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Abstract

This article primarily focuses on the utilization and importance of parametric curves in sur-

face design. It delves into the construction and applications of parametric curves, exploring

the implementation of trigonometric polynomial basis functions that possess two shape

parameters. Initially, these basis functions are employed in constructing both rational and

non-rational curves. Later, they are employed to define the surfaces generated by these

curves. The discussion includes rational surfaces, tensor product surfaces, and various spe-

cialized surfaces. The aim is to provide a comprehensive understanding of the role and

potential of parametric curves in surface design.

1 Introduction

Surfaces play a vital role in computer-aided geometric design (CAGD) with diverse applications.

They are employed for tasks like fitting experimental data, handling tables of numbers, discre-

tized solutions of differential equations, as well as designing various objects such as aircraft, cars,

and other entities. Surfaces are also utilized in modeling human organs and robots [1]. The

umbrella term for these applications, particularly in engineering, is known as computer-aided

design/computer-aided manufacturing (CAD/CAM). It’s important to note that the choice of

surface form depends on the specific application, as there isn’t a one-size-fits-all solution for all

problems. CAGD has had a significant impact on fields like medical imaging, geographic infor-

mation systems, computer gaming, and scientific visualization [2]. Furthermore, computer

graphics stands out as one of the earliest and most significant applications of CAGD.

The CAGD is heavily reliant on curve and surface modeling. Computer-based machines

and tools are a key contributor in the increased need for parametric curve-based surface

modeling. These curves are not only useful for designing purposes but also useful in the path

planning of robots. For example in the construction of 3D models of surfaces the path of the

machine as well as the properties of desire objects are depending on these curves. Tool paths

are curves that are controlled by user-based information in the form of algorithms. As a matter

of fact, in the field of CAGD, surfaces based on parametric representation of curves are the

most popular and suitable for building and modeling [3].

In CAGD Bézier curves are the most commonly used parametric curves due to their simple

and user friendly nature. There are two main components in Bézier curve representation, basis

functions and control points. Basis functions led to the generation of smooth continuous
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curves. while control points are responsible for the description of shape of the curve as Bézier

curves mimics the shape of its control polygon.

While designing with traditional Bézier curves the shape of a curve and surface is fixed

under a specific set of control points. For a slight change in the shape of the curve or surface

one have to change the set of control points which may cause a huge change in the properties

of curve or surface.

The problem at hand was to discuss the ways to design a curve or surface without altering

the set of control points. This problem is addressed by many researchers purposing different

polynomial basis functions which involves the shape parameters [4, 5]. Afterwards a new set of

basis functions based on exponential functions is introduced [6]. Further different set of basis

functions involving shape parameters and trigonometric functions for curve and surface

design is introduced [7–10].

Later a generalization of Bézier like curves was introduced by extending the idea of shape

parameters incorporated in generalized polynomial basis functions [11]. The idea of n − 1

shape parameters for an nth degree polynomial is drawn out [12, 13] for the description of

curves and surfaces with an extra control. A generalization of Bézier like curves is given which

include Timmer and Wang-Ball basis [14]. A form of generalized basis functions [15], which

results in kth degree curve is elaborated for the purpose of curve modeling. The fractional

Bézier curve [16] based on generalized fractional basis functions was next in queue to help

designers to get a desired shape and design of the product.

Many authors have focused primarily on improving the forms of curves. The fundamental

goal of this work, on the other hand, is to present and undertake a thorough investigation of

the essential part that shape parameters play in the building of various types of surfaces. This

construction is based on the development of a collection of blending functions for all degrees.

A generalization of cubic trigonometric basis functions including two shape parameters has

been provided for this purpose, allowing the user to construct curves and surfaces with more

shape control.

Since surfaces are considered to be a fundamental component in numerous geometric

modeling systems. Therefore, the main objective of this study is to offer the concept of surfaces

formed by parametric curves, thereby expanding our understanding in this area.

2 Curve designing

Curves play a vital role as the fundamental building blocks for generating surfaces. When

exploring the realm of curves, the most promising approach lies in utilizing the parametric

representation of curves. Specifically, Bézier-like trigonometric curves are employed as a pow-

erful tool for surface generation due to their control point form. In addition to control points

and weight factors, shape parameters play a crucial role in rational and non-rational trigono-

metric Bézier curves as describing tools for surface generation.

2.1 Trigonometric polynomial functions with shape parameters

For n� 4, the formulation for trigonometric polynomial functions with two shape parameters

is as follow:

Bn
j ðWÞ ¼

ð1 � sinðWÞÞBn� 1

j ðWÞ þ sinðWÞBn� 1

j� 1
ðWÞ j ¼ 0; 1; 2; :::; bn=2c � 1

sinðWÞBn� 1

j� 1
ðWÞ þ cosðWÞBn� 1

j ðWÞ j ¼ bn=2c

ð1 � cosðWÞÞBn� 1

j� 1
ðWÞ þ cosðWÞBn� 1

j ðWÞ j ¼ bn=2c þ 1; :::; n � 1; n

8
>>>><

>>>>:

ð1Þ
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where Bn
j ðWÞ ¼ 0 for j = −1 and j� n. The formulation is based on degree three trigonometric

polynomial functions with two shape parameters [9], which are defined as:

B3

0
ðWÞ ¼ ð1 � sinðWÞÞ2ð1þ ð1 � l1ÞsinðWÞÞ

B3

1
ðWÞ ¼ sinðWÞð1 � sinðWÞÞðð1þ sinðWÞÞ þ l1ð1 � sinðWÞÞÞ

B3

2
ðWÞ ¼ cosðWÞð1 � cosðWÞÞðð1þ cosðWÞÞ þ l2ð1 � cosðWÞÞÞ

B3

3
ðWÞ ¼ ð1 � cosðWÞÞ2ð1þ ð1 � l2ÞcosðWÞÞ

8
>>>>>>><

>>>>>>>:

ð2Þ

where l1, l2 2 [−1, 2] and ϑ 2 [0, π/2].

Thees trigonometric polynomial functions Bn
j ðWÞ, defined in Eqs 1 and 2 fulfill the favorable

geometric properties:

1. non-negativity: Bn
j ðWÞ � 0,

2. sum to unity:
Pn

j¼0
Bn

j ðWÞ ¼ 1; j ¼ 0; 1; 2; :::; n,

3. symmetry: These basis functions are symmetric with respect to the parameters ϑ and
p

2
� W

� �

Bn
j ðW; l1; l2Þ ¼ Bn

n� j
p

2
� W; l2; l1

� �
; j ¼ 0; 1; 2; :::; n;

4. monotonicity: For the specified values of shape parameters l and m, the basis function

Bn
0
ðWÞ decreases and Bn

nðWÞ increases monotonically.

The graphical illustrations exhibit the behavior of these basis functions with multiple shape

parameters are shown in Fig 1. It is clear that all the basis functions are positive. In addition,

first and last basis functions are monotonically decreasing and increasing respectively. These

functions also satisfies the properties of symmetry.

2.2 Rational and non-rational parametric trigonometric Bézier curves

The polynomial trigonometric basis functions defined in Eq 1 play a crucial role in construct-

ing parametric Bézier curves of degree n� 3. These basis functions serve as the essential com-

ponents that govern the shape and behavior of the curves. The parametric Bézier curves can be

represented in the following control point form:

CðWÞ ¼
Xn

j¼0

QkB
n
j ðWÞ; W 2 0;

p

2

h i
: ð3Þ

Here CðWÞ represents the parametric Bézier curve, Qk denotes the control points and Bn
j ðWÞ

represents the polynomial trigonometric basis functions. By adjusting the control points and

incorporating the appropriate basis functions, we can manipulate and shape the parametric

Bézier curves to achieve desired outcomes. The degree of the curve, denoted by n, determines

the number of control points and the level of flexibility in the curve’s shape.

To enhance control over the shape of a curve, it is possible to assign positive weights W j to

each control point. This approach gives rise to rational trigonometric Bézier curves, as defined

in Eq 4. These curves extend the concept of parametric Bézier curves by incorporating weight

factors for the control points. The rational trigonometric Bézier curve can be represented as
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Fig 1. Trigonometric polynomial basis functions. (a) n = 4, l1 = l2 = −1, 0, 1, 2, (b) n = 6, l1 = l2 = −1, 0, 1, 2.

https://doi.org/10.1371/journal.pone.0293970.g001
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follows:

CðWÞ ¼

Xn

j¼0
ðWÞW jQjB

n
j

Pn
j¼0

Bn
j ðWÞW j

; W 2 0;
p

2

h i
: ð4Þ

In this formulation, CðWÞ denotes the rational trigonometric Bézier curve, Qj represents the

control points, W j signifies the assigned positive weights, and Bn
j ðWÞ represents the polynomial

trigonometric basis functions. The weights provide additional control over the influence of

each control point on the resulting curve shape, allowing for more flexibility and

customization.

By adjusting the weights assigned to the control points, designers can fine-tune the behavior

and shape of the rational trigonometric Bézier curves, catering to specific design requirements

and achieving desired visual effects.

The following simplified form can be obtained from Eq 4,

CðWÞ ¼
Xn

j¼0

Rn
j ðWÞQj; W 2 0;

p

2

h i
; ð5Þ

where

Rn
j ðWÞ ¼

Bn
j ðWÞW j

Pn
k¼0

Bn
kðWÞWk

; W 2 0;
p

2

h i
: ð6Þ

2.3 Properties of rational and non rational parametric curves

1. Endpoint interpolation

When considering the defined curve over the interval 0; p
2

� �
, the following properties can be

observed for the basis functions:

For ϑ = 0, Bn
j ð0Þ ¼ 0 for all j� 1, and Bn

0
ð0Þ ¼ 1,

W ¼ p

2
, Bn

j
p

2

� �
¼ 0 for all j� n − 1, and Bn

nð0Þ ¼ 1.

From Eq 3, it follows that the nth degree curve interpolates first and last control points. In

addition, the first derivative of parametric curves at end points represents tangents vectors.

Cð0Þ ¼ Q0;

C
p

2

� �
¼ Qn;

C
0

ð0Þ ¼ ðn � 2þ l1ÞðQ1 � Q0Þ;

C
0 p

2

� �
¼ ðn � 2þ l2ÞðQn � Qn� 1Þ:

For nth degree rational curve 4, the end points and tangents properties include the
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corresponding weights as well.

Cð0Þ ¼W0Q0;

C
p

2

� �
¼WnQn;

C
0

ð0Þ ¼ ðn � 2þ l1Þ
W1

W0

ðQ1 � Q0Þ;

C
0 p

2

� �
¼ ðn � 2þ l2Þ

Wn

Wn� 1

ðQn � Qn� 1Þ:

2. Convex hull

The non-negativity of basis functions and positive weights ensures the curve to remain in

the convex combination of basis and control points along with weights.

3. Geometric invariance

The defined curve is geometrically invariant under affine transformation, translation and

rotation due the the partition of unity of basis functions.

4. Symmetry

The curve is symmetric if the order of control points is reversed.

5. Shape adjustable property

The shape of the curve can be controlled using shape parameters as well as assigned weights

of the curve.

Shape parameters allow further customization of the curves by adjusting specific characteris-

tics such as curve openness, convexity, or concavity. By manipulating shape parameters, one

can achieve a wide range of curve variations, from smooth and flowing profiles to sharp and

intricate profile and trajectory curves shown in Fig 2, or even dynamically changing section

curves represented in Fig 3. The versatility offered by shape parameters enhances the expres-

sive power of trigonometric Bézier curves, making them indispensable tools in the field of sur-

face generation.

2.4 Advantages of the proposed trigonometric Bézier-like basis

Computer aided geometric design mainly relies on Bézier form for the construction and

manipulation of curves and surfaces. The standard Bézier curves possess remarkable proper-

ties, and their significance is unquestionable. Therefore, the natural question arises that why

there is the need of new set of functions. Whether they are truly necessary and/or is there a

meaningful space for their utilization?

There are many reasons, few of which are listed below, that support the idea of introducing

new set of functions in different domains. Trigonometric basis functions are one of those

emerging functions. Beyond their well-established real-life applications, there are numerous

areas where trigonometric-based Bézier-like curves can excel. However, introducing the con-

cept of trigonometric polynomials should not be perceived as a challenge to the importance of

standard Bézier curves.

In this era of machine learning and artificial intelligence, the need for new basis functions

becomes even more vital. Some other notable examples are:
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1. Computer Graphics and Animation:

Trigonometric Bézier curves are well-suited for modeling circular and elliptical shapes in

computer graphics and animation. They can be used to create smooth arcs and curves in

characters, objects, or paths of motion and can also be used to design fonts. Trigonometric

Bézier curves can be used in physics simulations to model circular or elliptical motions

[17], as they naturally describe these trajectories.

Fig 2. Behavior of shape parameters in non-rational form for l1 = l2 = −1, 0, 1, 2. (a) profile curve, (b) trajectory curve, (c) 3D view of curves along

control polygon, (d) 3D view of curves.

https://doi.org/10.1371/journal.pone.0293970.g002
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2. AI-Based Generative Design:

AI algorithms that generate art can use trigonometric Bézier curves to create aesthetically

pleasing, curvilinear designs. In digital art and sculpting applications, artists may use trigo-

nometric Bézier curves to create unique and complex shapes with precise control.

3. Gesture Recognition:

Trigonometric Bézier curves can be used in AI systems for recognizing and replicating

handwritten or gestural input, where natural curves are important.

Fig 3. Behavior of shape parameters in rational form for l1 = l2 = −1, 0, 1, 2. (a) rational profile curve, (b) rational section curve, (c) 3D view of curves

along control polygon, (d) 3D view of rational curves.

https://doi.org/10.1371/journal.pone.0293970.g003
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4. Motion Planning and Robotics

In robotics and autonomous systems, trigonometric Bézier curves can be used for path

planning [18], especially when you need robots to follow circular or curved trajectories

[19].

5. Signal Processing:

Trigonometric functions can be used to model complex wave forms for audio synthesis and

signal processing, which can be applied in AI-driven music composition and sound design.

6. Image Compression:

Trigonometric Bézier curves can be employed effectively in image compression techniques,

offering unique advantages and capabilities compared to traditional methods [20]. These

curves can address some of the limitations and challenges associated with traditional image

compression methods, providing enhanced image quality, reduced artifacts, and improved

scalability for various applications.

7. Machine Learning for Pattern Recognition:

In certain pattern recognition tasks, trigonometric Bézier curves can be part of feature

extraction techniques when dealing with curved patterns in images or data. Trigonometric-

based curves may find applications in cognitive modeling and neuroscientific research,

where they can be employed to simulate brain activity patterns and behavior more

accurately.

8. Geometric Approximations:

Trigonometric polynomials can provide superior approximations for certain complex

geometries, which can be useful in fields like computer graphics and geometric modeling.

In summary, while standard Bézier curves have their undeniable merits, the introduction of

trigonometric-based alternatives should be viewed as a complementary approach to meet the

evolving demands of AI-driven design and various specialized domains. These new functions

offer unique advantages and capabilities that can make a substantial difference in specific

applications, where precision, expressiveness, and noise reduction are critical factors.

3 Construction of generalized trigonometric Bézier surfaces

A curve is a vector valued function with one parameter, whereas a surface is a vector valued

function with two parameters. A curve is also known as a deformation or mapping of a straight

line, on the other hand a surface is a mapping of a region R, of the uv–plane into Euclidean

three dimensional geometry. Therefore it has the form

Sðu; vÞ ¼ ðxðu; vÞ; yðu; vÞ; zðu; vÞÞ; ðu; vÞ 2 R.

The polynomial trigonometric functions also serves as a major part for designing surfaces.

Surface generation is another useful application of these curves. This section discusses ways to

construct a surface using parametric trigonometric Bézier curves.

3.1 Rational trigonometric Bézier surfaces

In rational trigonometric Bézier surfaces, non negative weights are associated with each con-

trol point. These weights determine the influence of control points on the shape of the surface.

The (n + 1) × (m + 1) weights correspond to the grid of control points used to define the sur-

face. By adjusting these weights, designers can control the smoothness and deformation in dif-

ferent regions of the surface. Thus, these weights provide precise control over the surface’s

behavior locally. This approach streamlines the design process, preserves the structural integ-

rity of the surface, and offers real-time flexibility for creative exploration and fine-tuning.
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A rational trigonometric Bézier surface of degree (n, m) with Qk control points and positive

weights W j;k is defined as

Sn;m
ðu; vÞ ¼

Xn

j¼0

Xm

k¼0
Bn

j ðuÞB
m
k ðvÞQj;kW j;k

Pn
j¼0

Pm
k¼0

Bn
j ðuÞB

m
k ðvÞW j;k

; u; v 2 0;
p

2

h i
; ð7Þ

where Bn
j ðWÞ represents the polynomial trigonometric basis functions defined in Eq 1.

3.2 Tensor product patches

Non-rational Bézier surfaces are created by combining a bidirectional net of control points

and the products of univariate Bernstein polynomials. The combination of two curves known

as the tensor product surface defines a trigonometric Bézier surface of degree ðn;mÞ. The ten-

sor product scheme based on parametric representation of surfaces, is perhaps the simplest

and most extensively used approach in geometric modeling applications. It employs basis

functions as well as geometric coefficients and can be written as:

Sn;m
ðu; vÞ ¼

Xn

j¼0

Xm

k¼0

Bn

j ðuÞB
m

k ðvÞQj;k; u; v 2 0;
p

2
;

h i

ð8Þ

by taking unit weights in 7.

3.3 Properties of trigonometric Bézier surfaces

Bézier patches exhibit numerous properties that are essentially analogous to those of Bézier

curves. The defined surfaces 7 and 8 holds following properties listed below.

(i) Non-negativity:

Bn

j ðuÞB
m

k ðvÞ � 0 for all u; v 2 0; p
2

� �
.

(ii) Partition of unity:
Pn

j¼0

Pm

k¼0
Bn

j ðuÞB
m

k ðvÞ ¼ 1 for all u; v 2 0; p
2

� �
.

(iii) End point Interpolation:

Similar to the Bézier curves, the Bézier surface patch can interpolate four boundary control

points.

Sn;m
ð0; 0Þ ¼ Q0;0; Sn;m

ð1; 0Þ ¼ Qn;0;

Sn;m
ð0; 1Þ ¼ Q0;m; Sn;m

ð1; 1Þ ¼ Qn;m:

The control points along the control polygon boundaries serve as the control points for the

boundary curves of the patch.

(iv) Affine invariant:

Bézier surfaces exhibit affine invariance, meaning that they remain within the same class of

surfaces under affine transformations, including translation, rotation, scaling, and shearing.

(v) Convex hull property:

The surface Sn;m
ðu; vÞ formed by a Bézier curve or surface lies within the convex hull of its

control points. This means that the surface does not extend beyond the boundary formed

by the control points.
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(vi) Local control:

Changes to individual control points primarily affect the portion of the surface near those

points. This local control property allows for precise manipulation of the surface.

(vii) Symmetry:

By re-indexing the control net, mainly taking any corner of control polygon as Q0;0, ensures

that the evaluation yields a patch with an identical shape to the original one.

3.4 Advanced surface construction techniques

Surfaces are characterized as the continuous movement of one or more curves. This section

focuses on commonly used surfaces for manufacturing purposes. The construction of swung

and swept surfaces is discussed. The main idea behind these techniques is to take one or two

curves, or sets of curves, and generate a tensor product surface that smoothly connects these

curves [3]. In other words, the given curves serve as isoparametric curves within the surface.

3.4.1 Swung surfaces. The simplest way to understand the Swung surfaces is their descrip-

tion as a generalization of surface of revolution. Consider the profile curve PðuÞ of degree n
using the Eq 5,

PðuÞ ¼
Xn

j¼0

Rn
j ðuÞQj ð9Þ

defined in the xz–plane, and also let

T ðvÞ ¼
Xm

k¼0

Rm
k ðvÞDk ð10Þ

be a trajectory curve in the xy–plane. Let the non-zero components of PðuÞ and T ðvÞ are

PxðuÞ;PzðuÞ; T xðvÞ; and T yðvÞ, then swung surface can be defined as

Sðu; vÞ ¼ ðgPxðuÞT xðvÞ; gPxðuÞT yðvÞ;PzðuÞÞ: ð11Þ

Geometrically Sðu; vÞ is obtained when PðuÞ is swung about the z − axis and at the same

time scaling it by a factor of γ and T ðvÞ. The invariance under transformation of these curves

gives the representation of Sðu; vÞ as

Sðu; vÞ ¼
Xn

j¼0

Xm

k¼0

Rn;m
j;k ðu; vÞPj;k; ð12Þ

where

Pj;k ¼ QjDk ¼ ðgPj;xT k;x; gPj;xT k;y;Pj;zÞ;

and

W j;k ¼W jWk:

Both of the curves PðuÞ and T ðvÞ can either be open or closed, giving an open or closed sur-

face in both directions respectively.

3.4.2 Swept Surfaces. Swept surfaces are generated by the movement of a single curve

along a curved path. The curve can be moved along a route described by another curve. Let the

route of the sweeping curve can be represented by RðvÞ and the cross section curve is defined
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by CðuÞ. Then a swept surface can be define as [3],

Sðu; vÞ ¼ RðvÞ þMðvÞCðuÞ; ð13Þ

where MðvÞ is a 3-by-3 matrix of rotation and a factor for nonuniform scaling of CðuÞ based

on v. CðuÞ and RðvÞ can be arbitrary curves of any degree. Swept surfaces can be classified into

two types based on the rotation matrix. Here only the special type of the surface with identity

unit rotation matrix is discussed.

4 Results

4.1 Rational trigonometric surface patch

In this illustration, a rational trigonometric surface patch is defined by taking n = 4 and m = 5.

Within this framework, an approach is applied by adjusting the weights assigned to control

points while keeping the shape parameters fixed. Despite utilizing the same control net, a user

can create multiple distinct surfaces, three of them are shown in Fig 4. These surfaces are char-

acterized by different middle weights while keeping the boundary weights fixed at unity.

4.2 Bi-Tensor product patches

The most prevalent and advantageous approach to surface design is through tensor product

surfaces. Tensor product patches are obtained by combining two curves of degree n and m.

When n = m, we obtain Bi-tensor product patches. For example, when n = m = 4, the resulting

surface is referred to as Bi-quartic shown in Fig 5, and for n = m = 5, it is known as Bi-quintic

shown in Fig 6. The figures below depict both of these degree 4 and 5 surfaces and demonstrate

the influence of shape parameters in constructing tensor product patches.

4.3 Open swung surface

A swung surface with open profile curve of degree 5 and open trajectory curve of degree 6 is

constructed using Eq 12 and the results are shown in Fig 7.

4.4 Surface of revolution

A closed sweep surface is also known as surface of revolution and is constructed simply by

rotating a 2D curve about any axis, the axis is known as axis of rotation. The surface of revolu-

tion is symmetric about the axis of rotation. Taking γ = 1, l = m = 0 and T ðvÞ to be a circle,

yields the surface of revolution. Fig 8 shows different surface of revolution with various shape

parameters when a curve is rotated in the plane.

4.5 Translational surfaces

Translational surfaces can be discussed as a special case of swept surfaces when MðvÞ is an

identity matrix for all v in Eq 13, then CðuÞ represents a translation of RðvÞ,

Sðu; vÞ ¼ RðvÞ þ CðuÞ: ð14Þ

This type of surfaces are known as translational sweep surfaces. For illustration an open

and a closed sweep surfaces are shown in Figs 9 and 10. Cylinder is a special type of transla-

tional surface in which the route curve is a straight line represented in Fig 11.
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5 Conclusion

In conclusion, the construction of generalized Bézier-like surfaces using newly defined trigo-

nometric polynomial functions with two shape parameters offers a versatile and flexible

approach. By incorporating these shape parameters, the resulting surfaces can be adjusted and

Fig 4. Rational quartic-quintic surface. (a) Qaurtic-quintic control net, (b) Central weights adjusted to 0.8, (c) Central weights adjusted to 0.5, (d)

Central weights adjusted to 0.2.

https://doi.org/10.1371/journal.pone.0293970.g004
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manipulated to achieve a wide range of desired shapes and characteristics. This allows for

enhanced control and customization in surface design. The use of trigonometric polynomial

functions provides a rich mathematical foundation that enables the creation of complex and

intricate surface geometries. Overall, this approach opens up exciting possibilities for advanced

surface construction and opens new avenues for innovation in various fields such as com-

puter-aided design, manufacturing, and visual effects.

Fig 5. Bi-Quartic trigonometric patch with multiple shape parameters. (a) Bi-Qaurtic control net, (b) Corresponding four surfaces, (c) Bi-Quartic

surface l1 = l2 = −1, (d) Bi-Quartic surface l1 = l2 = 0, (e) Bi-Quartic surface l1 = l2 = 1, (f) Bi-Quartic surface l1 = l2 = 2.

https://doi.org/10.1371/journal.pone.0293970.g005
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Fig 6. Bi-Quintic trigonometric patch with multiple shape parameters. (a) Bi-Quintic control net, (b) Corresponding four surfaces, (c) Bi-Quintic

surface l1 = l2 = −1, (d) Bi-Quintic surface l1 = l2 = 0, (e) Bi-Quintic surface l1 = l2 = 1, (f) Bi-Quintic surface l1 = l2 = 2.

https://doi.org/10.1371/journal.pone.0293970.g006
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Fig 7. Open swung surface. (a) l1 = l2 = −1, (b) l1 = l2 = 0, (c) l1 = l2 = 1, (d) l1 = l2 = 2.

https://doi.org/10.1371/journal.pone.0293970.g007
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Fig 8. Surface of revolution with different shape parameters. (a) l1 = l2 = −1, (b) l1 = l2 = 0, (c) l1 = l2 = 1, (d) l1 = l2 = 2.

https://doi.org/10.1371/journal.pone.0293970.g008
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Fig 9. Open translational sweep surfaces with different shape parameters. (a) l1 = l2 = −1, (b) l1 = l2 = 0, (c) l1 = l2 = 1, (d) l1 = l2 = 2.

https://doi.org/10.1371/journal.pone.0293970.g009
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Fig 10. Closed translational sweep surfaces with different shape parameters. (a) l1 = l2 = −1, (b) l1 = l2 = 0, (c) l1 = l2 = 1, (d) l1 = l2 = 2.

https://doi.org/10.1371/journal.pone.0293970.g010
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