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Investigating pseudo parabolic 
dynamics through phase portraits, 
sensitivity, chaos and soliton 
behavior
Adil Jhangeer 1,2*, Farheen Ibraheem 3, Tahira Jamal 4, Ariana Abdul Rahimzai 5* & 
Ilyas Khan 6

This research examines pseudoparabolic nonlinear Oskolkov-Benjamin-Bona-Mahony-Burgers 
(OBBMB) equation, widely applicable in fields like optical fiber, soil consolidation, thermodynamics, 
nonlinear networks, wave propagation, and fluid flow in rock discontinuities. Wave transformation 
and the generalized Kudryashov method is utilized to derive ordinary differential equations (ODE) 
and obtain analytical solutions, including bright, anti-kink, dark, and kink solitons. The system of 
ODE, has been then examined by means of bifurcation analysis at the equilibrium points taking 
parameter variation into account. Furthermore, in order to get insight into the influence of some 
external force perturbation theory has been employed. For this purpose, a variety of chaos detecting 
techniques, for instance poincaré diagram, time series profile, 3D phase portraits, multistability 
investigation, lyapounov exponents and bifurcation diagram are implemented to identify the quasi 
periodic and chaotic motions of the perturbed dynamical model. These techniques enabled to analyze 
how perturbed dynamical system behaves chaotically and departs from regular patterns. Moreover, 
it is observed that the underlying model is quite sensitivity, as it changing dramatically even with 
slight changes to the initial condition. The findings are intriguing, novel and theoretically useful in 
mathematical and physical models. These provide a valuable mechanism to scientists and researchers 
to investigate how these perturbations influence the system’s behavior and the extent to which it 
deviates from the unperturbed case.

Keywords Oskolkov-Benjamin-Bona-Mahony-Burgers equation, Solitons, Bifurcation analysis, Revelation 
of chaotic dynamics

Partial differential equations are now essential for scientists and researchers to fathom physical events due to 
technological developments. Advanced computational approaches have resulted in improved precision of the 
various physical phenomenon.

Non linear partial differential equations have proven to be useful especially for simulating non linear processes 
in the natural and applied sciences, such as acoustical physics, plasma physics and solid state. The aforemen-
tioned equations provide clear and comprehensive insights into the physical events under study, allowing for 
projections of future propagation. Furthermore, the application of non linear partial differential equations to the 
investigation of travelling wave features is an essential tool in many domains,like quantum physics, fluid mechan-
ics, and several engineering specialties. As a consequence, a great deal of research has been done on studying 
different non linear partial differential models aiming a better understanding of the behaviour demonstrated 
by the physical phenomena that are being investigated. Some of the current studies have included analysis of 
Date-Jimbo-Kashiwara-Miwa  equation1,2, Navier-Stokes  equations3–5, Schrödinger  equation6–8, Riemann wave 
 equation9, Lakshmanan-Porsezian-Daniel  equation10, Chen-Lee-Liu dynamical  equation11,12, and numerous 
 other13,14. The exploration of soliton waves is one of the significant field in which partial differential equations of 
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non linear form are being used more and more frequently. Localized wave pulses are recognized as solitob wave 
that keep propagating at the uniform speed. Researchers have been using diverse non linear models to fathom 
the behaviour of these waves for anticipated benefits.

Consequently, there has been a rapid growth of these waves across multiple disciplines such as non linear 
optics, optical fibers, ferromagnetic materials, etc. A few studies on the results of latest soliton waves can be 
found  in15–17. A through understanding of soliton waves aid scientists to excel in these areas and investigate novel 
applications. The dynamical characteristics of the perturbed Gerdjikov-Ivanov model have been established 
and demonstrated by Rafiq et al.18. Younas et al.19 have studied the (2+1)-dimensional Pavlov equation by using 
hirota’s bilinear method to analyze the different wave structures. Bilal et al.20 investigated various soliton solu-
tions of the (2+1)-dimensional soliton equation using three different analytical techniques. Bilal at al.21 studied 
Chen-Lee-Liu equation of monomode fibers by executing the logarithmic transformation, sinh-Gordon equation 
expansion method and the ansatz functions method along with symbolic computation. The authors achieved 
various types of optical soliton solutions are singular, dark, bright and their combo forms.

Pseudoparabolic equation is a nonlinear partial differential equation, that consists of a time derivative term 
with highest order. These equations have arisen in numerous domains Mathematics and Physics. Some eminent 
disciplines involve optical fiber, soil consolidation, thermodynamics, nonlinear networks, wave propagation and 
fluid flow within the rock discontinuities. For further information, we suggest the reader  to22,23 and the refer-
ences therein. The Oskolkov-Benjamin-Bona-Mahony-Burgers (OBBMB) equation is pseudoparabolic equation 
of the form

Where fluid velocity is deined by p(x, t) in the horizontal direction x, k1 and k2 are positive and real constant 
respectively and k3p(x, t)

∂p(x,t)
∂x  is a C2 - smooth nonlinear function. This pseudoparabolic one-dimensional equa-

tion being nonlinear portrays non linear surface waves that propagate along the k1pxx and Ox is velocity phrase. 
G ̈ozükizi and Akçağil24 used tanh-coth approach and symbolic computation to obtain novel abundant solutions 
of OBBMB equation. Akcagil et al.25 have been utilized (G

′

G ) expansion method to find out the analytical traveling 
wave solutions of OBBMB equation. Moreover, Hosseini et al.26 obtained analytical solutions of OBBMB equation 
by applying a modified Kudryashov method.  Ray27 has been used to study the OBBMB equation by Lie symmetry 
analysis in order to determine symmetry reduction and compute vector fields.  Aristov28 has examined the linear 
source OBBMB equation, and certain groups of solutions were described in terms of special functions. Ilhan 
et al.29 employing the exp(−φ(η)) expansion method in modified form generated various singular periodic and 
sigular soliton wave solutions that include trigonometric, hyperbolic and exponential function patterns to the 
OBBMB equation.  Ghanbari30 investigated travelling wave solutions of OBBMB equation by utlizing generalized 
exponential rational function approach.

Bifurcation analysis applied to differential equations has been a fascinating area of research in recent  times31. 
Raza et al.32 examined quasi periodic, periodic and super nonlinear wave phenomena in cascaded system. Jamal 
et al.33 examined the model named Novikov-Veselov and derived soliton solutions. Furthermore, they examined 
bifurcation analysis, chaotic and quasi periodic behaviour, multistability analysis and sensitivity analysis of 
the model. The perturbed and unperturbed nature of dynamical system have been explored using bifurcation 
analysis by many  authors34. Jamal et al.35 developed soliton solutions of nerve impulse model. They implemented 
bifurcation and chaos theory to obtain the multistability, sensitivity analysis, chaotic and bifurcation of nerve 
impulse model along with external perturbation. Equilibrium points are identified using bifurcation to compute 
all phase portraits of dynamical system. Whereas chaos theory clarify whether the model under consideration 
is chaotic or not? It indicates that the solutions to physical phenomena that take place in nonlinear media either 
stay stable or become chaotic when we apply an external force to them.

The initial conditions exclusively govern the asymptotic behavior of autonomous dynamical systems. Four 
types of equilibrium behaviours include a limit circle, a tours, an equilibrium point and chaos. This research 
revolves around chaos theory to investigate dynamical system under discussion. There are various methods for 
determining chaos. In the present investigation, the most beneficial ones are emphasised. According to Özer and 
 Akin36, some eminent methods are Lyapounov exponents, Phase portraits, Time series, Poincaré maps, Bifurca-
tion diagram. and Power spectrum, Although there are a number of methods (such as the Lyapunov dimension, 
correlation dimension, entropy, and others) for recognising chaos, they are not frequently utilised since it can 
be difficult to detect chaos in real systems.

In this present study, we have examined the Oskolkov-Benjamin-Bona-Mahony-Burger equation by employ-
ing the efficient and practical approaches. Generalized Kudryashov method is used to find out the analytical 
solutions. The eminent competence of proposed technique is its ability to solve non linear evolution equations 
more naturally. Furthermore, it is observed that the exact travelling wave solution yields the solitary wave solu-
tion when the parameters are assigned particular values. The method is direct, straight forward and precise. 
Further, bifurcation and chaos theory are used to study the dynamics of the investigated equation. Consequently, 
the phase portraits of bifurcation, periodic, quasi periodic and chaotic motion are discovered. Furthermore, 
the multistability, lyapunov exponent and sensitivity analysis of the proposed equation are examined at several 
beginning conditions. All these findings are novel and have not yet been discovered. These provide a valuable 
mechanism to scientists and researchers to investigate how these perturbations influence the system’s behavior 
and the extent to which it deviates from the unperturbed case.

The paper is divided in to seven sections. Section  (2) and  (3) exhibit the algorithm of the generalized 
Kudryashov method and analytical solution formulation of the underlying model. Section  (4) represents physical 
interpretation and pictorial representation of the proposed equation. In section  (5), phase portraits at points of 
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equilibrium of the dynamical model are displayed and examined. Several methods for detecting chaos are utilized 
in Section  (6) to identify the chaotic behavior of the dynamical system. In Section  (7) sensitivity profile of the 
considered equation is examined at different initial conditions. We present a summary of all the discoveries and 
conclusions drawn from the investigation in the final section.

Algorithm of the generalized Kudryashov method
Here, we explain the generalized Kudryashov approach to find out the analytical wave solutions for nonlinear 
equation.

Assume that we have nonlinear equation of the form

where p(x, t) is an unfamiliar function, � is a polynomial in p and its many partial derivatives, including the 
nonlinear terms and highest order derivative. Following are the initial phases of the generalized Kudryashov 
 approach37.

Step 1: Utilizing the transformation p(x, t) = φ(ξ) and ξ = αx − ηt , the partial differential equation (non 
linear) takes the form of an ordinary differential equation as given below:

Step 2: Assume the following form of the solution to Eq. (3)

 where ai(i = 0, 1, 2, ...,N) and bi(j = 0, 1, 2, ...,M) are constants to be examined subsequently such that aN  = 0 
and bM  = 0 , and T = T(ξ) is the solution of ordinary differential equation

The solution to Eq. (5) are outlined below:

Step 3: The homogeneous balance approach between the highest order derivatives and the nonlinear elements 
in Eq. (3) can be used to calculate the positive integers N and M in Eq.  (4).

Step 4: Equations (4) and  (5) are substituted into Eq. (3) to produce a polynomial in Ti−j , (i, j = 0, 1, 2, ...) . 
A set of polynomial equation is obtained by equating all terms of the same power to zero. This may be solved 
by software packets like Maple or Mathematica to obtain the undetermined parameters ai(i = 0, 1, 2, ...,N) and 
bj(j = 0, 1, 2, ...,M) . As a result, we are able to solve Eq. (3) precisely.

Computation of soliton solutions for the OBBMB equation
The generalized Kudryashov approach will be used in this subsection to identify the precise traveling wave solu-
tions to the OBBMB Eq. (1).

The following ordinary differential equation is generated by converting Eq.  (1) employing the wave 
transformation (7)

Integrating Eq. (8) with respect to ξ at once yields

Now, taking into consideration the homogeneous balance principle among the nonlinear term φ2 and the highest 
order linear derivative φ ′′ in Eq. (9), we acquire N = M + 2.

If we pick M = 1 then N = 3 . Consequently, the solution may be expressed as

where T = T(ξ) satisfies Eq. (5) and a0, a1, a2, a3, b1, b2 are parameters that are be determined. Inputting Eq. (10) 
into Eq. (9) along with Eq. (5), a polynomial in T(ξ) is obtained. Afterwards, collecting all coefficient of Tj with 
same power of j and setting them all to zero, we obtain a system of set of algebraic equations. By employing 
Maple to solve the set of algebraic equations, we procure different sets of constant numbers and use those values 
to find the appropriate solutions.

Case 1: a0 = a0, a1 = 0, a2 = −−12b0k2α
2

k3(6α2+1)
, a3 =

−12b1k2α
2

k3(6α2+1)
, η = αk2

6α2+1
, k1 = − 5αk2

6α2+1
.

(2)�(p(x, t), px(x, t), pt(x, t), pxx(x, t), ...) = 0,

(3)�(φ(ξ),φ
′

(ξ),φ
′′

(ξ), ...) = 0,

(4)φ(ξ) =

∑N
i=0 aiT

i(ξ)
∑M

j=0 bjT
j(ξ)

,

(5)
dT(ξ)

d(ξ)
= T2(ξ)− T(ξ).

(6)T(ξ) =
1

1+ Beξ
.

(7)p(x, t) = φ(ξ), ξ = αx − ηt.

(8)(k2α − η)φ
′′

+ α2ηφ
′′′

− k1α
2φ

′′

+ αφφ
′

= 0.

(9)(k2α − η)φ
′

+ α2ηφ
′′

− k1α
2φ

′

+
k3

2
αφ2 = 0.

(10)φ(ξ) =
a0 + a1T

1(ξ)+ a2T
2(ξ)+ a3T

3(ξ)

b0 + b1T1(ξ)
,
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Plugging these values in Eq. (10) along with Eqs. (7) and (6), we obtain analytical solutions of Eq. (9) as

Case 2: a0 = a0, a1 =
−24α2b0k2
k3(6α2−1)

, a2 =
12(b0−2b1)k2α

2

k3(6α2−1)
, a3 =

12b1k2α
2

k3(6α2−1)
, η = − αk2

6α2−1
, k1 = − 5αk2

6α2−1
.

Plugging these values in Eq. (10) along with Eqs. (7) and (6), we obtain analytical solutions of Eq. (9) as

Case 3: a0 = 0, a1 =
−12b0k2α

2

k3(α2−1)
, a2 =

12(b0−b1)k2α
2

k3(α2−1)
, a3 =

12b1k2α
2

k3(α2−1)
, η = − αk2

α2−1
, k1 = 0.

Inputting these values in Eq. (10) along with Eqs. (7) and (6), we obtain analytical solutions of Eq. (9) as

 Case 4: a0 = − 12b0k2α
2

k3(6α2−1)
, a1 = − 12b1k2α

2

k3(6α2−1)
, a2 =

12b0k2α
2

k3(6α2−1)
, a3 =

12b1k2α
2

k3(6α2−1)
, η = − αk2

6α2−1
, k1 =

5αk2
6α2−1

.

Substituting these values in Eq. (10) along with Eqs. (7) and (6), we obtain analytical solutions of Eq. (9) as

Case 5: a0 = − 2b0k2α
2

k3(α2+1)
, a1 =

2(6b0−b1)k2α
2

k3(α2+1)
, a2 = − 12(b0−b1)k2α

2

k3(α2+1)
, a3 = − 12b1k2α

2

k3(α2+1)
, η = αk2

α2+1
, k1 = 0.

Plugging these values in Eq. (10) along with Eqs. (7) and (6), we obtain analytical solutions of Eq. (9) as

Case 6: a0 = − 12b0k2α
2

k3(6α2+1)
, a1 =

12(2b0−b1)k2α
2

k3(6α2+1)
, a2 = − 12(b0−2b1)k2α

2

k3(6α2+1)
, a3 = − 12b1k2α

2

k3(6α2+1)
, η = αk2

6α2+1
, k1 =

5αk2
6α2+1

.
Inserting these values in Eq. (10) along with Eqs. (7) and (6), we obtain analytical solutions of Eq. (9) as

Physical interpretation and pictorial representation
We have demonstrated a physical justification and graphical depiction of the achieved solutions of the considered 
equation in this section. Let’s look at Figs. 1, 2, 3, 4, which depicts 2D and 3D representations of a few of our 
acquired solutions and present kink, anti kink, dark and bright soliton solutions. To do this, we select a variety 
of special values for the acquired parameters. For example, Fig. 1 portrays the profile of bright soliton solu-
tion of 2D and corresponding 3D shapes of Eq. (13) for a = 1.5, α = 0.7, k2 = 1, k3 = 0.7 and A = 1 within 
the interval −10 ≤ x ≤ 10 and −10 ≤ t ≤ 10 . 2D graph for oscillation in the temporal component t = 0, 1, 2 
within the interval −10 ≤ x ≤ 10 is displayed in Fig. 1. Figure 2 depicts the profile of anti kink soliton solution 

(11)φ(ξ) =
−12α2k2

K3(6α2 + 1)(1+ Be
ax−

αk2
6α2+1

t
)2
.

(12)φ(ξ) = −
12α2k2(2Be

ax+
αk2

6α2−1
t
+ 1)

K3(6α2 − 1)(1+ Be
ax+

αk2
6α2−1

t
)2
.

(13)φ(ξ) = −
12Be

ax+
αk2
α2−1

t
α2k2

K3(α2 − 1)(1+ Be
ax+

αk2
α2−1

t
)2
.

(14)φ(ξ) = −
12Bα2k2(e

2(ax+
αk2

6α2−1
t)
)

K3(6α2 − 1)(1+ Be
ax+

αk2
6α2−1

t
)2
.

(15)φ(ξ) = −
2α2k2(B

2(e
ax−

αk2
α2+1

t)
)2 − 4Be

ax−
αk2
α2+1

t
+ 1)

K3(α2 + 1)(1+ Be
ax−

αk2
α2+1

t
)2

.

(16)φ(ξ) = −
12α2k2B

2(e
ax−

αk2
α2+1

t)
)2

K3(6α2 + 1)(1+ Be
ax−

αk2
α2+1

t
)2
.

Figure 1.  Graphical illustration of bright soliton solutions for Eq. (13) in 2D (red line corresponds to t = 0 , 
blue line to t = 1 , and green line to t = 2 ) and 3D plots.
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of 2D and corresponding 3D shape of Eq. (14) for a = 1.2, α = −0.5, k2 = −1.7, k3 = 0.9 and A = 1 within 
the interval −10 ≤ x ≤ 10 and −10 ≤ t ≤ 10 . 2D graph for oscillation in the temporal component t = 0, 1, 2 
within the interval −10 ≤ x ≤ 10 is shows in Fig. 2. Figure 3 represents the profile of dark soliton solution of 
2D and corresponding 3D shape of Eq. (15) for a = 1.2, α = 0.2, k2 = −2, k3 = 0.9 and A = 1 within the 
interval −10 ≤ x ≤ 10 and −10 ≤ t ≤ 10 . 2D graph for oscillation in the temporal component t = 0, 1, 2 within 
the interval −10 ≤ x ≤ 10 is depicts in Fig. 3. Figure 4 illustrate the profile of kink soliton solution of 2D and 
corresponding 3D shape of Eq. (16) for a = −0.7, α = 0.8, k2 = −2, k3 = 0.5 and A = 1 within the interval 

Figure 2.  Graphical illustration of anti kink soliton solutions for Eq. (14) in 2D (red line corresponds to t = 0 , 
blue line to t = 1 , and green line to t = 2 ) and 3D plots.

Figure 3.  Graphical illustration of dark soliton solutions for Eq. (15) in 2D (red line corresponds to t = 0 , blue 
line to t = 1 , and green line to r t = 2 ) and 3D plots.

Figure 4.  Graphical illustration of kink soliton solutions for Eq. (16) in 2D (red line correspond to t = 0 , blue 
line to t = 1 , and green line to t = 2 ) and 3D plots.
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−10 ≤ x ≤ 10 and −10 ≤ t ≤ 10 . 2D graph for oscillation in the temporal component t = 0, 1, 2 within the 
interval −10 ≤ x ≤ 10 is portrays in Fig. 4.

Bifurcation analysis
The differential equations of first order for the planar dynamical model derived from Eq. (9) are as follows:

where A =
η−k2α
α2η

 , B = k1
η

 and C = k3
2αη

 . First integral in this system is

where k takes in a number which is real. The stable points of planar dynamical model (17) on φ-axis are pre-
sented by

T1 = (0, 0) , T2 = (AC , 0).
Furthermore, the Jacobian of (17) is:

A > 0,C > 0

System (17) produces two equilibrium points, A1 = (0, 0) and A2 = (1, 0) which are shown in Fig. 5. The saddle 
node at A1 and the center point at A2 are seen in Fig. 5. Phase portraits and time series graphs are demonstrated in 
Fig. 5a–h respectively. As seen in Fig. 5, the term BW has an impact on the system (17). As B → 0 system becomes 
stable as depicted in Fig. 5a. Different phase pictures and accompanying time series plots of the system (17) are 
displayed in Fig. 5 at B = 0.0001, 0.01, 0.1, 1.

A < 0,C < 0

System (17) generates two equilibrium points, A1 = (0, 0) and A2 = (1, 0) which are illustrated in Fig. 6. The 
saddle node at A2 and center point at A1 can be observed in Fig. 6. Phase portraits and time series graphs are 
demonstrated in Fig. 6a–h respectively. As shown in Fig. 6, the term BW has an impact on the system (17). As 
B → 0 system becomes stable as represented in Fig. 6a. Different phase pictures and accompanying time series 
plots of the system (17) are depicted in Fig. 6 at B = 0.0001, 0.01, 0.1, 1.

A < 0,C > 0

System (17) provides two equilibrium points, A1 = (0, 0) and A2 = (−1, 0) which are depicted in Fig. 7. The 
saddle node at A2 and center point at A1 can be viewed in Fig. 7. Phase portraits and time series graphs are dis-
played in Fig. 7a–h respectively. As observed in Fig. 7, the term BW has an impact on the system (17). As B → 0 
system becomes stable as represented in Fig. 7a. Different phase pictures and accompanying time series plots of 
the system (17) are exhibited in Fig. 7 at B = 0.0001, 0.01, 0.1, 1.

A > 0, C < 0

System (17) gives two equilibrium points, A1 = (0, 0) and A2 = (−1, 0) which can be seen in Fig. 8. The saddle 
node at A1 and center point at A2 can be noticed in Fig. 8. Phase portraits and time series graphs are given in 
Fig. 8a–h respectively. As illustrated in Fig. 8, the term BW has an impact on the system (17). As B → 0 system 
becomes stable as displayed in Fig. 8a. Different phase pictures and accompanying time series plots of the sys-
tem (17) are presented in Fig. 8 at B = 0.0001, 0.01, 0.1, 1.

Exploring chaotic and quasi-periodic dynamics in a perturbed dynamical system
The current section examines the investigation of the model (9), which describes chaotic and quasi-periodic 
behavior. In order to enhance the appeal of the planar dynamical system (17), a perturbation term called 
θ0 cos(ηξ) has been introduced. Therefore, system (17) along with the perturbation term, is given as follows:

It is an independent system together with K = ηξ . The system described above utilizes the terms θ0 and η 
to provide a disturbance term that represents the frequency and magnitude of the force that was applied, cor-
respondingly. Whenever a system is impacted by outside forces, its behavior may change and appear random. 
In Fig. 9, 3D phase portrait analysis, poincaré map, and time series analysis are used to examine the chaotic 
behavior of the system (20). The system (20), which over time exhibits unpredictable behavior and deviates from 
predictable patterns, suggests chaotic dynamics.

(17)

{

dφ
dξ = W ,

dW
dξ = Aφ + BW − Cφ2,

(18)G(φ,W) =
−A

2
φ2 +

(−B+ 1)

2
W2 +

C

3
φ3 = k,

(19)J(φ,W) =

∣

∣

∣

∣

0 1

A− 2Cφ B

∣

∣

∣

∣

= 2Cφ − A.

(20)











dφ
dξ = W ,

dW
dξ = Aφ + BW − Cφ2 + θ0 cos(K),
dK
dξ = η,
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The perturbed model (20) has been investigated for multistability under various initial circumstances in 
Fig. 10. Observations indicate that system (20) is particularly susceptible to chaotic beginning conditions. Under-
standing this multistability property, which is a crucial component of complex dynamical systems, can aid in 
explaining and forecasting the behaviour of these systems in a variety of situations.

On the basis of Gram-Schmidt method of orthogonalization, we applied the Wolf algorithm for the compu-
tation of Lyapunov exponents for the underlying system. Lyapunov exponents are metrics used in dynamical 
systems to quantify the rate at which infinitesimally close trajectories diverge or converge. They measure how 
small variations in the initial conditions of a system evolve over time. In essence, a Lyapunov exponent indicates 
the exponential rate at which nearby trajectories separate or come together in the phase space of a dynamical 
system. Therefore, Lyapunov exponents were introduced to measure the rate of separation between neighboring 

Figure 5.  Phase portraits and respective time series plots of the planar dynamical system (17) for 
B = 0.0001, 0.01, 0.1, 1 , A > 0 and C > 0.
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trajectories, allowing the exploration of a system’s sensitivity to initial conditions. The results show that a positive 
Lyapunov exponent indicates that the system has chaotic properties, meaning that even a small initial differ-
ence will cause trajectories to diverge exponentially. When the Lyapunov exponent is zero, the system is stable, 
and neighboring trajectories remain at a constant distance. If the Lyapunov exponent is negative, the particle 
orbits exhibit asymptotic stability, causing nearby trajectories to converge and overlap. So, a positive value of 
� = 0.037055 represents chaotic behavior of the system, while � = 0 indicates stable behavior. A negative value 
of � = −0.037055 depicts asymptotic stability. To gain intricacies of the perturbed system (20), behaviour of 
these exponents over time have been plotted. the chaotic nature of the perturbed dynamical model (20) at 
A = 1.6,B = 0.0001,C = 3.5, θ0 = 3.1, η = 5.9 , and the initial condition (0.2, 0.2, 0.2), the acquired Lyapunov 
exponents against time are plotted in Fig. 11.

Figure 6.  Phase portraits and respective time series plots of the planar dynamical system (17) for 
B = 0.0001, 0.01, 0.1, 1 , A < 0 and C < 0.
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The behaviour of dynamical model under the influence of parameter variation is investigated through bifurca-
tion diagram. Specifically, critical values of parameter for scenarios such as onset of chaos, transition from stable 
to unstable dynamics are identified.This examination also enlightens system’s potential behaviour like limit cycle, 
chaos or fixed points. With physical variables A = −1.6,B = 0.0001, θ = 3.1, η = 5.9 , and a starting condition 
of (0.03,0.03,0.03), the perturbed system (20) C versus φ has been studied via bifurcation diagram as depicted 
in Fig. 12 . According to the use of tools for identifying chaos, multistability analysis, time series investigation, 
3D phase portrait visualisation, poincaré, the Lyapunov exponent and bifurcation diagram, the dynamical sys-
tem (20) under investigation exhibits irregular, chaotic, and uncertain behaviour. Thus, this finding forms the 
basis of our conclusion.

Figure 7.  Phase portraits and respective time series plots of the planar dynamical system (17) for 
B = 0.0001, 0.01, 0.1, 1 , A < 0 and C > 0.
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Sensitivity profile of the underlying dynamical model
The sensitivity profile of the dynamical model  (17) has been built with three distinct preliminary scenarios.The 
two and three solution curves are investigated and compared through parameter values A = −1,B = −1,C = 1 
as displayed in figures. Fig. 13 exhibits two solutions: ( φ , W)=(0.05,0) in green (solid) hue and ( φ , W)=(0.03,0) 
in deep-pink (dash) hue. Fig. 14, presents two solutions: ( φ , W)=(0.05,0) in green (dash-dot) hue and ( φ , 
W)=(0.02,0) in red (long-dash) hue. Fig. 15 depicts two solutions: ( φ , W)=(0.03,0) in deep-pink (solid) hue 
and ( φ , W)=(0.02,0) in red (dash-dot) hue. Nevertheless, as Fig. 16 illustrates, a comparison was conducted at 
various preliminary conditions, including (0.05,0), (0.03,0) and (0.02,0). It is evident that a small variation in 

Figure 8.  Phase portraits and respective time series plots of the planar dynamical system (17) for 
B = 0.0001, 0.01, 0.1, 1 , A > 0 and C < 0.
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the starting values results in a large variation in the solution. We thus get the conclusion that the model under 
consideration is quite sensitive.

Conclusion
Pseudoparabolic physical nonlinear models identified as Oskolkov-Benjamin-Bona-Mahony-Burgers (OBBMB) 
equation is explored. The underlying model is converted into an ordinary partial differential equation through 
wave transformation. Generalized Kudryashov technique is implemented to find analytical solutions that are 
exponential functions. Bright, anti kink, dark and kink soliton solutions are derived. Figs. 1, 2, 3, 4 exhibits 
3D and 2D graphs against appropriate parametric values. The planar dynamical system (17) that resulted after 
Galilean transformation has been examined at the equilibrium points to conduct bifurcation analysis. It is 
observed that as B → 0 , the system (17) attains stability which is illustrated in Figs. 5, 6, 7, and 8. Further more, 
a periodic external perturbation term is added to obtain perturbed dynamical system (20). The chaotic nature 
of the model (20) is discerned through poincaré map, 3D phase portrait and time series profile as depicted 
in Fig. 9. This revealed the vulnerability of the system to chaotic initial conditions and Fig. 11 demonstrate 
plot of resulting Lyapunov exponents. With an initial condition of (0.03,0.03,0.03) and physical parameters 
A = −1.6,B = 0.0001, θ0 = 3.1, η = 5.9 , the bifurcation diagram of the perturbed system (20) versus C and 
φ has been studied in Fig. 12. Finally, sensitivity profile has been performed with three different initial condi-
tions. It is evident from Figs. 13, 14, 15 and 16, that the model is greatly affected by slight variation in the initial 

Figure 9.  Bodging chaotic nature for model (20) via various chaos detecting mechanism with 
A = 1.6,B = 0.0001,C = 3.5, θ0 = 3.1, η = 5.9 and initial condition (0.2,0.2,0.2).
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condition and exhibits significant diversions. The results that have been presented are intriguing, new, and 
potentially helpful in understanding how disturbances in marginally stable or unstable media evolve over time. 
These ramifications will make leading research much easier in the future. In conclusion, we believe that more 
complex nonlinear partial differential equations can be solved using this approach.

Figure 10.  Bodging chaotic nature for model (20) via multistability profile with 
A = 1.6,B = 0.0001,C = 3.5, θ0 = 3.1, η = 5.9.
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Figure 11.  Classification of chaos in system (20) using Lyapunov exponents at 
A = 1.6,B = 0.0001,C = 3.5, θ0 = 3.1, η = 5.9 and initial condition (0.02,0.02,0.02).
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Figure 12.  Classification of chaos in system (20) using bifurcation diagram between φ and C under the physical 
parameters A = −1.6,B = 0.0001, θ0 = 3.1, η = 5.9 under initial constraints (0.03,0.03,0.03).

Figure 13.  Sensitivity profile of dynamical model (17) with ( φ , W)=(0.05,0) in green (solid) hue and ( φ
,W)=(0.03,0) in deep-pink (dash) hue.

Figure 14.  Sensitivity profile of dynamical model (17) with ( φ , W)=(0.05,0) in green (dash-dot) hue and ( φ
,W)=(0.02,0) in red (long-dash) hue.
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