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Abstract
A directed Toeplitz graph T, (s1,...,Sk;t1,...,t;) with vertices 1,2,...,n, where
the edge (7, j) occurs if and only if j —¢ = s, or ¢ — j = t4 for some 1 < p < k and
1 < ¢ <1, is a digraph whose adjacency matrix is a Toeplitz matrix (a square matrix
that has constant values along all diagonals parallel to the main diagonal). In this
paper, we study hamiltonicity in directed Toeplitz graphs T),(1, 3, 5;¢).
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1 Introduction

A directed Toeplitz graph T,,(s1,..., Sk;t1,...,t;) with vertices 1,2,...,n, where the
edge (i, j) occursif and only if j—i =s, ori—j =t, forsome ]l <p<kand1l<¢g <l isa
digraph, of order n > max{sg,t;}, whose adjacency matrix is a Toeplitz matrix. We use [22]
for terminology and notations not defined here, and consider finite directed graphs without
multiple edges and loops. Since all graphs will be directed, we shall omit mentioning it.

Properties of Toeplitz graphs, such as colourability, planarity, bipartiteness, connec-
tivity, cycle discrepancy, edge irregularity strength, decomposition, labeling, and metric
dimension have been studied in [1]-[6], [8]-[12], [14]-[15], and [26]. Hamiltonian properties
of Toeplitz graphs were first investigated by R. van Dal et al. in [7] and then studied in
[13, 25, 27], while the hamiltonicity in directed Toeplitz graphs was first studied by S. Malik
and T. Zamfirescu in [24], by S. Malik in [16], by S. Malik and A.M. Qureshi in [23], and
then by S. Malik in [17]-[22].

In [17] and [22], the hamiltonicity of the Toeplitz graphs T,,(1,3;1,¢) was investigated.
In [20] and [21], the hamiltonicity of the Toeplitz graphs T, (1,3, 4;t) was investigated. In
this paper we still keep s; = 1 and s3 = 3 but then we consider s3 = 5, that is, we investigate
the hamiltonicity in Toeplitz graphs T, (1, 3, 5;t).

For a vertex a of T, (1, 3, 5; t), We define paths A, q—10, Ba—a+10, Cama—a and Dy_sq14
in T,(1,3,5;t) as Agmsa—10 = (a,a — 3,a — 6,6 — l,a — 4,a — 7,a — 10), Bassatio =
(a,a+3,a+6,a+9,a+10), Coryq—q = (a,a —5,a —4) and Dyq4+4 = (a,a + 3,a + 4),
respectively, see Figure 1.

Remark 1: If the Toeplitz graph T,(1, 3, 5;t) has a hamiltonian cycle containing the path
(n—2,n—1, n), then T,,, ,_1)(1,3, 5; ) enjoys the same property. Because such a hamilto-
nian cycle in T},(1, 3, 5;t) can be transformed into a hamiltonian cycle in 75, ;—1y(1, 3, 5; 1),
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Figure 1: Paths Ay 4—10, Ba—a+10s Casa—a and Dy g in T,,(1,3,5;t)

by replacing the edge (n — 2, n— 1) with the path (n—2,n+1,n+2,...,n+(t—1),n—1),
which preserves the same property. For example, see Figure 2, where a hamiltonian cycle in
T10(1,3,5;5) is transformed into a hamiltonian cycle in T14(1, 3,5;5) by replacing the edge
(8,9) with the path (8,11,12,13,14,9), which preserves the same property so T14(1,3,5;5)
can be transformed into a hamiltonian cycle in Tyg(1, 3, 5;5), and so on.
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Figure 2: Hamiltonian cycles in T10(1, 3,5;5) and T14(1, 3,5; 5)

2 Toeplitz Graphs T,(1,3,5;t) for odd ¢

For t = 1, clearly T,(1,3,5;1) is hamiltonian if and only if n = 6, because the decreasing
edges (the edges of the type (a,b) where a > b) are of length one only and this is only
possible when n = 6 and it is easily seen that Tg(1,3,5;1) has a unique hamiltonian cycle
(1,6,5,4,3,2,1).

Theorem 2.1. T,(1,3,5;3) is hamiltonian if and only if n is even.

Proof. For n = 6,8,10,12, hamiltonian cycles in T,(1,3,5;3) are (1,2,5,6,3,4,1),
(1,2,7,8,5,6,3,4,1), (1,2,5,10,7,8,9,6,3,4,1) and (1,2,7,12,9,10,11,8,5,6,3,4,1), in or-
der, see Figure 3. Now for even n > 14. If n =2 0mod 10, then a hamiltonian cycle in
Tn<1,3, 5;t> is (1, 2, 3) U B3_13UBi393U---UB,,_97_spn_17 U (n —17n—-14,n—-11,n—
8,n—5nn—3,n—2n—1,n—4n—7n—6,n—9)UA, 9 n_10UAn_193n—20U---UA111,
see Figure 4. If n = 2mod 10, then a hamiltonian cycle in T,(1, 3, 5;¢) is (1,2,3) U B3_13U
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Figure 3: Hamiltonian cycles in Ts(1, 3, 5;3), T5(1,3,5;3), T10(1,3,5;3), and T12(1,3,5;3)
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Figure 4: A hamiltonian cycle in T5(1, 3, 5; 3)

Figure 5: A hamiltonian cycle in T52(1, 3, 5; 3)

Figure 6: A hamiltonian cycle in T14(1, 3, 5; 3)
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Figure 7: A hamiltonian cycle in Ti6(1, 3, 5; 3)

Bizo3U--UBp_995n_19U(n—19,n—16,n —13,n—10,n —5,n,n—3,n—2,n— 1,n —
4n—7n—6n—9n—-8n—11)UA, 115n-21 UA, 21 5p-31 U---U A1, see Figure
5. If n 2 4mod 10, then a hamiltonian cycle in T, (1, 3,5;¢) is (1,2,3) U Bs_,13 U B13—23 U
o UBp 11U —1,n,n—3)UA,_35n_13UAp_1355m—23 U--- U A1, see Figure
6. If n = 6 mod 10, then a hamiltonian cycle in T,,(1,3,5;t) is (1,2,3) U Bs_13 U Bi3—23 U
U Bn—23—>n—13 ] (Tl — 13, n — 10) U Bn—lO—m @] (n,n - 3, n — 2,7?, — 5) U An—5—>n—15 U
Ap_155n—25 U - U Aj1,1, see Figure 7. If n = 8mod 10, then a hamiltonian cycle in
Tn<]—’37 57t> is (13 23 3) U B3~>13 U Bl3~>23 u---u Bn725~>n715 U (TL - 153’”’ - 127” - 9,n -
6,n—1,nn—-3n—-2n—-5n—4n—"7)UA_75n-17U A, _174pn_o7 U--- U Aj1_,1, see
Figure 8. Thus T,(1, 3,5; 3) is hamiltonian for all even n.

3
Conversely, T,,(1,3,5; 3) is bipartite and, being hamiltonian, n must be even. O
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Figure 8: A hamiltonian cycle in T15(1, 3, 5; 3)

Theorem 2.2. T,,(1,3,5;5) is hamiltonian if and only if n is even.

Proof. For n = 6 and n = 8, unique hamiltonian cycles in T, (1, 3, 5; 5) are (1,2, 3,4, 5,6, 1)
and (1,2,7,8,3,4,5,6, 1), respectively.

Now for even n > 10. If n = 0mod4, then a hamiltonian cycle in T,(1,3,5;5) is
(1,2,3,4)UDy ,g§UDg 419U+ UDp_133p—sU(n—8n—7T,n—4,n—3,n,n—5n—2,n—
I,TL — 6) U Cn—6—>n—10 U Cn—10—>n—14 U---u ClO—>6 @] (6, 1), see Figure 9. If n & 2m0d4,
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Figure 9: A hamiltonian cycle in To0(1, 3, 5; 5)
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Figure 10: A hamiltonian cycle in T15(1, 3,5;5)

then a hamiltonian cycle in T,(1,3,5;5) is (1,2,3,4) U Dy, UDg 12U - UDy,_gypn_2U
(n—=2,n—1,n)UCpon-aUCp_g4n_5UCi0,6U(6,1), see Figure 10. Thus T,,(1,3,5;5)
is hamiltonian for all even n.

Conversely, T,,(1, 3,5;5) is bipartite and, being hamiltonian, n must be even. O

Theorem 2.3. For odd t > 7, T,(1,3,5;t) is hamiltonian if and only if n is even.

Proof. We consider ¢t > 7 is odd and n is even.

Case 1. n = 0mod (t — 1).
The smallest n, different from ¢ — 1, is 2t — 2. A hamiltonian cycle in T;,—o;—2(1, 3, 5;1) is
(1,2,3,...,t—3,t4+2,t+3,...,n—2,n—1,n,n—t = t—2,t—1,¢,t+1, 1), which contains the
path (n—2,n—1,n), see Figure 11. By Remark 1, this hamiltonian cycle in To;_2(1, 3, 5;¢)
can be extended to a hamiltonian cycle in T3t,3:2t,2+(t,1)<1, 3,5;t), which preserves the
same property. Suppose T,,(1,3,5;t), with n = (2¢t — 2) 4+ (¢ — 1), has a hamiltonian cycle

1 2 3 4 5 s-U73910 11 12 13 14 15 16

Figure 11: A hamiltonian cycle in T14(1, 3,5;9)
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containing the path (n —2,n —1,n), for some non-negative integer r, then T;,1+1(1,3,5;¢)
enjoys the same property. Thus T,,(1, 3, 5;¢) is hamiltonian for all even n 2 0mod (t — 1).
Case 2. n = 2mod (t — 1).
The smallest n is ¢t + 1. A hamiltonian cycle in T,,—¢+1(1,3,5;¢) is (1,2,3,...,n —2,n —
1,n,1) which contains the path (n — 2,n — 1,n). By Remark 1, this hamiltonian cycle
in Ty41(1,3,5;t) can be extended to a hamiltonian cycle in Thi—s1141—1)(1,3,5;t), which
preserves the same property. Thus, by using the technique of Remark 1, T,,(1,3,5;¢) is
hamiltonian for all even n = 2mod (t — 1).
Case 3. n = 4mod (t —1).
The smallest n is ¢t + 3. If ¢ & 1mod4, then a hamiltonian cycle in T,—;y3(1,3,5;t) is
(17 2) UDo 6 UDgs10U - UDy_10—n—6 U (n —6,n—1,n, 3,4) UDygUDg_y11U---U
Dy_gyn—gU(n—4,n—3,n—2=1t+1,1), see Figure 12. If t = 3mod 4, then a hamiltonian
cycle in Tn:t+3<1,3,5;t> is (1,2) U D2_>6 U D6_>10 U---u Dn_4_m U (n,3,4) U D4_>8 U
Dg_ 12U~ UDy_gp—oU (n—2=1t+1,1), see Figure 13. These hamiltonian cycles

1 3 4 6\Z 8f9 1ONI1 12H13 14\yg5 16 17 18719 20

Figure 12: A hamiltonian cycles in Txo(1,3,5;17)
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Figure 13: A hamiltonian cycles in Ti5(1, 3, 5; 15)

in T;15(1,3,5;t) do not contain the path (n —2,n — 1,n). Now, the next representative
in this class isn =t +3+ (¢t — 1) = 2t + 2. If ¢ = 1mod4, then a hamiltonian cycle in
Tn:2t+2<1,3,5;t> is Diy5 UDs_ygU-+-UDy_y344 U (t—|—4,t—|—5,...,n—2,n— 1,n,n—t=
t+ 2, 2, 33U D3_>7 @] D7_>11 U---u Dt—6—>t—2 U (t - 2, t+ 1, 1)7 see Figure 14. Ift = 3m0d4,
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Figure 14: A hamiltonian cycle in T5o(1, 3,5;9)

then a hamiltonian cycle in Toi19(1,3,5;t) is D15 U D59 U -+ U Dy_gyp—o U (t —2,t+
Jt+4,....,n—2n—1nn—t=t+2,23)UD3 v UD7; 11 U---UD;_4 ;U (¢, t+1,1),
see Figure 15. Since in both these cases, (n —2,n —1,n) is a path in the hamiltonian cycles
of Toty2(1,3,5;t), by using the technique of Remark 1, 7,(1,3,5;¢) is hamiltonian for all
even n = 4mod (t — 1).
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Figure 15: A hamiltonian cycle in Thy(1,3,5;11)

Case 8. n=6,8,...,t —3mod (t —1).
The smallest n is each class are t + 5,¢ + 7,...,2t — 4, in order. Clearly here ¢t > 9, as
t+5<2t—4. Let n=t+ (du+1) € {t+5,t+7,...,2t—4}, wherew € {1,2...,[52]} (as
t+(du+1) <2t—4,s0u < 52). If t = 1mod 4, then a hamiltonian cycle in T,,(1, 3, 5;¢) is
(1, 2, 3, . ,n—t— 1)UDn—t—1—>n—t+3 UDn—t+3—)n—t+7U' . 'UDt_1_>t+3U(t—|-3, t+4, e, —
2, n— 1, n,n— t, n—t+ 1) UDn—t+1—>n—t+5 UDn—t+5—>n—t+9 .- UDt_3_>t+1 @] (t+ 1, 1), see
Figure 16. If £ = 3 mod 4, then a hamiltonian cycle in T}, —;y (44+1)(1,3,5; ) is (1,2,3,...,n—
t— ]-) U antflﬁn7t+3 U Dn7t+3~>n7t+7 u---u Dt77~>t73 U (t - 3’ 1+ 27 t+ 37 s, 27 n—
1, n, n—t7 ’I’L—t+1) UDn7t+1~>n7t+5UDn7t+5~>n7t+9U' . 'UDt75*>t,1 U(t— 1, t, t+1, 1), see
Figure 17. Now, let n =t + (dv+3) € {t +5,t + 7,...,2t — 4}, where v € {1,2..., Ltjj}

Figure 16: A hamiltonian cycle in T52(1,3,5;17)

12 3 4AN&G 6 A7 8\ 1011 12\J3 14 f15 1e\J7 18 19 20 f21 22 23 24

Figure 17: A hamiltonian cycle in T54(1, 3, 5;19)

(as t + (v +3) < 2t — 4, so v < 7). Clearly, here t > 11, because for ¢t = 9, we
have n > 2t — 4 (as 12+ 4v > 14). For ¢t = 1mod4 and t = 3mod4, hamiltonian cycles
in Tyy4043(1,3,5;t) is same as ones in Tyya,41(1,3,5;t) for ¢ = 3mod4 and ¢t = 1mod4,
respectively. Since each of these hamiltonian cycles in T},c 45, ¢47,... 2¢—4} (1,3, 5; ) contains
the path (n — 2, n — 1, n), by using the technique of Remark 1, T, (1 3,5;t) is hamiltonian
for all even n 2 6,8,...,t —3mod (t — 1).

Conversely, since t is odd, T}, (1,3,5;t) is bipartite and, being hamiltonian, n must be
even. O
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3 Toeplitz Graphs T,,(1,3,5;t) for even ¢
Theorem 3.1. T,,(1,3,5;2) is hamiltonian for n =6, 7, and all n = 3mod 5.

Proof. For n = 6 and 7, it is easily seen that unique hamiltonian cycles in T4(1, 3, 5;2)
and T7(1,3,5;2) are (1,6,4,2,5,3,1) and (1,6,4,2,7,5,3,1), respectively.

For n = 3mod5, the smallest n is 8. The unique hamiltonian cycle in Tg(1,3,5;2) is
(1,2,7,8,6,4,5,3,1) which contains the edge (n—1=7,n = 8). We can extend this hamil-
tonian cycle in T5(1,3,5;2) to a hamiltonian cycle in T13(1,3,5;2), by replacing the edge
(7,8) with the path (7,12,13,11,9, 10, 8), which preserves the same property. Suppose, for
some non-negative integer r, T,,—g15,(1, 3, 5; 2) has a hamiltonian cycle containing the edge
(n —1,n), then T,,415(1,3,5;2) enjoys the same property. Thus T, (1, 3,5;2) is hamiltonian
for all n =2 3mod5. O

For all n 22 3mod5 and n # 6,7, the hamiltonicity of T, (1, 3,5; 2) remains undecided.
Theorem 3.2. T,(1,3,5;4) is hamiltonian for all n.

Proof. For n = 6 and n = 7, it is easily seen that unique hamiltonian cycles in
T (1,3,5:4) are (1,6,2,3,4,5,1) and (1,4,7,3,6,2,5,1), in order.

Now for n > 8. Hamiltonian cycles in T5(1,3,5;4), To(1,3,5;4), and T19(1,3,5;4) are
(1,2,3,6,7,8,4,5,1), (1,6,2,3,4,7,8,9,5,1) and (1,4,7,3,8,9,10,6,2,5,1), respectively,
which contain the path (n — 2,n — 1,n). By Remark 1, these hamiltonian cycles in
T,.(1,3,5;4) can be extended to hamiltonian cycles in T,,13(1,3,5;4) which enjoy the same
property. Suppose, for some non-negative integer r, T,,—, +3.(1,3,5;4) has a hamiltonian
cycle containing the path (n —2,n—1,n) then T, 43(1, 3,5;4) enjoys the same property and
thus T5,(1, 3,5;4) is hamiltonian for all n > 8. This finishes the proof. O

Now, for even t > 6 and we will see that T,,(1,3,5;¢) is hamiltonian for all n.

Theorem 3.3. For event > 6, T,(1,3,5;t) is hamiltonian for all n.

Proof. Case 1. n = 1mod (t —1).
The smallest n, different from ¢, is 2¢t — 1. If ¢ =2 0mod4, then a hamiltonian cycle in
Tnzgt_1<17 3, 57 t> is D1_>5UD5_>9U' . 'UDt_7_>t_3U(t*3, t, t+3, t+4, “en 77172, 7?,71, n, n—t =
t—1,t+2,2,3)UD3 7 UD7yqq U+ UDpg 5 U (t—5,t—2,t+ 1,1), see Figure
18. If t = 2mod 4, then a hamiltonian cycle in T},—9;—1(1,3,5;¢) is D15 U D59 U -+ U

1,15 16 17 18 19 20 21 22 23

Figure 18: A hamiltonian cycle in T»3(1, 3,5;12)

Di gyt 5U(t—5,t—2,t+3,t+4,....n—2n—1nn—t=t—1,t4+2,2,3)U D3,z U
D711U---UDy 3 1U(t+1, 1), see Figure 19. These hamiltonian cycles contain the path
(n—2,n—1,n). Suppose, for some non-negative integer 7, T,,—(2¢—1)4r(t—1)(1, 3, 5; ) has a
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Figure 19: A hamiltonian cycle in Ty7(1, 3,5; 14)

hamiltonian cycle containing the path (n —2,n —1,n) then, by Remark 1, T}, 1+1(1, 3, 5;¢)
enjoys the same property. Thus T,,(1,3,5;¢) is hamiltonian for all n = 1mod (t — 1).

Case 2. n = 2mod (t — 1).
The smallest n is ¢t + 1. A hamiltonian cycle in T,,—¢+1(1,3,5;¢) is (1,2,3,...,n —2,n —
1,7n,1), which contains the path (n —2,n — 1,n). By using the technique of Remark 1,
T, (1,3,5;t) is hamiltonian for all n = 2mod (t — 1).

Case 8. n = 3mod (t — 1).
The smallest n is ¢t + 2. If ¢ = 0mod4, then a hamiltonian cycle in T,—;42(1,3,5;t) is
Di 45U DsyoU---UDy g5 5U(n—5mn,2,3)U D3y UD7 11 U---U Dy_75p_3U
(n—3,n—2,n—1=1t+1,1), see Figure 20. If ¢t = 2mod4, then a hamiltonian cycle in
Tn:t+2<17 3,5; t> is D15 U Dg_oU---UD,_7_,_3U (n -3,n,2, 3) UD3 7 UD7 11 U---U
Dy, 54n—1U(n—1=1t+1,1), see Figure 21. These hamiltonian cycles in T;,—¢12(1, 3, 5;¢)

N2 3M 5\6 7.8 9\J0 11012 1N 14 15 16 17J18

Figure 20: A hamiltonian cycle in T15(1, 3, 5; 16)

N2 34 5 2487 9N\Jo 1112 1N\ 14 1576 17\U8 19720

Figure 21: A hamiltonian cycle in Ty(1, 3, 5; 18)

do not contain the path (n — 2,n — 1,n). Now, the next representative in this class is
n=t+2+(t—1)=2t+1. If t 2 0mod4, then a hamiltonian cycle in T,,—2;41(1, 3, 5;¢)
is D15 UDs 59U -~ UDy 74 3U(t—3,t+2,2,3)UD3 7 UD7 11 U---UDy_554 1 U
(t—1,t,t+3,t4+4,....,.n—2,n—1,n,n—t=t+1,1), see Figure 22. If t = 2mod 4, then a
hamiltonian cycle in T,—o;41(1,3,5;t) is D1,5UDs_gU---UDy_5; 1 U(t—1,t+2,2,3)U
D3 y7UD7 11U UDy 743Ut =3, t,t+3,t+4,....n—2,n—1,nn—t=1t+1,1), see
Figure 23. These hamiltonian cycles in Tx:11(1,3,5;¢) contain the path (n —2,n — 1,n).
By using the technique of Remark 1, T,,(1,3, 5;¢) is hamiltonian for n = 3mod (t — 1).
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i > R
N2 3M s5\6 7 8 9 fio 11 12 13 14 15 16 17

Figure 22: A hamiltonian cycle in T17(1, 3,5; 8)

GO p—
1 O@@\ 314 15 16 17 18 19 20 21

Figure 23: A hamiltonian cycle in T (1, 3,5; 10)

Case 4. n = 4dmod (t —1).
The smallest n is t43. For even t. If t 2 0 mod 3, then a hamiltonian cycle in Ty,—;13(1, 3, 5;t)
is (1,4,...,n —5,n,3,6,...,n—6,n—1,2,5 ..., n—4,n—3,n—2=t+1,1), see Figure
24. If t = 1mod 3, then a hamiltonian cycle in T,,—;+3(1,3,5;¢t) is (1,4,...,7n,3,6,...,n —
1,2,5,...,n—2 =t + 1,1), see Figure 25. If ¢ = 2mod3, then a hamiltonian cycle in
T,.(1,3,5;t) is (1,4,...,n—1,2/5,...,n,3,6,...,n —2 =t + 1,1), see Figure 26. These

Figure 26: A hamiltonian cycle in T»3(1, 3, 5; 20)

hamiltonian cycles in T343(1, 3, 5;¢) do not contain the path (n—2,n—1,n). Now, the next
representative in this class is n = 2t + 2. If t =2 0mod 3 and ¢ # 6, then a hamiltonian cycle
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in Tpori2(1,3,5;%) is (1,4,7,8,11,14,... .t — 1,t +4,t+5,5,10,13,16,...,t — 2.t + 3.t +
6,t+7,...,n—2,n—1,n,n—t =1t4+2,2,3,6,9,...,t,t+1,1), see Figure 27. And for t = 6, a
hamiltonian cycle in Th4(1,3,5;6) is (1,4,5,10,11,14,8,2,3,6,9,12,13,7,1). If t = 1 mod 3,
then a hamiltonian cycle in Ty,—2:12(1,3,5;t) is (1,6,9,12,...,t—1,¢t+4,¢t+5,5,8,11,...,t—
2,t+3,t+6,t+7,....n—2n—1nn—t=1t+2,234,710,...,t,t+ 1,1), see Figure
28. If t 2 2mod 3, then a hamiltonian cycle in T},—9:12(1,3,5;¢) is (1,4,7,10,...,t —1,t +
4,t+5,5,811,...,t+6,t+7,....n—2n—1nn—t=1t+223,6,9,...,t+1,1), see
Figure 29. Since, in all these cases, (n — 2,n — 1,n) is a path in the hamiltonian cycles
of Toi42(1,3,5;t), by using the technique in Remark 1, T,,(1,3,5;t) is hamiltonian for all
n=4mod(t —1).

P ——
NOOATIND

Figure 27: A hamiltonian cycle in T56(1, 3, 5;12)

Figure 28: A hamiltonian cycle in T52(1, 3, 5; 10)

—_ T~
NN ANADIAE

Figure 29: A hamiltonian cycle in T30(1,3,5; 14)

Case 5. n=5,7,9,...,t —3mod (t — 1).
The smallest n in each class are t+4,t46,t+8,...,2t—4. Clearly heret > 8 ast+4 < 2t—4.
Forn € {t +4,t +6,t +8,...,2t —4}. Let n = ¢ + 4u, where u € {1,2...,L%J} (as
t+4u <2t—4,s0u < %). If t 2 0mod 4, then a hamiltonian cycle in T—t14.,(1,3,5;t) is
(17 2, 3, ce 7n_t_1)UDn_t_1_>n_t+3 UDn—t+3—>n—t+7U' . 'UDt_1_>t+3U(t—|—37 t—|—47 e, n—
2,n—1Lnn—t,n—t+1)UDy_i41n—t4+5UDn_t45n—tyoU---UD;_3 11 U---U(t+1,1),
see Figure 30. If ¢t = 2mod 4, then a hamiltonian cycle in Ty, —¢4+4.(1, 3,5;t) is (1,2,3,...,n—

Figure 30: A hamiltonian cycle in T5s(1, 3, 5; 20)
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t—1)UDp 1 n—143UDp 43 sm—yp7U---UDy_7 4 3U(t—3,t+2,t+3,...,n—2,n—
17 n,n— t7 n—t + 1) U Dn7t+1~>n7t+5 U Dn7t+5~>n7t+9 U---u Dt75—>t71 U (t - 1a t7 t + 17 1)3

see Figure 31. Now, let n =t +4v + 2, where v € {1,2...,[5%]} (ast + 40 +2 < 2t — 4,

1234 5 6 ;a 9;101;\12 13;141;15 17 18 19;20 21" 25 26

Figure 31: A hamiltonian cycle in Tys(1, 3, 5; 18)

sov < %). For t 2 0mod4 and t = 2mod4, Ty—t+4v+2(1,3,5;t) has hamiltonian cycles
similar to ones in T),—;14,,(1, 3, 5;t) for t =2 2mod4 and t = 0 mod 4, respectively. Since these
hamiltonian cycles in Ty, (y44,¢+6,...,20—43 (1, 3, 5; t) contain the path (n—2, n—1, n), by using
the technique of Remark 1, T, (1,3, 5;t) is hamiltonian for n 2 5,7,9,...,t —3mod (t — 1).
Case 6. n = 6,8,10,...,t —2mod (t — 1).

The smallest n in each class are t+7,¢+9,...,2t — 3. Clearly here t > 8 and 2(t+1) —n is
an odd number which is in fact the number of consecutive vertices between n —¢ and ¢t + 1,
including both.

(i) Let 2(t+1)—n = 0mod 3. Clearly n—tisodd, as tis even and n € {t+7,t+9,...,2t—3}
is odd. If n — t & 1 mod4, then a hamiltonian cycle in T),(1,3,5;¢) is D15 U Ds_o U---U
Dyt sypn—t-aUn—t—4,n—t+1,n—t+4,...,t+3,t+4,....n—2,n—1,nn—t,n—t+
3,...,t4+2,2,3)UD3_7UD7 11U - -UDp 4 _gsn—t—2U(n—t—2,n—t—1,n—t4+2...,t+1,1),
see Figure 32. If n —t = 3mod 4, then a hamiltonian cycle in T),(1, 3, 5;¢) is D15 U Dg5_,gU
o UDp—t—6sn—t—2Un—t—2n—t+1,...,t4+3,t+4,....n—2n—1,nn—t,n—t+
3, t4+2,2,3)UD3 7 UDy 11U+ UDp g yp_t—aU(n—t—4,n—t—1,...;t+1,1),
see Figure 33.

Figure 33: A hamiltonian cycle in T57(1, 3, 5; 20)
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(ii) Let 2(t+1) —n 2 1mod 3. If n—t = 1 mod 4, then a hamiltonian cycle in T, (1, 3, 5; ) is
Dy 5UD5 U - -UDy 4§ ypn—t—aU(n—t—4,n—t+1,n—t+4,...,t+2,2,3)UD5_,sUD7_,1;U
o UDp—t—6n—t—2Um—t—2,n—t—1,n—t4+2,... ,t+3,t+4,....,n—2,n—1,n,n—t,n—t+
3,...,t+1,1), see Figure 34. If n —t = 3mod4, then a hamiltonian cycle in T,,(1, 3, 5;¢) is
D1~>5 UD5~>9U' . 'UDn7t76~>n7t72U(n_t_27n_t—’_l, s at+2, 27 S)UD3~>7UD7~>11U‘ U
Dy t_gyn—t—aUn—t—4,n—t—1,... t+3,t+4,...,n—2,n—1,n,n—t,n—t+3,...,t+1,1),
see Figure 35.

A

Figure 35: A hamiltonian cycle in Ty5(1, 3, 5; 18)

(iii) Let 2(t +1) —n 2 2mod 3. If n —t = 1 mod 4, then a hamiltonian cycle in T,,(1,3, 5;¢)
is Dl_,5UD5_>9U~~UDn_t_8_m_t_4U(n7t74,n7t71,...,t71,t,t+3,t+4,...,n7
2,TL— 1,n7n—t7n—t—|—3,...,t—3,t+2,2,3) UD3*>7UD7‘>11 U"'Uanth%nfth U
(n—t—2,n—t+1,...;t+1,1), see Figure 36. If n —t = 3mod4, then a hamiltonian

Figure 37: A hamiltonian cycle in T»3(1, 3, 5; 16)

cycle in Tn<1,375;t> is D15 UD5s 59U~ UD, ¢t 105n—t—¢ U (n —t—6,n—t—1,n—
t+2,...,t—Ltt+3t+4,....n—2n—1nn—tn—t+3,...;t —3,t+2,23)U
D3—>7UD7—>11U"'UDn—t—8—>n—t—4U(n_t_47n_t_37n_t_2an_t+17"'7t+171)a
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see Figure 37. Since these hamiltonian cycles in Tne{t+77t+97___72t_3}<1,3,5;t> contain the
path (n — 2, n — 1, n), by using the technique of Remark 1, T,,(1, 3, 5;¢) is hamiltonian for
n=6,8,...,t —2mod (t — 1). This finishes the proof. O

Concluding Remark: We state a conjecture that T,,(1, 3, 5;2) is non hamiltonian for n &
0,1,2,4mod5 different from n = 6 and 7. The next task in our opinion is to complete the
hamiltonicity investigation in Toeplitz graphs T5,(1, 3,5, S4, . . ., Sk; t1, 2, - . ., t;) by resolving
this conjecture.
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