a2

1
þ 5zna2a1Þ � 3a2

2
a0 � 3a2a2

1
¼ 0;

P5ðZÞ : 4 ln ðrÞ2ð2z2a2a1 þ zna2
2
Þ � 3a2

2
a1 ¼ 0;

P6ðZÞ : 4 ln ðrÞ2z2a2
2
� a3

2
¼ 0:
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The set of solutions below is produced by utilising a computational program to solve the

aforementioned algebraic equations for the parameters a0, a1, a2, μ, ν, q and z:

a2 ¼ 4 ln ðrÞ2z2
; m ¼

1

4

a0

ln ðrÞ2z
; n ¼

1

4

a1

ln ðrÞ2z
; q ¼ 0: ð13Þ

Case 1. If z 6¼ 0 and F< 0, then

when the values of a2, μ and ν are entered via Eq (13) into Eq (12), the following results for Eq

(6) are produced:

U1 ¼ 4 ln ðrÞ2z2
�
n

2z
þ

ffiffiffiffiffiffiffiffi
� F
p

2z
tanrð

ffiffiffiffiffiffiffiffi
� F
p

2
ZÞ

" #2

;

U2 ¼ 4 ln ðrÞ2z2
�
n

2z
�

ffiffiffiffiffiffiffiffi
� F
p

2z
cotrð

ffiffiffiffiffiffiffiffi
� F
p

2
ZÞ

" #2

;

U3 ¼ 4 ln ðrÞ2z2
�
n

2z
þ

ffiffiffiffiffiffiffiffi
� F
p

2z
tanr

ffiffiffiffiffiffiffiffi
� F
p

Z
� �

�
ffiffiffiffiffiffiffi
mn
p

secr
ffiffiffiffiffiffiffiffi
� F
p

Z
� �� �

" #2

;

U4 ¼ 4 ln ðrÞ2z2
�
n

2z
þ

ffiffiffiffiffiffiffiffi
� F
p

2z
cotr

ffiffiffiffiffiffiffiffi
� F
p

Z
� �

�
ffiffiffiffiffiffiffi
mn
p

cscr
ffiffiffiffiffiffiffiffi
� F
p

Z
� �� �

" #2

;

U5 ¼ 4 ln ðrÞ2z2
�
n

2z
þ

ffiffiffiffiffiffiffiffi
� F
p

4z
tanr

ffiffiffiffiffiffiffiffi
� F
p

4
Z

 !

� cotr

ffiffiffiffiffiffiffiffi
� F
p

4
Z

 ! !" #2

:

Case 2. If z 6¼ 0 and F> 0, then

U6 ¼ 4 ln ðrÞ2z2
�
n

2z
�

ffiffiffiffi
F
p

2z
tanhr

ffiffiffiffi
F
p

2
Z

 !" #2

;

U7 ¼ 4 ln ðrÞ2z2
�
n

2z
�

ffiffiffiffi
F
p

2z
cothr

ffiffiffiffi
F
p

2
Z

 !" #2

;

U8 ¼ 4 ln ðrÞ2z2
�
n

2z
þ

ffiffiffiffi
F
p

2z
� tanhr

ffiffiffiffi
F
p

Z
� �

� i
ffiffiffiffiffiffiffi
mn
p

r

ffiffiffiffi
F
p

Z
� �� �

" #2

;

U9 ¼ 4 ln ðrÞ2z2
�
n

2z
þ

ffiffiffiffi
F
p

2z
� cothr

ffiffiffiffi
F
p

Z
� �

�
ffiffiffiffiffiffiffi
mn
p

r

ffiffiffiffi
F
p

Z
� �� �

" #2

;

U10 ¼ 4 ln ðrÞ2z2
�
n

2z
�

ffiffiffiffi
F
p

4z
tanhr

ffiffiffiffi
F
p

4
Z

 !

þ cothr

ffiffiffiffi
F
p

4
Z

 ! !" #2

:
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Case 3. If ν = 0 and μz> 0, then

U11 ¼ 4 ln ðrÞ2z2

ffiffiffi
m

z

r

tanr
ffiffiffiffiffi
mz
p

Z
� �

� �2

;

U12 ¼ 4 ln ðrÞ2z2
�

ffiffiffi
m

z

r

cotr
ffiffiffiffiffi
mz
p

x
� �

� �2

;

U13 ¼ 4 ln ðrÞ2z2

ffiffiffi
m

z

r

tanr 2
ffiffiffiffiffi
mz
p

Z
� �

�
ffiffiffiffiffiffiffi
mn
p

secr 2
ffiffiffiffiffi
mz
p

Z
� �

� �� �2

;

U14 ¼ 4 ln ðrÞ2z2

ffiffiffi
m

z

r

� cotr 2
ffiffiffiffiffi
mz
p

Z
� �

�
ffiffiffiffiffiffiffi
mn
p

cscr 2
ffiffiffiffiffi
mz
p

Z
� �

� �� �2

;

U15 ¼ 4 ln ðrÞ2z2 1

2

ffiffiffi
m

z

r

tanr

ffiffiffiffiffi
mz
p

2
Z

� �

� cotr

ffiffiffiffiffi
mz
p

2
Z

� �� �� �2

:

Case 4. If ν = 0 and μz< 0, then

U16 ¼ 4 ln ðrÞ2z2
�

ffiffiffiffiffiffiffiffi

�
m

z

r

tanhr
ffiffiffiffiffiffiffiffiffi
� mz
p

Z

� �� �2

;

U17 ¼ 4 ln ðrÞ2z2
�

ffiffiffiffiffiffiffiffi

�
m

z

r

cothr
ffiffiffiffiffiffiffiffiffi
� mz
p

Z

� �� �2

;

U18 ¼ 4 ln ðrÞ2z2

ffiffiffiffiffiffiffiffi

�
m

z

r

� tanhr 2
ffiffiffiffiffiffiffiffiffi
� mz
p

Z
� �

� i
ffiffiffiffiffiffiffi
mn
p

r 2
ffiffiffiffiffiffiffiffiffi
� mz
p

Z
� �� �� �2

;

U19 ¼ 4 ln ðrÞ2z2

ffiffiffiffiffiffiffiffi

�
m

z

r

� cothr 2
ffiffiffiffiffiffiffiffiffi
� mz
p

Z
� �

�
ffiffiffiffiffiffiffi
mn
p

r 2
ffiffiffiffiffiffiffiffiffi
� mz
p

Z
� �� �� �2

;

U20 ¼ 4 ln ðrÞ2z2
�

1

2

ffiffiffiffiffiffiffiffi

�
m

z

r

tanhr

ffiffiffiffiffiffiffiffiffi
� mz
p

2
Z

� �

þ cothr

ffiffiffiffiffiffiffiffiffi
� mz
p

2
Z

� �� �� �2

:
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Case 5. If μ = z and ν = 0, then

U21 ¼ 4 ln ðrÞ2z2

�

tanrðmZÞ
�2

;

U22 ¼ 4 ln ðrÞ2z2

�

� cotrðmZÞ
�2

;

U23 ¼ 4 ln ðrÞ2z2

�

tanrð2mZÞ �
ffiffiffiffiffiffiffi
mn
p

secrð2mZÞ
�2

;

U24 ¼ 4 ln ðrÞ2z2

�

� cotrð2mZÞ �
ffiffiffiffiffiffiffi
mn
p

cscrð2mZÞ
�2

;

U25 ¼ 4 ln ðrÞ2z2 1

2
tanr

m

2
Z

� �
� cotr

m

2
Z

� �� �� �2

:

Case 6. If z = −μ and ν = 0, then

U26 ¼ 4 ln ðrÞ2m2

�

� tanhrðmZÞ
�2

;

U27 ¼ 4 ln ðrÞ2m2

�

� cothrðmZÞ
�2

;

U28 ¼ 4 ln ðrÞ2m2

�

� tanhrð2mZÞ � i
ffiffiffiffiffiffiffi
mn
p

rð2mZÞ

�2

;

U29 ¼ 4 ln ðrÞ2m2

�

� cotrð2mZÞ �
ffiffiffiffiffiffiffi
mn
p

rð2mZÞ

�2

;

U30 ¼ 4 ln ðrÞ2m2 �
1

2
tanhr

m

2
Z

� �
þ cothr

m

2
Z

� �� �� �2

:
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Case 7. If ν 6¼ 0 and μ = 0, then

U31 ¼ 4 ln ðrÞ2z2
�

mn
zðcoshrðnZÞ � sinhrðnZÞ þmÞ

" #2

;

U32 ¼ 4 ln ðrÞ2z2
�

nðsinhrðnZÞ þ coshrðnZÞÞ
zðcoshrðnZÞ þ sinhrðnZÞ þ nÞ

" #2

:

Case 8. If ν = p, z = pq, (μ = 0 and q 6¼ 0), then

U33 ¼ 4 ln ðrÞ2ðpqÞ2 �
mrpZ

m � qnrpZ

� �2

:

Case 9. If ν2 = 4μz, then

U34 ¼ 4 ln ðrÞ2z2 � 2mðnZ ln rþ 2Þ

n2Z ln r

� �2

:

Case 10. If μ = ν = 0, then

U35 ¼ 4 ln ðrÞ2z2 � 1

zZ ln r

� �2

:

Solutions by employing the modified auxiliary equation method

In this section, the generalized q deformed Sinh-Gordon equation will be solved by using the

modified auxiliary equation method. Consider Eq (9), which takes the following as its solution:

UðZÞ ¼ a0 þ
Xn

i¼1

�

aiðk
gÞ

i
þ biðk

gÞ
� i
Þ

�

; ð14Þ

where g(η) fits the auxiliary equation below and ai and bi are constants that must be computed.

While

g 0ðZÞ ¼
bþ yk� g þ skg

ln k
; ð15Þ

where σ, β, θ and k are undefined constants with k> 0, k 6¼ 1. By balancing the nonlinear high-

est terms with highest derivatives into Eq (6), the value of n = 2 is obtained. The Eq (14) is con-

vert in the following form as by using the above information:

UðZÞ ¼ a0 þ a1kg þ a2k2g þ b1k� g þ b2k� 2g : ð16Þ

PLOS ONE Computation of soliton structure and analysis of chaotic behaviour in quantum deformed Sinh-Gordon model

PLOS ONE | https://doi.org/10.1371/journal.pone.0304424 June 21, 2024 8 / 21

https://doi.org/10.1371/journal.pone.0304424


After employing Eq (15) with Eq (16) into Eq (6), set of algebraic equations turns up as fol-

lows and setting all the factors of the distinct powers of kg equal to zero, we have

ðKgðZÞÞ
0

: 2a0a1ybþ 4a0a2y
2
þ 2a0b1bsþ 4a0b2s

2 � 2a2
1
y

2
þ 16a1b1ysþ 8a1b1b

2

þ34a1b2bsþ 34a2b1ybþ 64a2b2ysþ 32a2b2b
2
� 2b2

1
s2 � a3

0
� 6a0a1b1

� 6a0a2b2 � 3a2
1
b2 � 3a2b2

1
þ a0q ¼ 0;

ðKgðZÞÞ
1

: 4a0a1ysþ 2a0a1b
2
þ 12a0a2yb � 2a2

1
yb � 4a1a2y

2
þ 16a1b1bsþ 16a1b2s

2

þ36a2b1ysþ 18a2b1b
2
þ 64a2b2bs � 3a2

0
a1 � 6a0a2b1 � 3a2

1
b1 � 6a1a2b2

þa1q ¼ 0;

ðKgðZÞÞ
2

: 6a0a1bsþ 16a0a2ysþ 8a0a2b
2
� 2a1a2ybþ 8a1b1s

2 � 4a2
2
y

2
þ 38a2b1bs

þ32a2b2s
2 � 3a2

0
a2 � 3a0a2

1
� 6a1a2b1 � 3a2

2
b2 þ a2q ¼ 0;

ðKgðZÞÞ
3

: 4a0a1s
2 þ 20a0a2bsþ 2a2

1
bsþ 4a1a2syþ 2a1a2b

2
� 4a2

2
ybþ 20a2b1s

2

� 6a0a1a2 � a3
1
� 3a2

2
b1 ¼ 0;

ðKgðZÞÞ
4

: 3a0ð4a2s
2 � a2

2
Þ þ a2

1
ð2s2 � 3a2Þ þ 10a1a2bs ¼ 0;

ðKgðZÞÞ
5

: 8a1a2s
2 þ a2

2
ð4bs � 3a1Þ ¼ 0;

ðKgðZÞÞ
6

: 4a2
2
s2 � a3

2
¼ 0;

1

ðKgðZÞÞ
1

: 4a0b1ysþ 2a0b1b
2
þ 12a0b2bsþ 16a1b1ybþ 36a1b2ysþ 18a1b2b

2

þ16a2b1y
2
þ 64a2b2yb � 2b2

1
bs � 4b1b2s

2 � 3a2
0
b1 � 6a0a1b2 � 3a1b2

1

� 6a2b1b2 þ b1q ¼ 0;

1

ðKgðZÞÞ
2

: 6a0b1ybþ 16a0b2ysþ 8a0b2b
2
þ 8a1b1y

2
þ 38a1b2ybþ 32a2b2y

2
� 2b1b2bs

� 4b2
2
s2 � 3a2

0
b2 � 3a0b2

1
� 6a1b1b2 � 3a2b2

2
þ b2q ¼ 0;

1

ðKgðZÞÞ
3

: 4a0b1y
2
þ 20a0b2ysþ 20a1b2y

2
þ 2b2

1
ybþ 4b1b2yþ 21b2b

2
� 4b2

2
bs � 6a0b1b2

� 3a1b2
2
� b3

1
¼ 0;

1

ðKgðZÞÞ
4

: 3a0ð4b2y
2
� b2

2
Þ þ b2

1
ð2y

2
� 3b2Þ þ 10ybb1b2 ¼ 0;

1

ðKgðZÞÞ
5

: 8y
2b1b2 þ b2

2
ð4yb � 3b1Þ ¼ 0;

1

ðKgðZÞÞ
6

: 4b2
2
y

2
� b3

2
¼ 0:
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The set of solutions below is produced by utilising a computational program to solve the

aforementioned algebraic equations for the parameters a0, a1, a2, b1, b2, β and σ:

a0 ¼ �
1

2

ffiffiffi
q
p

; a1 ¼ 0; a2 ¼
1

64

q
y

2
; b1 ¼ 0; b2 ¼ 4y

2
; s ¼ �

1

16

ffiffiffiqp

y
: ð17Þ

Plugging the values a0, a1, a2, b1,b2, σ, and β via Eq (17) into Eq (16), it will turns up the

examining solutions for the Eq (6):

For β2 − 4σθ< 0 and σ 6¼ 0 shows,

m1 ¼ �
1

2

ffiffiffi
q
p
þ

1

64

q
y

2

" � bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4sy � b

2
p

tan
ffiffiffiffiffiffiffiffiffiffi
4sy� b2
p

Z

2

� �

2s

#2

þ4y
2

" � bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4sy � b

2
p

tan
ffiffiffiffiffiffiffiffiffiffi
4sy� b2
p

Z

2

� �

2s

#� 2

;

ð18Þ

or

m2 ¼ �
1

2

ffiffiffi
q
p
þ

1

64

q
y

2

"

�

bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4sy � b

2
p

cot
ffiffiffiffiffiffiffiffiffiffi
4sy� b2
p

Z

2

� �

2s

#2

þ4y
2

"

�

bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4sy � b

2
p

cot
ffiffiffiffiffiffiffiffiffiffi
4sy� b2
p

Z

2

� �

2s

#� 2

:

ð19Þ

For β2 − 4σθ> 0 and σ 6¼ 0 shows,

m3 ¼ �
1

2

ffiffiffi
q
p
þ

1

64

q
y

2

"

�

bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b

2
� 4sy

p
tanh

ffiffiffiffiffiffiffiffiffiffi
b2 � 4sy

p
Z

2

� �

2s

#2

þ4y
2

"

�

bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b

2
� 4sy

p
tanh

ffiffiffiffiffiffiffiffiffiffi
b2 � 4sy

p
Z

2

� �

2s

#� 2

;

ð20Þ

or

m4 ¼ �
1

2

ffiffiffi
q
p
þ

1

64

q
y

2

"

�

bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b

2
� 4sy

p
coth

ffiffiffiffiffiffiffiffiffiffi
b2 � 4sy

p
Z

2

� �

2s

#2

þ4y
2

"

�

bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b

2
� 4sy

p
coth

ffiffiffiffiffiffiffiffiffiffi
b2 � 4sy

p
Z

2

� �

2s

#� 2

:

ð21Þ
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For β2 − 4σθ = 0 and σ 6¼ 0 shows,

m5 ¼ �
1

2

ffiffiffi
q
p
þ

1

64

q
y

2
�

2þ bZ

2sZ

� �2

þ 4y
2
�

2þ bZ

2sZ

� �� 2

: ð22Þ

Results and discussions

The chosen outcomes to the wave equation are displayed graphically in this section in 2D and

3D forms. The wave solution has been used to construct the many types of graphs. The struc-

ture of the travelling wave varies along with the unexplained variables of the outcomes. The

composition of the solution has been examined. Now, the graphs are shown illustrating how

the generalized q deformed Sinh-Gordon equation has changed over time. There are several

different solution of the generalized q deformed Sinh-Gordon equation that contain unspeci-

fied parameters. These unknown factors have been effect on the nature of the solutions. In

other words, if different specific values are assigned to the variables, several types of solutions

can be produced from the general solution. The following diagram illustrates how the solution

U6 is affected by the parameters:

The variables ρ, z, μ, ν, y, and α are all included in the inclusive finding U6. For the following

values: ρ = 2, z = 1.5, μ = −0.5, ν = −1, y = 2.5, and α = 0.2 from solution U6, we acquire the

kink-bright soliton structure. A 2D graph for oscillating with temporal components t = 0, 1

and 2 and components of velocity α = 0.2, 0.5, 0.8 within the limit −10� x� 10 is shown in

(Fig 1). Additionally, at intervals −5� x� 5 and −5� t� 5 and 3D graphs are displayed.

Additionally, at intervals −5� x� 5 and −5� t� 5 and 3D graphs are displayed.

The specific solution U8 is made up of the parameters ρ, z, μ, ν, y and α. For the following

values: ρ = 2, z = −1.8, μ = −0.5, ν = −2.4, y = −2 and α = 0.2 from solution U8, we are able to

obtain the bright soliton structure. (Fig 2) shows a 2D graph for oscillating with temporal

Fig 1. Graphical depiction of kink-bright soliton shapes for U6 in 2D (the red line corresponds to t = 0, the green line to t = 1 and the magenta line

to t = 2) and 3D sketches. (a) 2D portrait for U6. (b) 3D portrait for U6.

https://doi.org/10.1371/journal.pone.0304424.g001
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components t = 0, 1 and 2 and components of velocity α = 0.2, 0.5, 0.8 within the limit −10�

x� 10. In addition, at intervals −5� x� 5 and −5� t� 5 and 3D graphs are exhibited.

The specific solution U16 is made up of the parameters ρ, z, μ, y and α. For the following val-

ues: ρ = 2, z = 0.2, μ = −1, y = 1 and α = 0.3 from solution U16, we achieve dark bright soliton

structure. (Fig 3) depicts a 2D graph for oscillating with temporal components t = 0, 1 and 2

Fig 2. Graphical depiction of bright soliton shapes for U8 in 2D (the red line corresponds to t = 0, the green line to t = 1 and the magenta line to

t = 2) and 3D sketches. (a) 2D portrait for U8. (b) 3D portrait for U8.

https://doi.org/10.1371/journal.pone.0304424.g002

Fig 3. Graphical depiction of bright soliton shapes for U16 in 2D (the red line corresponds to t = 0, the green line to t = 1 and the magenta line to t = 2)

and 3D sketches. (a) 2D portrait for U16. (b) 3D portrait for U16.

https://doi.org/10.1371/journal.pone.0304424.g003
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and components of velocity α = 0.3, 0.5, 0.7 within the limit −10� x� 10. Moreover, at inter-

vals −5� x� 5 and −5� t� 5 and 3D graphs are presented.

The distinct solution U19 is made up of the parameters ρ, z, μ, y, and α. For the following

values: ρ = 4, z = 0.2, μ = −0.5, y = 1, and α = 0.2 from solution U19, we get bright-dark soliton

structure. (Fig 4) portrays a 2D graph for oscillating with temporal components t = 0, 1 and 2

and components of velocity α = 0.3, 0.4, 0.6 within the limit −10� x� 10. Furthermore, at

intervals −5� x� 5 and −5� t� 5 and 3D graphs are demonstrated.

The particular solution m3 is formed up of the parameters q, θ, σ, y, β and α. For the follow-

ing values: q = 0.5, θ = 2, σ = 1, y = 0.5, β = −3 and α = −0.2 from solution m3, we derive kink

soliton structure. (Fig 5) represents a 2D graph for oscillating with temporal components t = 0,

1 and 2 and components of velocity α = −0.2, −0.5, −0.8 within the limit −10� x� 10. Further,

at intervals −5� x� 5 and −5� t� 5 and 3D graphs are revealed.

The particular result m4 is formed up of the parameters q, θ, σ, y, β and α. For the following

values: q = 1, θ = 0.3, σ = −2, y = 3, β = −1.5 and α = 0.2 from solution m4, we derive kink-pea-

kon soliton structure. (Fig 6) demonstrates a 2D graph for oscillating with temporal compo-

nents t = 0, 1 and 2 and components of velocity α = 0.2, 0.5, 0.8 within the limit −10� x� 10.

Further, at intervals −5� x� 5 and −5� t� 5 and 3D graphs are showed.

Investigation of chaotic behavior in perturbed dynamical system

This segment delves at the analysis of Eq (6), which describes quasi-periodic and chaotic

behaviour. Employing a Galilean transformation, the studied equation is transformed into a

planar dynamical system. To examine the chaotic behaviour of the planar dynamical system, a

perturbation phrase O cos(θη) is introduced. Consequently, the dynamical planar system and

Fig 4. Graphical depiction of bright-dark soliton shapes for U19 in 2D (the red line corresponds to t = 0, the green line to t = 1 and the magenta

line to t = 2) and 3D sketches. (a) 2D portrait for U19. (b) 3D portrait for U19.

https://doi.org/10.1371/journal.pone.0304424.g004
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the perturbation phrase have the following structure:

dm
dZ ¼ N;

dN
dZ ¼ K1m2 þ K2m � K3 þ O cosðWÞ;

dW
dZ ¼ y;

8
>>>><

>>>>:

ð23Þ

with W = θη, is an independent system. The aforementioned system creates a disturbance

phrase which represent the force and its frequency using the parameters O and θ. Behaviour of

a system may change and looks chaotic whenever it is impacted by outside forces. In our

Fig 6. Graphical depiction of kink-peakon soliton shapes for m4 in 2D (the red line corresponds to t = 0, the green line to t = 1 and the

magenta line to t = 2) and 3D sketches. (a) 3D portrait for m4. (b) 3D portrait for m4.

https://doi.org/10.1371/journal.pone.0304424.g006

Fig 5. Graphical depiction of kink soliton shapes for m3 in 2D (the red line corresponds to t = 0, the green line to t = 1 and the

magenta line to t = 2) and 3D sketches. (a) 2D portrait for m3. (b) 3D portrait for m3.

https://doi.org/10.1371/journal.pone.0304424.g005
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research, we discover this behaviour in a chaotically behaving system (23) which demonstrate

unpredictable time dependent trajectories that diverge from predictable trends. For determin-

ing chaos, we applied Lyapunov exponents method, multistability and time series analysis and

bifurcation diagram. In order to comprehend the perturbed dynamical system, we then dis-

played the behaviour of the aforementioned exponents over time. We can figure out the cha-

otic behaviour of perturbed dynamical system at K1 = 3, K2 = −3.5, K3 = 5.2, O = 3.7, θ = 1.8

and the starting conditions (0.6,0.6,0.6), (0.4,0.4,0.4) and (0.1,0.1,0.1) correspondingly by dis-

playing the resulting Lyapunov exponents versus change in time in Figs (7–9).

In (Fig 7), we have observed that the system (23) is chaotic at λ1 = 0.0113, which is the larg-

est positive Lyapunov exponent. This clearly shows that the orbits are diverging. In the same

way, the largest positive Lyapunov exponent, λ1 = 0.0313 for the perturbed dynamical system

(23) is represents the presence of chaos. Moreover, the largest positive Lyapunov exponent, λ1

= 0.0513 for the perturbed dynamical system (23) is represents the presence of chaos.

A characteristic of perturbed dynamical systems known as multistability and time series

analysis denotes the presence of multiple alternative dynamic behaviors with an identical

parameters set but diverse primary conditions. Among these behaviors are chaos, multistabil-

ity, time series analysis periodicity and quasi periodicity which can manifest in the system in

various situations. In Figs (10)–(12), we have explored the multistability and time series exami-

nation of the perturbed system (23) under various beginning constraints. System (23) appears

to be especially vulnerable to chaotic initial conditions based on observations. Comprehending

the characteristics of multistability and time series analysis, which is an essential constituent of

intricate dynamic systems, helps facilitate the explanation and prediction of these system’s

behaviours under diverse conditions.

Fig 7. The study of chaotic behaviour for system (23) through Lyapunov exponents is conducted with parameters K1 = 3, K2 = −3.5, K3 =

5.2,O = 3.7, θ = 1.8 and the starting conditions (0.6,0.6,0.6).

https://doi.org/10.1371/journal.pone.0304424.g007
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Fig 8. The study of chaotic behaviour for system (23) through Lyapunov exponents is conducted with parameters K1 = 3, K2 = −3.5, K3 =

5.2,O = 3.7, θ = 1.8 and the starting conditions (0.4,0.4,0.4).

https://doi.org/10.1371/journal.pone.0304424.g008

Fig 9. The study of chaotic behaviour for system (23) through Lyapunov exponents is conducted with parameters K1 = 3, K2 = −3.5, K3 =

5.2,O = 3.7, θ = 1.8 and the starting conditions (0.1,0.1,0.1).

https://doi.org/10.1371/journal.pone.0304424.g009
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A visual representation that shows how a dynamical system behaves when a parameter is

changed is known as bifurcation diagram. The magnitude or strength of the perturbation is

the parameter of interest in the scenario of a dynamical system that is perturbed. One can

learn more about the possible behaviours of the system, such as fixed points, chaos, or limit

cycles, by looking at the bifurcation diagram. Bifurcation diagrams, especially, can be used to

determine the key parameter values, such as the beginning of chaos or the shift from stable to

unstable dynamics, at which the system experiences a qualitative change in behaviour. In (Fig

Fig 10. The study of chaotic behavior for system (23) through multistability and time series analysis under diverse beginning conditions: Blue

(0.2,0.05,0), green (0.5,0.1,0) and red (-0.1,0.02,0). (a) Multistability analysis. (b) Time series analysis.

https://doi.org/10.1371/journal.pone.0304424.g010

Fig 11. The study of chaotic behavior for system (23) through multistability and time series analysis under diverse beginning conditions: Blue

(-0.02,0.01,0), green (0.3,-0.01,0) and red (-0.2,-0.01,0). (a) Multistability analysis. (b) Time series analysis.

https://doi.org/10.1371/journal.pone.0304424.g011
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Fig 13. The study of chaotic behavior for system (23) through bifurcation diagram: Bifurcation m vs K2 at K1 = 3, K3 = 5.2,O = 3.7, θ =

1.8, and initial condition condition (0.4,0.4,0.4).

https://doi.org/10.1371/journal.pone.0304424.g013

Fig 12. The study of chaotic behavior for system (23) through multistability and time series analysis under diverse beginning conditions: Blue

(0.9,0.5,0), green (0.05,0.02,0) and red (0.6,0.04,0). (a) Multistability analysis. (b) Time series analysis.

https://doi.org/10.1371/journal.pone.0304424.g012
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13) we explore the bifurcation diagram of the perturbed dynamical system (23) versus m vs K2

with beginning condition (0.4,0.4,0.4) and physical parameters such as K1 = 3, K3 = 5.2, O =

3.7, θ = 1.8.

Conclusion

The q deformed Sinh-Gordon equation has been investigated by soliton structure and chaotic

behaviour. The underlying equation is converted into an ordinary differential equation using

the wave transformation technique. The new extended direct algebraic and modified auxiliary

equation techniques have been effectively applied to obtain novel analytical traveling wave

solutions. It is crucial to note that Sinh-Gordon equation solutions are achieved by utilizing

hyperbolic, trigonometric, exponential, and rational functions. A variety of soliton structures

have been produced for the resulting ordinary differential equation, taking into account differ-

ent parameter values. Visual representations in both 2D and 3D forms are subsequently

produced.

(Fig 1) depicts the kink-bright soliton structures for U6 by setting distinct temporal compo-

nent values as t = 0, t = 1, and t = 2 and α = 0.2, α = 0.5, α = 0.8, respectively. (Fig 2) exemplifies

the bright soliton structures for U8 using the same temporal parameter values. Dark soliton

structures for U16 are portrayed in (Fig 3) for different temporal component values as t = 0,

t = 1, and t = 2 and α = 0.3, α = 0.5, and α = 0.7, respectively. In (Fig 4), bright-dark soliton

structures are displayed for U19 by choosing different temporal parameter values as t = 0, t = 1,

and t = 2, α = 0.2, α = 0.4, and α = 0.6, respectively. (Fig 5) represents kink soliton structures

for m3 by selecting different temporal parameter values as t = 0, t = 1, and t = 2, α = −0.2, α =

−0.5, and α = −0.8, respectively. Kink-peakon soliton structures for m4 are shown in (Fig 6) by

picking different temporal parameter values as t = 0, t = 1, and t = 2, α = 0.2, α = 0.5, and α =

0.8, respectively.

Numerous chaos detecting tools, such as Lyapunov exponents, multistability and time

series analysis and bifurcation diagram have been implemented. Lyapunov exponents in Figs

(7)–(9) portrays the chaotic behavior of the model at various initial conditions. Moreover mul-

tistabiltiy analysis depicts Figs (10)–(12) the chaotic behavior of the model under consider-

ation at distinct beginning constraints. Furthermore bifurcation diagram (Fig 13) illustrates

the chaotic behavior of the investigated model. The findings illustrate the effectiveness of the

suggested methods in exploring novel solutions for numerous NLPDE found across a variety

of disciplines of applied nonlinear sciences.
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40. Özer AB, Akin E. Tools for detecting chaos, SA. Fen. Bilimleri. Enstits. Dergisi. 2005; 9:60–64.

41. Rezazadeh H. New solitons solutions of the complex Ginzburg-landau equation with Kerr law nonlinear-

ity, Optik. Inter. J. Light. Elect. Opt. 2018; 167:218–227. https://doi.org/10.1016/j.ijleo.2018.04.026

42. Jhangeer A, Seadawy AR, Ali F, Ahmed A. New complex waves of perturbed Schrödinger equation with

Kerr law nonlinearity and Kundu-Mukherjee-Naskar equation, Resu. Phys. 2020; 16:102816.

PLOS ONE Computation of soliton structure and analysis of chaotic behaviour in quantum deformed Sinh-Gordon model

PLOS ONE | https://doi.org/10.1371/journal.pone.0304424 June 21, 2024 21 / 21

https://doi.org/10.1186/s13660-019-2257-6
https://doi.org/10.1186/s13660-019-2257-6
https://doi.org/10.1016/j.cnsns.2011.01.026
https://doi.org/10.1016/j.cnsns.2011.01.026
https://doi.org/10.1155/2018/5242757
https://doi.org/10.1155/2018/5242757
https://doi.org/10.1016/j.physleta.2019.126026
https://doi.org/10.1016/j.physleta.2019.126026
https://doi.org/10.1155/2020/8819183
https://doi.org/10.1016/S0034-4877(13)60031-2
https://doi.org/10.1140/epjp/s13360-023-04689-5
https://doi.org/10.1016/j.chaos.2023.113436
https://doi.org/10.1016/j.chaos.2023.113237
https://doi.org/10.1016/j.chaos.2023.113237
https://doi.org/10.1016/j.chaos.2023.113415
https://doi.org/10.1016/j.cjph.2023.12.005
https://doi.org/10.1016/j.cjph.2023.12.005
https://doi.org/10.3934/math.2024326
https://doi.org/10.3934/math.2024326
https://doi.org/10.1016/j.ijleo.2018.04.026
https://doi.org/10.1371/journal.pone.0304424

