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Abstract. Let Λ = {B1, B2, . . . , Bl} be an ordered l-partition of a con-
nected graph G(V (G), E(G)). The partition representation of vertex x with

respect to Λ is the l-vector, r(x|Λ) = (d(x,B1), d(x,B2), . . . , d(x,Bl)), where

d(x,B) = min{d(x, y)|y ∈ B} is the distance between x and B. If the l -
vectors r(x|Λ), for all x ∈ V (G) are distinct then l - partition is called a

resolving partition. The least value of l for which there is a resolving l - par-
tition is known as the partition dimension of G symbolized as pd(G). In this
paper, the partition dimension of circulant graphs Cn(1, 2, 3, 4) is computed

for n ≥ 8 as,

pd(Cn(1, 2, 3, 4)) =


n, if 8 ≤ n ≤ 9;

6, if n = 10;

5, if n ≥ 11.
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1. Introduction and Preliminaries

Slater et al. [20] and Melter et al. [8] independently introduced the
concept of metric dimension of a graph in 1975 and 1976 which has
many applications in robotics [12], chemistry [2] and optimization [19].
Later Chartrand et al. [3] presented the notion of partition dimension a
modified form of metric dimension. The computing the metric dimen-
sion is NP-hard [4], the problems become even harder when it comes to
partition dimension where we have to find a resolving partition which
contains sets instead of vertices. Further details of metric and partition
dimension can be seen in the articles [1, 9, 15, 16, 17].

Let W be a connected graph with the vertex set V (W ) and edge
set E(W ). For u, v ∈ V (W ), d(u, v) denotes the length of short-
est path between u and v. The distance between a vertex t and a
set P is given as d(t, P ) = min{d(t, x)|x ∈ P}. The diameter of
W , symbolized by diam(W ), is the greatest distance between any
two vertices. Let Ω = {x1, x2, . . . , xl} be an ordered set of vertices,
the representation of a vertex t with respect to Ω is the l - vector
r(t|Ω) = (d(t, x1), d(t, x2), . . . , d(t, xl)). If the l - vectors r(v|Ω), for all
v ∈ V (W ) are distinct then Ω is called a resolving set. The minimal
value of l for which there is a resolving set is known as the metric
dimension of G symbolized as dim(G).

Let Λ = {B1, B2, . . . , Bl} be an ordered l - partition of W . The
partition representation of vertex v with respect to Λ is the l - vector
r(v|Λ) = (d(v,B1), d(v,B2), . . . , d(v,Bl)). If the l - vectors r(v|Λ), for
all v ∈ V are distinct then l - partition is called a resolving partition.
The minimum l for which there is a resolving l - partition is called the
partition dimension ofW . The study of metric and partition dimension
of different graphs has been an active area of research for the last two
decades. Chartrand et al. [3] gave the comparison between the metric
dimension and partition dimension and they also categorized the graphs
having partition dimension 2 or n. The subsequent results from [3] have
significant importance in our work.

Proposition 1.1. If W is a connected graph of order n ≥ 2 then

(1) pd(W ) ≤ dim(W ) + 1;
(2) W is path if and only if pd(W ) = 2;
(3) W is the complete graph if and only if pd(W ) = n.
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2. Circulant graphs

In the current section, we are interested in the special class of circu-
lant graph Cn(1, 2, . . . , t) containing vertices v0, v1, . . . , vn−1 with con-
nection set {1, 2, . . . , t} for 1 ≤ t ≤ ⌊n/2⌋. The distance between two
vertices vi and vj in Cn(1, 2, . . . , t), where 0 ≤ i < j < n, is defined in
[13] as follows:

d(vi, vj) =

 ⌈ j−i
t
⌉, if 0 ≤ j − i ≤ n

2
;

⌈n−(j−i)
t

⌉, if n
2
< j − i < n

Many authors have computed the metric and partition dimension of
different classes of circulant graphs [5, 6, 7, 10, 11, 13, 14, 18]. Imran et
al. [10] discussed the metric dimension of circulant graphs Cn(1, 2, 5).
Salman et al. [18] discussed the metric and partition dimension of
circulant graphs Cn(1, 2) and proved that partition dimension of cir-
culant graph is 4 for n ≥ 6 which was disproved by Grigorious et. al
in [7]. Later in [14] Nadeem et al. corrected the partition dimension
of Cn(1, 2) for n ≡ 2(mod4), n ≥ 18. Javaid et al. [11] studied the
partition of circulant graphs Cn(1, 3) and Cn(1, 4). The subsequent
proposition is given in [6].

Proposition 2.1. [6]
Consider the circulant graphs Cn(1, 2, . . . , t) with 1 < t < ⌊n

2
⌋, n ≥

(t+ k)(t+ 1) and n ≡ k mod 2t, then

(1) pd(Cn(1, 2, . . . , t)) = t+ 1, when t is even and gcd(k, 2t) = 1;
(2) pd(Cn(1, 2, . . . , t)) = t+1, when t is odd and k = 2m, 1 ≤ m ≤

t− 1.

Elizabeth et al. [13] disproved the claims in Proposition 2.1 with
counterexamples and also gave the exact values of pd(Cn(1, 2, 3)). We
summarize their results in Proposition 2.2 and 2.3.

Proposition 2.2. [13]
pd(Cn(1, 2, . . . , t)) ≤ t

2
+ 4, whenever n = 2lt for even t ≥ 4 and

l ≥ 2.

Proposition 2.3. [13]

pd(Cn(1, 2, 3)) =


n, if 6 ≤ n ≤ 7;

5, if 8 ≤ n ≤ 9;

4, if n ≥ 10.

The subsequent corollary is an easy consequence of Proposition 2.2.

Corollary 2.1. For l ≥ 2, pd(Cn(1, 2, 3, 4)) ≤ 6 for n = 8l.

In this paper, we generalize Corollary 2.1 and obtain the precise
value of the partition dimension of Cn(1, 2, 3, 4).
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3. Main Results

Throughout in the remaining part of the paper, we will denote
Cn(1, 2, 3, 4) by Gn. It is clear from Proposition 1.1 that pd(Gn) = n
for 8 ≤ n ≤ 9, because it is a complete graph. The diameter of Gn

has been recently discussed in [5], we state this result in the following
Proposition 3.1.

Proposition 3.1. [5] If we write the order of Gn, as n = 8k+ r where
r ∈ {2, 3, . . . , 9} then the diameter of Gn is k + 1 and there are r − 1
number of vertices at the diameter distance from any vertex v.

The upper bound on pd(Gn) for n ≥ 11 is given in the subsequent
theorem.

Theorem 3.1. pd(Gn) ≤ 5, for n ≥ 11.

Proof. The proof has eight subcases and a resolving partition, Λ =
{A1, A2, A3, A4, A5} of V (Gn) is given for each case. For our conve-
nience we take v0 = vn.

Case 1: Let n = 8k + 2. If k ≥ 2, then consider A1 = {vi|1 ≤
i ≤ 8k − 9},
A2 = {v8k−8, v8k−7, v8k}, A3 = {v8k−6, v8k−2, v8k−1},
A4 = {v8k−5, v8k−4, v8k−3, v8k+2} and A5 = {v8k+1}. The Ta-

ble 1, shows that Λ is resolving partition.

Table 1. r(v|Λ) for n = 8k + 2

Distances of vertices from: A1 A2 A3 A4 A5

v4δ+1(0 ≤ δ ≤ α− 2) 0 δ + 1 δ + 1 δ + 1 δ + 1

v4δ+2(0 ≤ δ ≤ α− 2) 0 δ + 1 δ + 2 δ + 1 δ + 1

v4δ+3(0 ≤ δ ≤ α− 2) 0 δ + 2 δ + 2 δ + 1 δ + 1

v4δ+4(0 ≤ δ ≤ α− 3) 0 δ + 2 δ + 2 δ + 1 δ + 2

v4α−4 0 α− 1 α α− 1 α

v4α−3 0 α− 1 α α α

v4α−2 0 α− 1 α− 1 α α

v4α−1 0 α− 1 α− 1 α− 1 α

v8α−4δ−3(2 ≤ δ ≤ α− 1) 0 δ − 1 δ δ δ + 1

v8α−4δ−2(2 ≤ δ ≤ α− 1) 0 δ − 1 δ − 1 δ δ + 1

v8α−4δ−1(2 ≤ δ ≤ α− 1) 0 δ − 1 δ − 1 δ − 1 δ + 1

v8α−4δ(3 ≤ δ ≤ α) 0 δ − 2 δ − 1 δ − 1 δ + 1

v8α−8 1 0 1 1 3

v8α−7 1 0 1 1 2

v8α 1 0 1 1 1

v8α−6 1 1 0 1 2

v8α−2 2 1 0 1 1

v8α−1 1 1 0 1 1

v8α−5 1 1 1 0 2

v8α−4 2 1 1 0 2

v8α−3 2 1 1 0 1

v8α+2 1 1 1 0 1

v8α+1 1 1 1 1 0
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Case 2: Let n = 8α + 3. If α = 1, then consider A1 = {v1, v2},
A2 = {v3, v4, v5, v6, v7, v9}, A3 = {v8}, A4 = {v10} and A5 =

{v11}.
It can be verified easily that Λ is a resolving partition.
If α ≥ 2, then consider A1 = {vi|1 ≤ i ≤ 8α − 7} ∪

{v8α−5, v8α−3, v8α−1},
A2 = {v8α−6, v8α−2, v8α, v8α+2}, A3 = {v8α−4}, A4 = {v8α+1}

and
A5 = {v8α+3}. The Table 2, shows that Λ is resolving parti-

tion.

Table 2. r(v|Λ) for n = 8α + 3

Distances of vertices
from:

A1 A2 A3 A4 A5

v4δ+1(0 ≤ δ ≤ α− 2) 0 δ + 1 δ + 2 δ + 1 δ + 1
v4δ+2(0 ≤ δ ≤ α− 2) 0 δ + 1 δ + 3 δ + 1 δ + 1
v4δ+3(0 ≤ δ ≤ α− 2) 0 δ + 1 δ + 3 δ + 2 δ + 1
v4δ+4(0 ≤ δ ≤ α− 3) 0 δ + 2 δ + 3 δ + 2 δ + 1
v4α−4 0 α α α α− 1
v4α−3 0 α α α α
v4α−2 0 α− 1 α α α
v4α−1 0 α− 1 α α+ 1 α
v4α 0 α− 1 α− 1 α+ 1 α
v8α−4δ−3(1 ≤ δ ≤ α− 1) 0 δ δ δ + 1 δ + 2
v8α−4δ−2(2 ≤ δ ≤ α− 1) 0 δ − 1 δ δ + 1 δ + 2
v8α−4δ−1(2 ≤ δ ≤ α− 1) 0 δ − 1 δ δ + 1 δ + 1
v8α−4δ(2 ≤ δ ≤ α− 1) 0 δ − 1 δ − 1 δ + 1 δ + 1
v8α−5 0 1 1 2 2
v8α−3 0 1 1 1 2
v8α−1 0 1 1 1 1
v8α−6 1 0 1 2 3
v8α−2 1 0 1 1 2
v8α 1 0 1 1 1
v8α+2 1 0 2 1 1
v8α−4 1 1 0 2 2
v8α+1 1 1 2 0 1
v8α+3 1 1 2 1 0

Case 3: Let n = 8α+4. If α = 1, then considerA1 = {v1, v2, v3, v5,
v6, v11}, A2 = {v4}, A3 = {v7}, A4 = {v8, v9}, A5 = {v10, v12}.
It can be verified easily that Λ is a resolving partition.

If α ≥ 2, then consider A1 = {vi|1 ≤ i ≤ 8α − 6} ∪
{v8α−4, v8α−1, v8α}, A2 = {v8α−5, v8α−3}, A3 = {v8α−2}, A4 =
{v8α+1, v8α+2, v8α+3} and
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A5 = {v8α+4}. The Table 3, shows that Λ is resolving parti-
tion.

Table 3. r(v|Λ) for n = 8α + 4

Distances of vertices
from:

A1 A2 A3 A4 A5

v4δ+1(0 ≤ δ ≤ α− 2) 0 δ + 2 δ + 2 δ + 1 δ + 1
v4δ+2(0 ≤ δ ≤ α− 2) 0 δ + 3 δ + 2 δ + 1 δ + 1
v4δ+3(0 ≤ δ ≤ α− 3) 0 δ + 3 δ + 3 δ + 1 δ + 1
v4δ+4(0 ≤ δ ≤ α− 3) 0 δ + 3 δ + 3 δ + 2 δ + 1
v4α−5 0 α α+ 1 α− 1 α− 1
v4α−4 0 α α+ 1 α α− 1
v4α−3 0 α α+ 1 α α
v4α−2 0 α α α α
v4α−1 0 α− 1 α α α
v4α 0 α− 1 α α+ 1 α
v8α−4δ−3(1 ≤ δ ≤ α− 1) 0 δ δ + 1 δ + 1 δ + 2
v8α−4δ−2(1 ≤ δ ≤ α− 1) 0 δ δ δ + 1 δ + 2
v8α−4δ−1(2 ≤ δ ≤ α− 1) 0 δ − 1 δ δ + 1 δ + 2
v8α−4δ(2 ≤ δ ≤ α− 1) 0 δ − 1 δ δ + 1 δ + 1
v8α−4 0 1 1 2 2
v8α−1 0 1 1 1 2
v8α 0 1 1 1 1
v8α−5 1 0 1 2 3
v8α−3 1 0 1 1 2
v8α−2 1 1 0 1 2
v8α+1 1 1 1 0 1
v8α+2 1 2 1 0 1
v8α+3 1 2 2 0 1
v8α+4 1 2 2 1 0

Case 4: Let n = 8α + 5. If α = 1, then consider A1 = {v1},
A2 = {v2, v3},

A3 = {v4, v9, v10, v13}, A4 = {v5, v6, v7, v8, v12} and A5 =
{v11}. It can be verified easily that Λ is a resolving partition.

If α ≥ 2, then consider A1 = {vi|1 ≤ i ≤ 8α − 5} ∪
{v8α, v8α+2},

A2 = {v8α−4, v8α−3, v8α+1, v8α+3, v8α+4}, A3 = {v8α−2}, A4 =
{v8α−1} and A5 = {v8α+5}. The Table 4, shows that Λ is re-
solving partition.

Case 5: Let n = 8α+6. If α = 1, then considerA1 = {v1, v2, v3, v4,
v5, v6, v9}, A2 = {v7, v8}, A3 = {v10, v13}, A4 = {v11} and
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Table 4. r(v|Λ) for n = 8α + 5

Distances of vertices
from:

A1 A2 A3 A4 A5

v4l+1(0 ≤ δ ≤ α− 2) 0 δ + 1 δ + 2 δ + 2 δ + 1
v4δ+2(0 ≤ δ ≤ α− 2) 0 δ + 1 δ + 3 δ + 2 δ + 1
v4δ+3(0 ≤ δ ≤ α− 2) 0 δ + 1 δ + 3 δ + 3 δ + 1
v4δ+4(0 ≤ δ ≤ α− 3) 0 δ + 2 δ + 3 δ + 3 δ + 1
v4α−4 0 α α+ 1 α+ 1 α− 1
v4α−3 0 α α+ 1 α+ 1 α
v4α−2 0 α α α+ 1 α
v4α−1 0 α α α α
v4α 0 α− 1 α α α
v8α−4δ−3(1 ≤ δ ≤ α− 1) 0 δ δ + 1 δ + 1 δ + 2
v8α−4δ−2(1 ≤ δ ≤ α− 1) 0 δ δ δ + 1 δ + 2
v8α−4δ−1(1 ≤ δ ≤ α− 1) 0 δ δ δ δ + 2
v8α−4δ(2 ≤ δ ≤ α− 1) 0 δ − 1 δ δ δ + 2
v8α 0 1 1 1 2
v8α+2 0 1 1 1 1
v8α−4 1 0 1 1 3
v8α−3 1 0 1 1 2
v8α+1 1 0 1 1 1
v8α+3 1 0 2 1 1
v8α+4 1 0 2 2 1
v8α−2 1 1 0 1 2
v8α−1 1 1 1 0 2
v8α+5 1 1 2 2 0

A5 = {v12, v14}. It can be verified easily that Λ is a resolv-
ing partition.

If α ≥ 2, then consider A1 = {vi|1 ≤ i ≤ 8α− 4} ∪ {v8α+6},
A2 = {v8α−3, v8α−2}, A3 = {v8α−1, v8α, v8α+1, v8α+3}, A4 =

{v8α+2, v8α+5} and A5 = {v8α+4}. The Table 5, shows that Λ is
resolving partition.

.
Case 6: Let n = 8α+7. If α = 1, then considerA1 = {v1, v2, v3, v4,

v5, v6, v9, v13},
A2 = {v7, v8, v11}, A3 = {v10, v14}, A4 = {v12} and A5 =

{v15}. It can be verified easily that Λ is a resolving partition.
If α ≥ 2, then consider A1 = {vi|1 ≤ i ≤ 8α− 3},
A2 = {v8α−2, v8α−1, v8α+1, v8α+2},
A3 = {v8α, v8α+4}, A4 = {v8α+3, v8α+6, v8α+7} andA5 = {v8α+5}.
The Table 6, shows that Λ is resolving partition.
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Table 5. r(v|Λ) for n = 8α + 6

Distances of vertices
from:

A1 A2 A3 A4 A5

v4δ+1(0 ≤ δ ≤ α− 2) 0 δ + 3 δ + 1 δ + 1 δ + 1
v4δ+2(0 ≤ δ ≤ α− 2) 0 δ + 3 δ + 2 δ + 1 δ + 1
v4δ+3(0 ≤ δ ≤ α− 2) 0 δ + 3 δ + 2 δ + 1 δ + 2
v4δ+4(0 ≤ δ ≤ α− 2) 0 δ + 3 δ + 2 δ + 2 δ + 2
v4α−3 0 α α α α
v4α−2 0 α α+ 1 α α
v4α−1 0 α α α α+ 1
v8α−4δ−3(1 ≤ δ ≤ α− 1) 0 δ δ + 1 δ + 2 δ + 2
v8α−4δ−2(1 ≤ δ ≤ α− 1) 0 δ δ + 1 δ + 1 δ + 2
v8α−4δ−1(1 ≤ δ ≤ α− 1) 0 δ δ δ + 1 δ + 2
v8α−4δ(1 ≤ δ ≤ α) 0 δ δ δ + 1 δ + 1
v8α+6 0 2 1 1 1
v8α−3 1 0 1 2 2
v8α−2 1 0 1 1 2
v8α−1 1 1 0 1 2
v8α 1 1 0 1 1
v8α+1 2 1 0 1 1
v8α+3 1 2 0 1 1
v8α+2 1 1 1 0 1
v8α+5 1 2 1 0 1
v8α+4 1 2 1 1 0

Case 7: Let n = 8α+8. If α = 1 then considerA1 = {v1, v2, v3, v4,
v5, v7, v10},

A2 = {v6, v8, v9}, A3 = {v11, v12, v14}, A4 = {v13, v15} and
A5 = {v16}.

It can be verified easily that Λ is a resolving partition.
If α ≥ 2, then consider A1 = {vi|1 ≤ i ≤ 8α− 3} ∪ {v8α+2},
A2 = {v8α−2, v8α−1, v8α, v8α+1}, A3 = {v8α+3, v8α+6}, A4 =

{v8α+4, v8α+7} and A5 = {v8α+5, v8α+8}. The Table 7, shows
that Λ is resolving partition.

Case 8: Let n = 8α + 9. If α ≥ 1, then consider A1 = {vi|1 ≤
i ≤ 8α− 2},

A2 = {v8α−1, v8α, v8α+1, v8α+3}, A3 = {v8α+2, v8α+8},
A4 = {v8α+4, v8α+7, v8α+9} and A5 = {v8α+5, v8α+6}.
The Table 8, shows that Λ is resolving partition.

In all the above cases the partition representations are distinct, which
completes the proof.

□
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Table 6. r(v|Λ) for n = 8α + 7

Distances of vertices
from:

A1 A2 A3 A4 A5

v4δ+1(0 ≤ δ ≤ α− 1) 0 δ + 2 δ + 1 δ + 1 δ + 1
v4δ+2(0 ≤ δ ≤ α− 2) 0 δ + 2 δ + 2 δ + 1 δ + 1
v4δ+3(0 ≤ δ ≤ α− 2) 0 δ + 2 δ + 2 δ + 1 δ + 2
v4δ+4(0 ≤ δ ≤ α− 2) 0 δ + 3 δ + 2 δ + 1 δ + 2
v4α−2 0 α α+ 1 α α
v4α−1 0 α α+ 1 α α+ 1
v4α 0 α α α α+ 1
v8α−4δ−3(0 ≤ δ ≤ α− 1) 0 δ + 1 δ + 1 δ + 2 δ + 2
v8α−4δ−2(1 ≤ δ ≤ α− 1) 0 δ δ + 1 δ + 2 δ + 2
v8α−4δ−1(1 ≤ δ ≤ α− 1) 0 δ δ + 1 δ + 1 δ + 2
v8α−4δ(1 ≤ δ ≤ α− 1) 0 δ δ δ + 1 δ + 2
v8α−2 1 0 1 2 2
v8α−1 1 0 1 1 2
v8α+1 1 0 1 1 1
v8α+2 2 0 1 1 1
v8α 1 1 0 1 2
v8α+4 1 1 0 1 1
v8α+3 2 1 1 0 1
v8α+6 1 1 1 0 1
v8α+7 1 2 1 0 1
v8α+5 1 1 1 1 0

Theorem 3.2. pd(Gn) ≥ 5 for n ≥ 10.

Proof. We will show that pd(Gn) ̸= 4 for n ≥ 10
Assume that pd(Gn) = 4. Let Λ = {A1, A2, A3, A4} be a resolving

partition of V (Gn). Clearly one of the sets A1, A2, A3, A4 contains at
least 3 vertices so assume that |A1| ≥ 3. It is clear that there exist
one vertex vi ∈ A1 such that d(vi, Aj) > 1 for some j ∈ {2, 3, 4}
otherwise r(v|Λ) = (0, 1, 1, 1) for all v ∈ A1. Without loss of generality
consider d(vi, A3) ≥ 2. Let vj be a vertex in A3 where j > i, s.t
d(vi, vj) = d(vi, A3). Let V

∗ = {vj−1, vj−2, vj−3, vj−4} then no vertex in
V ∗ belongs to A3 as d(v, vi) < d(vj, vi) for all v ∈ V ∗ also d(v,A3) = 1
for all v ∈ V ∗. Without loss of generality assume that V ∗ ∩ A1 ̸= ϕ.
Case 1: If all the elements of V ∗ are in A1. i.e. |V ∗ ∩ A1| = 4 then

r(vj−4|Λ) = (0, a, 1, a
′
), r(vj−3|Λ) = (0, b, 1, b

′
), r(vj−2|Λ) = (0, c, 1, c

′
),

r(vj−1|Λ) = (0, d, 1, d
′
). Since k+1 is the diameter so 1 ≤ a, b, c, d, a

′
,

b
′
, c

′
, d

′ ≤ k + 1.

Case 1.1 : If k ≤ a, a
′ ≤ k + 1.

The possible choices for d(v, A2) and d(v, A4) for v ∈ V ∗ are
shown in Tables 9 to 11. It is easy to that for r = 2 (see Table
9) and r ≥ 4 (see Table 11) at least two representations will
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Table 7. r(v|Λ) for n = 8α + 8

Distances of vertices
from:

A1 A2 A3 A4 A5

v4δ+1(0 ≤ δ ≤ α− 1) 0 δ + 2 δ + 1 δ + 1 δ + 1
v4δ+2(0 ≤ δ ≤ α− 2) 0 δ + 3 δ + 1 δ + 1 δ + 1
v4δ+3(0 ≤ δ ≤ α− 2) 0 δ + 3 δ + 2 δ + 1 δ + 1
v4δ+4(0 ≤ δ ≤ α− 2) 0 δ + 3 δ + 2 δ + 2 δ + 1
v4α−2 0 α α α α
v4α−1 0 α α+ 1 α α
v4α 0 α α+ 1 α+ 1 α
v8α−4δ−3(0 ≤ δ ≤ α− 1) 0 δ + 1 δ + 2 δ + 2 δ + 2
v8α−4δ−2(1 ≤ δ ≤ α− 1) 0 δ δ + 2 δ + 2 δ + 2
v8α−4δ−1(1 ≤ δ ≤ α− 1) 0 δ δ + 1 δ + 2 δ + 2
v8α−4l(1 ≤ δ ≤ α− 1) 0 δ δ + 1 δ + 1 δ + 2
v8α−2 1 0 2 2 2
v8α−1 1 0 1 2 2
v8α 1 0 1 1 2
v8α+1 1 0 1 1 1
v8α+3 1 1 0 1 1
v8α+6 1 2 0 1 1
v8α+4 1 1 1 0 1
v8α+7 1 2 1 0 1
v8α+5 1 1 1 1 0
v8α+8 1 2 1 1 0

be same, leading to a contradiction. For r = 3, there are two
vertices at k+1 distance so the representation r(v|Λ) ̸= r(w|Λ)
for v, w ∈ V ∗ if we either choose 2nd or 3rd column of Table 10
for d(v, A2) or d(v, A4).

Since we have vj ∈ A3 and vj, vj−1, vj−2, vj−3, vj−4 are consec-
utive vertices with the connection set {1, 2, 3, 4} so r(vj|Λ) =
(1, k, 0, k).

Assume vj+1 ∈ A2 ∪ A4 then vj+1 is either in A2 or in A4. If
vj+1 ∈ A2, d(vj−1, A2) = 1 and if vj+1 ∈ A4, d(vj−1, A4) = 1.
Which results in a contradiction. Similarly vj+2 ∈ A2∪A4 leads
to contradiction. Hence vj+1, vj+2 ∈ A1 ∪ A3.

If vj+1, vj+2 ∈ A1, then r(vj+1|Λ) = (0, k, 1, k) = r(vj+2|Λ)
results in a contradiction. If vj+1 is in A1 and vj+2 in A3,
then r(vj|Λ) = (1, k, 0, k) = r(vj+2|Λ) results in a contradiction.
Similar arguments work if we either choose 3rd or 4th column of
Table 10 for d(v, A2) or d(v,A4).

Case 1.2: If k ≤ a ≤ k + 1 and a
′
< k.

For d(v, A2) we will have Tables 9 to 11 and d(v, A4) distances
are chosen either from Table 12 or from Table 13. It can be
verified easily that in all possible choices we will get at least
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Table 8. r(v|Λ) for n = 8α + 9

Distances of vertices
from:

A1 A2 A3 A4 A5

v4l+1(0 ≤ δ ≤ α− 1) 0 δ + 2 δ + 1 δ + 1 δ + 1
v4δ+2(0 ≤ δ ≤ α− 1) 0 δ + 2 δ + 1 δ + 1 δ + 2
v4δ+3(0 ≤ δ ≤ α− 2) 0 δ + 3 δ + 1 δ + 1 δ + 2
v4δ+4(0 ≤ δ ≤ α− 2) 0 δ + 3 δ + 2 δ + 1 δ + 2
v4α−1 0 α α α α+ 1
v4α 0 α α+ 1 α α+ 1
v8α−4δ−3(0 ≤ δ ≤ α− 1) 0 δ + 1 δ + 2 δ + 2 δ + 2
v8α−4δ−2(0 ≤ δ ≤ α− 1) 0 δ + 1 δ + 1 δ + 2 δ + 2
v8α−4δ−1(1 ≤ δ ≤ α− 1) 0 δ δ + 1 δ + 2 δ + 2
v8α−1 1 0 1 2 2
v8α 1 0 1 1 2
v8α+1 1 0 1 1 1
v8α+3 2 0 1 1 1
v8α+2 1 1 0 1 1
v8α+8 1 2 0 1 1
v8α+4 2 1 1 0 1
v8α+7 1 1 1 0 1
v8α+9 1 2 1 0 1
v8α+5 2 1 1 1 0
v8α+6 1 1 1 1 0

two same representations. In Table 12 and 13, we take λ = a
for d(v,A2) and λ = a

′
for d(v, A4). In case of r = 3, if we

choose 3rd column from Table 10 and 2nd column from Table
12 the representations might not repeat. So following the same
procedure as in case (i) we will get r(vj|Λ) = (1, k, 0, λ − 1)
and vj+1 /∈ A2 ∪ A4. So either vj+1 ∈ A1 or A3 so assume that
vj+1 ∈ A1, which implies r(vj−1|Λ) = (0, k, 1, λ−1) = r(vj+1|Λ).
If vj+1 ∈ A3 then r(vj|Λ) = (1, k, 0, λ − 1) = r(vj+1|Λ). So in
both cases we get contradiction. A similar argument can be
given if we choose distances from Table 13 and Table 10.

Case 1.3: If a < k and a
′
< k.

d(v,A2) and d(v, A4) will be chosen from Table 12 or Table
13. It can be verified easily that in all possible cases at least two
representations will be same which results in a contradiction.

Case 2: If three vertices of V ∗ are in the set A1 i.e. |V ∗ ∩ A1| = 3.
We can assume that vp, vq, vr are in V ∗ ∩ A1 and remaining one ver-
tex vs is in V ∗ ∩ A2. This will give r(vp|Λ) = (0, 1, 1, a), r(vq|Λ) =
(0, 1, 1, b), r(vr|Λ) = (0, 1, 1, c).

If d(vs, A4) = µ then either µ− 1 ≤ a, b, c ≤ µ or µ ≤ a, b, c ≤ µ+1.
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as vp, vq, vr, vs are consecutive vertices with connection set {1, 2, 3, 4}.
So by Pigeonhole principle at least two of the vertices will have the same
partition representation. Which results in a contradiction.
Case 3: If two vertices of V ∗ are in the set A1. i.e. |V ∗ ∩ A1| = 2.

Case 3.1: Assume that vp, vq are in V ∗ ∩ A1, vr in V ∗ ∩ A2 and
vs in V ∗ ∩ A4 then r(vp|Λ) = (0, 1, 1, 1), r(vq|Λ) = (0, 1, 1, 1),
results in a contradiction.

Case 3.2: Assume that vp, vq are in V ∗ ∩ A1 and vr, vs are in
V ∗ ∩ A2 then

r(vp|Λ) = (0, 1, 1, 1) = r(vq|Λ) and r(vr|Λ) = (1, 0, 1, 1) =
r(vs|Λ).

Which results in a contradiction.

□

Table 9. Possible choices for d(v, A2) and d(v,A4)
where v ∈ V ∗ and r = 2

vj−4 k + 1 k k k k
vj−3 k k + 1 k k k
vj−2 k k k + 1 k k
vj−1 k k k k + 1 k

Table 10. Possible choices for d(v, A2) and d(v, A4)
where v ∈ V ∗ and r = 3

vj−4 k + 1 k + 1 k k k k
vj−3 k k + 1 k + 1 k k k
vj−2 k k k + 1 k + 1 k k
vj−1 k k k k + 1 k + 1 k

Table 11. Possible choices for d(v, A2) and d(v, A4)
where v ∈ V ∗ and r ≥ 4

vj−4 k + 1 k + 1 k + 1 k + 1 k k k k

vj−3 k k + 1 k + 1 k + 1 k + 1 k k k

vj−2 k k k + 1 k + 1 k + 1 k + 1 k k

vj−1 k k k k + 1 k + 1 k + 1 k + 1 k
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Table 12. Possible choices for d(v, A2) and d(v, A4)
where v ∈ V ∗

vj−4 λ λ λ λ
vj−3 λ− 1 λ λ λ
vj−2 λ− 1 λ− 1 λ λ
vj−1 λ− 1 λ− 1 λ− 1 λ

Table 13. Possible choices for d(v, A2) and d(v, A4)
where v ∈ V ∗

vj−4 β β β β
vj−3 β + 1 β β β
vj−2 β + 1 β + 1 β β
vj−1 β + 1 β +1 β + 1 β

The subsequent lemma will be helpful in proving the partition dimen-
sion of G10.

Lemma 3.1. Let Λ = {A1, A2, A3, A4, A5} be a resolving partition of
G10.

(i) If |Aj| = 1 for some 1 ≤ j ≤ 5, then d(v, Aj) = 2 for exactly
one v ∈ V (G10).

(ii) If |Aj| ≥ 2 for some 1 ≤ j ≤ 5, then for all v ∈ V (G10), we
have d(v,Aj) ≤ 1.

Proof. (i) Let Aj = {vi} for some 1 ≤ j ≤ 5, then d(vi+1, Aj) =
d(vi+2, Aj) = d(vi+3, Aj) = d(vi+4, Aj) = d(vi−1, Aj) = d(vi−2, Aj) =
d(vi−3, Aj) = d(vi−4, Aj) = 1 and d(vi+5, Aj) = 2.

(ii) If |Aj| ≥ 2 for some 1 ≤ j ≤ 5, then all the vertices in V (G10) \
Aj are at distance 1 from some vertex in Aj.

□

Theorem 3.3. pd(G10) = 6.

Proof. Let A1 = {v0}, A2 = {v1, v2, v3, v4}, A3 = {v5, v8}, A4 = {v6},
A5 = {v7}, A6 = {v9}. Since Λ = {A1, A2, A3, A4, A5, A6} is a resolving
partition of V (G10), we have pd(G10) ≤ 6.
By Theorem 3.2 we know that pd(G10) ≥ 5. We only need to show

that pd(G10) ̸= 5. Let Λ = {A1, A2, A3, A4, A5} be a resolving partition
of V (G10). Here we have the subsequent cases.

Case 1: If |Aj| = 2 for all j ∈ {1, 2, 3, 4, 5}. It is clear from Lemma
3.1 that d(v, Aj) ≤ 1 for all v ∈ V (G10). Therefore, r(v|Λ) =
(0, 1, 1, 1, 1) for both vertices in A1. Which contradicts our as-
sumption.

Case 2: If |Aj| ≥ 3 for some j ∈ {1, 2, 3, 4, 5}, consider |A1| ≥ 3. Let
x1, x2, x3 ∈ A1. Since the partition representation of x1, x2
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and x3 are distinct therefore, there exist i, j ∈ {1, 2, 3} such
that r(vi|Λ)) and r(vj|Λ) have 2 as one of its coordinates. We
can consider, x1 ∈ A1 with d(x1, A4) = 2 and x2 ∈ A1 with
d(x2, A5) = 2. Lemma 3.1 implies that all other vertices of
G10 have the representations with fourth and fifth coordinates
at most 1. Since r = 2 for G10 so there is only one vertex at
the diameter distance from any given vertex. This implies that
r(x1|Λ) = (0, 1, 1, 2, 1), r(x2|Λ) = (0, 1, 1, 1, 2).

Moreover there is exactly one vertex in G10 with the repre-
sentation having the fifth coordinate 0 and at most two vertices
with the representation having fourth coordinate 0. Thus G10

contains at least five vertices, say u1, u2, u3, u4, u5 with the rep-
resentations having fourth and fifth coordinates equal to 1. Let
V ∗ = {u1, u2, u3, u4, u5}. We distinguish the subcases.
Case 2.1: Four vertices of V ∗ are in A1 or A2 or A3.
We can assume that u1, u2, u3, u4 ∈ V ∗∩A1 then r(u1|Λ) =
(0, b1, c1, 1, 1), r(u2|Λ) = (0, b2, c2, 1, 1), r(u3|Λ) = (0, b3, c3, 1, 1)
and r(u4|Λ) = (0, b4, c4, 1, 1)
where b1, b2, b3, b4, c1, c2, c3, c4 ∈ {1, 2}.

Case 2.1.1: If b1 = 2 or c1 = 2. Suppose b1 = 2 then we
must have c1 = 1 as r = 2 and Lemma 3.1 implies that
b2 = b3 = b4 = 1. Also only one of c2, c3 and c4 can be
2. Assume that c2 = 2 then we must have c3 = c4 = 1.
This means that u3 and u4 will have same representations,
which results in a contradiction.

Case 2.1.2: Suppose b1 = 1 and c1 = 1 then only one of the
coordinates of u2, u3 and u4 can be 2. Suppose b2 = 2 then
we must have c2 = 1 as r = 2 and Lemma 3.1 implies that
b3 = b4 = 1. Also only one of c3 and c4 can be 2. Assume
that c3 = 2 then c4 = 1. This means u1 and u4 will have
same representations, which results in a contradiction.

Case 2.2: Three vertices of V ∗ are in A1 or A2 or A3 and two
vertices in one of the other sets. Suppose u1, u2, u3 are in
V ∗∩A1 and u4, u5 in V ∗∩A2 then r(u1|Λ) = (0, b1, c1, 1, 1),
r(u2|Λ) = (0, b2, c2, 1, 1), r(u3|Λ) = (0, b3, c3, 1, 1)
r(u4|Λ) = (a1, 0, c4, 1, 1) and r(u5|Λ) = (a2, 0, c5, 1, 1)
Since |A1| ≥ 3 and |A2| ≥ 2, so by Lemma 3.1 we must
have
a1 = a2 = b1 = b2 = b3 = 1 and only one of c1, c2, c3, c4 and
c5 can be 2.
So assume that c1 = 2 then c2 = c3 = c4 = 1 which means
u2 and u3 will have same representations, which results in a
contradiction. Now if we take c4 = 2 then u1, u2 and u3 will
have same representations again we get a contradiction.
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Case 2.3: Two vertices of V ∗ are in A1 and three in A2.
Suppose u1, u2 are in V ∗ ∩A1 and u3, u4, u5 are in V ∗ ∩A2

then
r(u1|Λ) = (0, b1, c1, 1, 1), r(u2|Λ) = (0, b2, c2, 1, 1)
r(u3|Λ) = (a1, 0, c3, 1, 1), r(u4|Λ) = (a2, 0, c4, 1, 1) and
r(u5|Λ) = (a3, 0, c5, 1, 1)
Since |A1| ≥ 3 and |A2| ≥ 3, so by Lemma 3.1 we must
have
a1 = a2 = a3 = b1 = b2 = 1 and only one of c1, c2, c3, c4
and c5 can be 2.
Assume that c1 = 2 then c2 = c3 = c4 = c5 = 1 which
means u3, u4 and u5 will have same representations, which
results in a contradiction. Now if we take c3 = 2 then u1

and u2 will have same representations and also u4 and u5

will have same representations. Again we get a contradic-
tion.

Case 2.4: One vertex of V ∗ is in A1, two in A2 and two in
A3. Suppose u1 is in V ∗ ∩ A1, u2, u3 are in V ∗ ∩ A2 and
u4, u5 are in V ∗ ∩ A3 then
r(u1|Λ) = (0, b1, c1, 1, 1), r(u2|Λ) = (a1, 0, c2, 1, 1)
r(u3|Λ) = (a2, 0, c3, 1, 1), r(u4|Λ) = (a3, b2, 0, 1, 1) and
r(u5|Λ) = (a4, b3, 0, 1, 1)
Since |A1| ≥ 3, |A2| ≥ 2 and |A3| ≥ 2, so by Lemma 3.1 we
must have
a1 = a2 = a3 = b1 = b2 = b3 = c1 = c2 = c3 = 1.
Which will give at least two same representations, which
results in a contradiction.

Case 2.5: Two vertices of V ∗ are in each of A1 and A2 and
one in A3. Suppose u1, u2 are in V ∗ ∩ A1, u3, u4 are in
V ∗ ∩ A2 and u5 is in V ∗ ∩ A3 then
r(u1|Λ) = (0, b1, c1, 1, 1), r(u2|Λ) = (0, b2, c2, 1, 1), r(u3|Λ) =
(a1, 0, c3, 1, 1),
r(u4|Λ) = (a2, 0, c4, 1, 1) and r(u5|Λ) = (a3, b3, 0, 1, 1).
Since |A1| ≥ 3, |A2| ≥ 2, so by Lemma 3.1 we must have
a1 = a2 = a3 = b1 = b2 = b3 = 1 and only one of c1, c2 and
c3 can be 2 so as in the previous case we will get at least
two same representations, which results in a contradiction.

Case 2.6: Three vertices of V ∗ are in A2 and two in A3.
Suppose u1, u2, u3 are in V ∗ ∩A2 and u4, u5 are in V ∗ ∩A3

then
r(u1|Λ) = (a1, 0, c1, 1, 1), r(u2|Λ) = (a2, 0, c2, 1, 1)
r(u3|Λ) = (a3, 0, c3, 1, 1), r(u4|Λ) = (a2, b1, 0, 1, 1) and
r(u5|Λ) = (a3, b2, 0, 1, 1)
Since |A1| ≥ 3, |A2| ≥ 3 and |A3| ≥ 2, so by Lemma 3.1 we
must have
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a1 = a2 = a3 = b1 = b2 = c1 = c2 = c3 = 1.
Which will give at least two same representations, which
results in a contradiction. So in each case we concluded
that pd(G10) ̸= 5. Hence pd(G10) = 6.

□

4. Conclusion

In this article, we concluded that

pd(Gn) =


n, if 8 ≤ n ≤ 9;

6, if n = 10;

5, if n ≥ 11.

Here we conclude with the following open problem.

OpenProblem 4.1. Calculate the pd(Cn(1, 2, . . . , t)) for positive in-
teger n and t ≥ 5.
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