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ABSTRACT
The influence of simultaneous variation of slip and temperature has been inquired for the case of
free-convected flowof anMHD (magnetohydrodynamic), elastoviscous fluid past an unbounded
upright plate. How the course of velocity is revamped in response to temperature alterations on
boundary has been studied by considering two cases of constant temperature and variable tem-
perature. The inverse and direct role of elastoviscous parameter (K), thermal Grashof number
(Gr) and Hartmann number (M) in determining the pattern of flow has been discussed through
exact expressions and graphical illustrations. Interestingly, a Gr-regime has been identified cor-
responding to elastoviscous velocity variation. The Newtonian fluid velocity past an unbounded
plate entailing slip factor has also been retrieved and comparedwith elastoviscous fluid velocity.
This comparative analysis reflects onmagnitudeandprofile adaptations in response tonumerical
changes.
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1. Introduction

Heat transfer in free-convective flows has been vastly
studied [1–4] keeping in view of its applications inman-
ufacturing and chemical industries, food processing,
therapeutic medicine, bio-engineering, hydro-energy
saving, nuclear energy technologies and nuclear power
processes, etc. A wide range of topics including the
studyof flows inmixed, hydromagnetic and laminar free
convection, role of varying geometrical configurations
on dynamics, preparation of colloidal particles by ther-
mal decomposition, determination of thermal dose in
cancer therapy, etc., were explored and compared. To
develop the processes of isothermal chemical reactor
andheatingblocks usingheat exchanger plate andheat
sinks, heat convective flows past or in between vertical
plates were studied.

Dynamics of fluid flowing past an upright oscil-
lating were discussed with the help of closed ana-
lytical expressions for the first time by Soundalgekar
[5,6]. Another dimension of studying combined effects
of heat convection and magnetic conduction was
explored, owing to its use in systemization such as reg-
ulating the temperature in intrinsic activator alongwith
magnetic conduction and iron flow check in steel indus-
try, etc. Mazumdar et al. [7] described an analytical
method to study magnetohydrodynamic flow (MHD)
past an impulsively started vertical channel. This work
ledbyDeka et al. [8] andKhaleque et al. [9] to extend the
probe of MHD convective flows past vertical channels

to porous and stretchingmediums. Amulti-range appli-
cations of elastoviscous fluids flow in boundary over-
lay control problems in aerodynamics and biophysics
have generated interest among researchers to inves-
tigate the dynamics of related systems and their sta-
bility. The comparable driving mechanism of flow in
kidneys with elastoviscous fluid has also been another
motivation to delve into the topic more explicitly. But
due to complex nature of dynamical equations and dif-
ficulty in determining closed-form expressions corre-
sponding to elastoviscous fluid flow, the dimension of
concerned literature is restricted to comparatively sim-
pler geometrical settings and numerical observations
of flow pattern. A preliminary set of results regarding
flow past an unbounded plate, both impulsively started
and uniformly accelerated, accommodating heat con-
vection and mass relegation were conferred in [10,11].
Singh et al. and Chen [12,13] made contributions to
heat and mass transfer flow study, considering normal
oscillating suction and convection adjacent to vertical
surface. Flow behaviour of ionized gases through mea-
suring Hall effects was reviewed by Achraya et al. and
Aboeldahab et al. [14–16].

In addition to the study of free-convection flow with
mass-heat deportation, many aspects of simple Newto-
nian and non-Newtonian fluids in different settings of
channels have been recently documented reflecting on
variation in behaviour of flow due to changes in shear
stress or velocity boundary conditions [17–25]. Also, the
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effects of high temperature insulation and heat radia-
tion in MHD nanofluids in porous medium were deter-
mined in [26,27]. Some interesting results were also
added to the literature regarding studying the dynam-
ics of fluids with varying viscosity through fractional
derivative approach [28–31].

However, in all above-mentioned work, the dynam-
ics of motion of fluid were discussed through only
employing no-slip boundary conditions on velocity and
shear stress and time-dependent shear application on
channel. Also, among these were the results produced
for dynamics of free-convection MHD flows with heat
transfer with no-slip boundary condition on velocity.
But due to complexity of governing equations, numeri-
cal simulation or fractional methodology was adopted,
rendering the results to be perceived for ideal situ-
ation or away from real models. However, approxi-
mation of some parametric values in some cases led
to exact analytical results matching those available in
history [31,32]. More recently, some researchers have
contributed a great deal towards exploration of MHD
free-convecting fluids’ dynamics in progressive empir-
ical settings [33–42] using computational schemes. To
the best of our knowledge, an MHD elastoviscous free-
convective fluid flow past an unbounded channel/plate
with slip and fluctuating temperature has not been
studied before. The elastoviscous nature of some fluids
in a boundary layer control scenariomakes it imperative
to study the flow characteristics of buoyancy and vis-
cousness along with slip on the channel. The combined
effects of slip, elasticity, temporal provision of temper-
ature on boundary and magnetic field prevalence will
be studied here to completely describe the dynamics of
free-convection elastoviscous fluid flow.

In this work, we have analysed the free-convective,
unsteady motion of an MHD elastoviscous fluid pass-
ing over an unbounded plate considering the factors of
fluid slip on boundary and variable temperature. Rigor-
ous expressions of temperature and velocity have been
obtained using direct and inverse Laplace transform for
two cases of supplying temperature to the boundary,
unlike the fractional derivative approach [19,22,32] that
confined the spectrum of region of solution due to frac-
tional parameters’ limitation. Due to complex nature of
governingequationsof elastoviscous fluid continuance,
exact execution of velocity field has been spared in the
literature in favour of numerical solutions. One of main
advantages of our method, notwithstanding the cum-
bersome calculations and extremely long equations,
is generation of these exact results that could always
be referred for similar problems for veracity of com-
putational results. For our problem, we have validated
the numerical observations using exact expressions and
graphical illustrations. The trappings of fluid criterion,
i.e. Grashof number (thermal), Gr , Hartmann number,
M, Prandtl number, Pr , and elastoviscous parameter, K ,
have been probed. Validation of our current results has

also been achieved [18,25] by obtaining the solutions
for Newtonian fluid, considering the limiting values of
present fluid model’s parameters.

2. Mathematical construction of the problem

An MHD, elastoviscous fluid flow past an unbounded
upstanding plate, along x-axis, is considered. Assuming
that flow is along the vertical span of channel, which
is normal to y-axis (Figure 1). At t = 0, resting posi-
tion of plate is ensured, maintaining the temperature
T∞. In response to the administered motion U0 of plate
along with its contemporaneously raised temperature
TW , fluid initiates its propagationwith slip at t = 0+. The
unsteadymobility of convection-free slipping flowwith
wavering temperature is studied. Also, consistent mag-
netic conduction of strength B0 is exercised normally to
theplate. Comparedwith transversemagnetic range, an
imperceptibility of magnetic field is observed. Reynolds
number is assumed to hold least possible values. Keep-
ing track of our model conditions, assumptions and
Boussinesq approximation, the elastoviscous fluid flow
is described by subsequent governing equations [43]

∂u(y, t)
∂t

= ν
∂2u(y, t)
∂y2

+ gβ(T(y, t)− T∞)

+ K ′

ρ

∂3u(y, t)
∂y2∂t

− σB02u(y, t)
ρ

, (1)

∂T(y, t)
∂t

= κ

ρCp

∂2T(y, t)
∂y2

, (2)

with conditions at t = 0 and y = 0,

u(y, 0) = 0, T(y, 0) = T∞, y ∈ [0,∞) (3)

u(0, t) = U0 + γ ′{∂yu(y, t)}y=0, U ∈ (0,∞) (4)

T(0, t) = TW [1 + af (t)] + T∞, t ∈ (0,∞) (5)

u(y, t) → 0, T(y, t) → 0, fory → ∞. (6)

In above system, fluid velocity, density, its temperature,
heat conduction, coefficient of heat expansion, electric

Figure 1. Geometry of flow.
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conduction, constant-pressure specific heat, kinematic
viscosity, elastoviscous coefficient and gravity acceler-
ation are symbolized by u(y, t), ρ, T(y, t), κ , β , σ , Cp,
ν, K ′ and g, respectively. Also, γ ′ and a are taken for
constants. Equation (4) reflects on the aspect of slip
between fluid and plate.

We use the following non-dimensional variables to
simplify our system

u∗ = u

U0
, y∗ = yU0

ν
, t∗ = tU0

2

ν
, T∗ = T − T∞

TW
,

M = σB20ν
2

μU2
0

, Gr = gβTWν

U3
0

, K = K ′U2
0

μν
, Pr = μCp

κ
,

(7)

where K, M, Gr and Pr enumerate elastoviscosity, Hart-
mann, Grashof (heat) and Prandtl strength, respectively.

Using non-dimensional variables in Equation (7), our
system becomes (dropping ∗)

∂u(y, t)
∂t

= ∂2u(y, t)
∂y2

+ GrT(y, t)

+ K
∂3u(y, t)
∂y2∂t

− Mu(y, t), (8)

∂T(y, t)
∂t

= 1
Pr

∂2T(y, t)
∂y2

, (9)

u(y, 0) = T(y, 0) = 0, y ∈ [0,∞) (10)

u(0, t) = 1 + γ {∂yu(y, t)}y=0, t ∈ (0,∞) (11)

T(0, t) = 1 + af (t), t ∈ (0,∞) (12)

u(y, t), T(y, t) → 0, fory → ∞. (13)

3. Mathematical solutions

Laplace transform of Equation (9) is taken, in conjunc-
tion with conditions (10)2 and (12), in order to deter-
mine exact formulation of fluid temperature, T(y, t)

T̄(y, s) =
(
1
s

+ aF(s)

)
e−√

Prsy . (14)

Inverse application of Laplace on Equation (14) delivers

T(y, t) = erfc

(√
Pry

2
√
t

)

+ a
√
Pr

2

∫ t

0
f (t − q)

y√
π(q)3

e− Pry2

4q dq,

which in simple form is also given by

T(y, t) = erfc

(√
Pry

2
√
t

)

+ 2a√
π

∫ ∞
√
Pry

2
√
t

f

(
t − Pry2

4x2

)
e−x2 dx, (15)

meeting the conditions impliedat initial timeandon the
boundary.

Now, Equation (8) is considered for the application of
Laplace transform to obtain elastoviscous velocity field

ū(y, s) = ∂2ū(y, s)
∂y2

+ GrT̄(y, s)+ Kq
∂2ū(y, s)
∂y2

− Mū(y, s).

(16)
Solving Equation (16) using Laplace transform of

Equations (11), (13)1, (14), we attain

ū(y, s) = e
−

√
M+s
1+Ks y

s(1 + γ

√
M+s
1+Ks )

+ Gre
−

√
M+s
1+Ks y

PrKs(1 + γ

√
M+s
1+Ks )[(s − λ)2 − (

√
τ)2]

+ GraF(s)e
−

√
M+s
1+Ks y

PrK(1 + γ

√
M+s
1+Ks )[(s − λ)2 − (

√
τ)2]

+ γGre
−

√
M+s
1+Ks y

√
s
√
PrK[(s − λ)2 − (

√
τ)2]

+ γGraF(s)
√
Pr

√
se

−
√

M+s
1+Ks y

PrK[(s − λ)2 − (
√
τ)2]

− Gre−√
Prsy

sPrK[(s − λ)2 − (
√
τ)2]

− GraF(s)e−√
Prsy

PrK[(s − λ)2 − (
√
τ)2]

. (17)

To determine the Laplace inverse, Equation (17) is pro-
duced as

ū(y, s) = G1(y, s)
1
s

+ Gr

PrK
G1(y, s)

1

s[(s − λ)2 − (
√
τ)2]

+ Gra

PrK
G1(y, s)F(s)

1

[(s − λ)2 − (
√
τ)2]

+ γGr√
PrK

G1(y, s)
1√

s[(s − λ)2 − (
√
τ)2]

+ γGra√
PrK

G1(y, s)F(s)

√
s

[(s − λ)2 − (
√
τ)2]

− Gr

PrK

e−√
Pry

√
s

s

1

[(s − λ)2 − (
√
τ)2]

− Gra

PrK
e−√

Pry
√
sF(s)

1

[(s − λ)2 − (
√
τ)2]

, (18)

where

G1(y, s) = e
−

√
M+s
1+Ks y

γ

(√
M+s
1+Ks + 1

γ

) ,

τ =
(
1 − Pr
2PrK

)2

+ M

PrK
, λ = 1 − Pr

2PrK
.

Equation (18) is considered for the applicationof inverse
Laplace transform, in conjunctionwithAppendix (A1)–(A10),
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to derive elastoviscous velocity

u(y, t)

=
∫ t

0
g1(y, q)dq + Gr

PrK(λ2 − τ)

∫ t

0
g1(y, q)dq

+ Gr

PrK(2λ
√
τ + 2τ)

∫ t

0
g1(y, q)e(λ+

√
τ)(t−q) dq

+ Gr

PrK(2τ − 2λ
√
τ)

∫ t

0
g1(y, q)e(λ−

√
τ)(t−q) ds

+ Gra

2PrK
√
τ

∫ t

0
g1(y, q)H1(t − q)dq

− Gra

2PrK
√
τ

∫ t

0
g1(y, q)H2(t − q)dq

+ γGr

2K
√
τPr(λ+ √

τ)

×
∫ t

0
g1(y, q)e(λ+

√
τ)(t−q)

× erf (
√
(λ+ √

τ)(t − q))dq

− γGr

2K
√
τPr(λ− √

τ)

∫ t

0
g1(y, q)e(λ−

√
τ)(t−q)

× erf (
√
(λ− √

τ)(t − q))dq

+ γGra

2K
√
τPr

∫ t

0
g1(y, q)R1(t − q)dq

− γGra

2K
√
τPr

∫ t

0
g1(y, q)R2(t − q)dq − Gr

2KPr
√
τ

∫ t

0

× erfc

(√
Pry

2
√
q

)
e(λ+

√
τ)(t−q) dq

+ Gr

2KPr
√
τ

∫ t

0
erfc

(√
Pry

2
√
q

)
e(λ−

√
τ)(t−q) dq

− Gra

2KPr
√
τ

∫ t

0
ξ(t − q)f (q)dq

+ Gra

2KPr
√
τ

∫ t

0
ψ(t − q)f (q)dq, (19)

where

g1(y, t) = L−1
{
G1(y, s)

}
= L−1

{
(F1oQ)(s)

}

= L−1
{
F1(Q(s))

}
=

∫ ∞

0
f1(y, p)r(p, t)dp,

f1(y, t) = L−1{F1(y, s)} = L−1
{

e−√
sy

γ

(√
s + 1

γ

)
}

= 1
γ

{
e− y2

4t√
π t

− 1
γ
e

y
γ

+ t
γ 2 erfc

(
y

2
√
t

+
√
t

γ

)}
,

Q(s) = M + s

1 − Ks
, r(p, t) = L−1

{
e−zQ(s)

}

= e
z
K

[√
O
t
I1(2

√
Ot)e

t
K + δ(t)

]
,

(Here first kind of order 1 modified Bessel function
and delta function are taken to be as I1 and δ(t), respec-
tively. Also,O = z(MK+1)

K2
.)

H1(t) = L−1
{

F(s)

s − (λ+ √
τ)

}
=

∫ t

0
f (q)e(λ+

√
τ)(t−q) dq,

H2(t) = L−1
{

F(s)

s − (λ− √
τ)

}
=

∫ t

0
f (q)e(λ−

√
τ)(t−q) dq,

R1(t) = L−1
{
F(s)

√
s

s − (
√
λ+ √

τ)2

}

=
∫ t

0
f (q)

[
1√

π(t − q)
+

√
λ+ √

τe(λ+
√
τ)(t−q)

× erf (
√
(λ+ √

τ)(t − q)

]
dq,

R2(t) = L−1
{
F(s)

√
s

s − (
√
λ− √

τ)2

}

=
∫ t

0
f (q)

[
1√

π(t − q)
+

√
λ− √

τe(λ−
√
τ)(t−q)

× erf (
√
(λ− √

τ)(t − q)

]
dq,

ξ(t) = L−1
{

e−√
Pry

√
s

s − (λ+ √
τ)

}

=
∫ t

0

√
Prye− Pry2

4u

2u
√
πu

e(λ+
√
τ)(t−u) du

=
√
Pre(λ+

√
τ)t

2

[
ey

√
Pr(λ+√

τ)

× erfc

(√
Pry

2
√
t

+
√
(λ+ √

τ)t

)
+ e−y

√
Pr(λ+√

τ)

× erfc

(√
Pry

2
√
t

−
√
(λ+ √

τ)t

)]
,

ψ(t) = L−1
{

e−√
Pry

√
s

s − (λ− √
τ)

}

=
∫ t

0

√
Prye− Pry2

4u

2u
√
πu

e(λ−
√
τ)(t−u) du

=
√
Pre(λ−

√
τ)t

2

[
ey

√
Pr(λ−√

τ)

× erfc

(√
Pry

2
√
t

+
√
(λ− √

τ)t

)

+e−y
√

Pr(λ−√
τ)erfc

(√
Pry

2
√
t

−
√
(λ− √

τ)t

)]
.

4. Limiting cases

Here, Newtonian fluid velocity expressions are obtained
with and without magnetic field application. The
responses of Newtonian fluid corresponding to con-
stant temperature on boundary and elastoviscous fluid
corresponding to constant velocity on boundary have
also been recorded. These cases are
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4.1. Newtonian fluid

For K to be very small (Equation 8), the model for
elastoviscous fluid reduces to Newtonian fluid system.
Equation (16) becomes

ū(y, s) = e−√
s+My

s(1 + γ
√
s + M)

+ Gre−√
s+My

s(1 + γ
√
s + M)[(Pr − 1)s − M]

+ GraF(s)e−√
s+My

(1 + γ
√
s + M)[(Pr − 1)s − M]

+ γGr
√
Pre−√

s+My

√
s(1 + γ

√
s + M)[(Pr − 1)s − M]

+ ηGraF(s)
√
Prse−√

s+My

(1 + γ
√
s + M)[(Pr − 1)s − M]

− Gre−√
Prsy

s[(Pr − 1)s − M]

− GraF(s)e−√
Prqy

[(Pr − 1)s − M]
. (20)

Equation (20) is produced as given below,more suitable
for inverse Laplace transform application

ū(y, s) = e−√
s+My

γ

(√
s + M + 1

γ

) 1
s

+ Gr

(Pr − 1)

× e−√
s+My(√

s + M + 1
γ

) 1
s(s −�)

+ Gra

γ (Pr − 1)

× e−√
s+My

γ

(√
s + M + 1

γ

)F(s)
1

s −�

+ γGr
√
Pr

(Pr − 1)
e−√

s+My

γ

(√
s + M + 1

γ

) 1√
s(s −�)

+ γGra
√
Pr

(Pr − 1)
e−√

s+My

γ

(√
s + M + 1

γ

)F(q)

√
s

s −�

− Gr

(Pr − 1)
e−√

Prsy

s

1
s −�

− Gra

(Pr − 1)
e−√

Prsy F(s)

s −�
, (21)

where� = M
Pr−1 .

Inverse application of Laplace on Equation (21) and
employing Appendix (A3), (A5), (A6), we arrive at

u(y, t) = −[�(Pr − 1)− Gr]

2γ�(Pr − 1)
√
M

[
ey

√
Merfc

(
y

2
√
t

+
√
Mt

)

− e−y
√
Merfc

(
y

2
√
t

−
√
Mt

)]

− [�(Pr − 1)− Gr]
�(Pr − 1)(1 − γ 2M)

erfc

(
y

2
√
t

+
√
t

γ

)

e
−Mt+ t

γ 2
+ y
γ

− Gre�t

�(Pr − 1)[1 − γ 2(M +�)]

× erfc

(
y

2
√
t

+
√
t

γ

)
e
Mt+ t

γ 2
+ y
γ

+ [�(Pr − 1)− Gr]
2�(Pr − 1)(1 − γ 2M)
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√
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√
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√
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√
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+
√
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)

− e−y
√
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(
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2
√
t

−
√
(M +�)t

)]
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2�(Pr − 1)[1 − γ 2(M +�)]

×
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+
√
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)
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√
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−
√
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√
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×
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√
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√
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√
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−
√
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√
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∫ t
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√
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√
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√
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√
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√
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√
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√
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√
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√
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(√
Pry

2
√
t

+
√
�t

)
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+ e−y
√
�Pr erfc

(√
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√
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−
√
�t
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�(Pr − 1)
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(√
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√
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√
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√
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×
∫ t
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e
−Pry2

4s√
s3

H3(t − s)ds. (22)

4.2. Absence ofmagnetic field (M → 0)

Considering a frame devoid of magnetic occupation
(M → 0) for Newtonian fluid (K → 0), the expression for
velocity has been computed as

u(y, t) = −2[�(Pr − 1)− Gr]
γ�(Pr − 1)

{
yerfc

(
y

2
√
t

)
− √

te
−y2

4t

}

− [�(Pr − 1)− Gr]
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√
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√
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√
t

γ

)
e
−�t+ t

γ 2
+ y
γ

+ Gre�tγ

2�(Pr − 1)(1 − γ 2�)

×
[
ey

√
�erfc

(
y

2
√
t

+
√
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√
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√
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2
√
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×
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√
�erfc

(
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2
√
t

+
√
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√
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√
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√
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√
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√
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√
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√
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√
�(t − s))
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∫ t
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√
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√
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√
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(√
Pry

2
√
t

+
√
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√
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√
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√
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√
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√
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×
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H3(t − s)ds. (23)

4.3. Invariable temperature at the boundary

Constant temperature provision on the extremity of
channel (a = 0) for Newtonian fluid (K → 0) leads to
the given development

T(y, t) = erfc

(√
Pry

2
√
t

)
, (24)

and

u(y, t) = −[�(Pr − 1)− Gr]

2γ�(Pr − 1)
√
M
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√
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√
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)

− e−y
√
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√
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√
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√
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√
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√
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√
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√
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√
Mt
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√
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√
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√
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√
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√
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√
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√
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√
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√
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√
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√
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× −e−y
√
M+�erfc
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√
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)]
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√
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∫ t
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√
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√
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× − 1
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+ s
γ 2
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(
y
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√
s

γ

)
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√
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√
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√
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√
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√
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4.4. Constant velocity on boundary

Now, corresponding to constant velocity executed at
the end of channel, we procure elastoviscous velocity
by utilizing γ = 0 in Equation (11) and obtain

ū(y, s) = e
−

√
M+s
1+Ks y

s
+ Gre

−
√

M+s
1+Ks y

PrKs[(s − λ)2 − (
√
τ)2]

+ GraF(s)e
−

√
M+s
1+Ks y

PrK[(s − λ)2 − (
√
τ)2]

− Gre−√
Prsy

PrKs[(s − λ)2 − (
√
τ)2]

− GraF(s)e−√
Prsy

PrK[(s − λ)2 − (
√
τ)2]

. (26)

For convenience of inverse application of Laplace,
Equation (25) is produced as

ū(y, s) = Z1(y, s)
1
s

+ Gr

PrK
Z1(y, s)

1

s[(s − λ)2 − (
√
τ)2]

+ Gra

PrK
Z1(y, s)F(s)

1

[(s − λ)2 − (
√
τ)2]

− Gr

PrK

e−√
Pry

√
s

s

1

[(s − λ)2 − (
√
τ)2]

− Gra

PrK
e−√

Pry
√
sF(q)

1

[(s − λ)2 − (
√
τ)2]

, (27)

where

Z1(y, s) = e
−

√
M+s
1+Ks y .

Laplace inverse of Equation (26) in conjunction with
Appendix (A1), (A2), (A5) gives

u(y, t) =
∫ t

0
z1(y, k)dk − Gr

PrK(λ2 − τ)

∫ t

0
z1(y, k)dk
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2PrK(λ
√
τ + τ)
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√
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√
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√
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√
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√
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√
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√
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∫ t
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f (s)ξ(t − s)ds
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√
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∫ t

0
f (s)ψ(t − s)ds, (28)

where

z1(y, t) = L−1
{
Z1(y, s)

}
= L−1

{
(Q1oQ)(s)

}

= L−1
{
Q1(Q(s))

}
=

∫ ∞

0
q1(y, z)r(z, t)dz,

Q1(y, s) = e−√
sy , Q(s) = M + s

1 − Ks
, O = z(MK + 1)

K2
,

r(z, t) = L−1
{
e−zQ(s)

}
= e

z
K

×
[√

O
t
I1(2

√
Ot)e

t
K + δ(t)

]
,

and

q1(y, t) = L−1{Q1(y, s)} = y

2
√
π t3

e− y2

4t .

5. Discussion

Elastoviscous fluid velocity has been plotted against
varying y at t = 2 for f (t) = 1 in Figures 2 and 3. These
velocity profiles have been obtained for same mag-
netic field and varying values ofGr . The pattern of initial
rise and gradual decline of velocity has been observed
till it reaches its absolute minimum at higher y-values,
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Figure 2. Viscoelastic velocity vs. y; t = 2, K = 4, f (t) =
1,M = 0.5, γ = 0.3, Pr = 0.7, a = 5.

Figure 3. Viscoelastic velocity vs. y; t = 2, K = 4, f (t) =
1,M = 0.5, γ = 0.3, Pr = 0.7, a = 5.

confirming the boundary condition Equation (131). An
observation of sharper rise and fall of velocity magni-
tude corresponding to higher values ofGr(≥ 1) is made
in the vicinity of 0 ≤ y ≤ 3, affirming the fact that the
velocity is directly related with Gr ’s variation. However,
for smaller values of Gr(< 0.5, Figure 3), the pattern
of initial increase and gradual decrease in magnitude
is not retained. It rather drops continuously approach-
ing absolute zero. Regardless of varying pattern corre-
sponding to Gr-range, the decline in the magnitude of
velocity, in general, for smaller values of Gr is evident in
both graphs. The increase in velocity due to increasing
Gr owes its emergence to faster movement of particles
due to density differences caused by convection.

Elastoviscous parameter (K)’s influence on velocity
with subsistence of magnetic field, M = 0.5 has been
illustrated in Figure 4. It can be noted that velocity is
inversely affected by increasing values of K . However,
the profiles of velocity coincide in their decline at higher
y-values. This observation complies with the fact that

Figure 4. Viscoelastic velocity vs. y; t = 2,Gr = 5, f (t) =
1,M = 0.5, γ = 0.3, Pr = 0.7, a = 5.

elastoviscous fluid, identified with higher parametric
values of K endures higher resistance in its propagation,
causing the magnitude of velocity to drop.

To observe the influence of magnetic field on flow
propagation, Figure 5 has been obtained. Here, veloc-
ity profiles are drawn against y for varying values of
Hartmann number (f (t) = 1). In addition to following
the pattern of earlier increase and then the gradual
decrease in velocity, its magnitude starts decreasing for
increasing magnetic field intensity and vice versa. This
phenomenon shows that thepresenceofmagnetic field
of smaller magnitude can be retained to reduce the
hindrance that causes the velocity of flow to drop.

In Figures 6 and 7, we have compared the profiles
of velocity of elastoviscous fluid flow against time for
the cases of (a)f (t) = 1 and (b)f (t) = sin(ωt) (ω is fre-
quency of oscillation) at different heights (y = 0.3, 2,
4, 8), respectively. For case (a), the velocity magnitude

Figure 5. Viscoelastic velocity vs. y; t = 2, K = 4,Gr =
5, f (t) = 1, γ = 0.3, Pr = 0.7, a = 5.
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Figure 6. Viscoelastic velocity vs. time; f (t) = 1, K = 4,M =
0.5,Gr = 5, γ = 0.3, Pr = 0.7, a = 5.

Figure 7. Viscoelastic velocity vs. time; f (t) = sin(ωt),ω =
2, K = 4,M = 0.5,Gr = 5, γ = 0.3, Pr = 0.7, a = 5.

is slowly increasing with time along with increase in
height (y = 0.3, 2). But after attaining certain height, the
velocity starts dropping (y = 4, 8), corroborating that
the velocity is approaching towards zero at higher y-
values. It is also noted that the velocity profiles assume
unchanging pattern after a certain time. For case (b),
it is observed that velocity trajectories assume the pat-
tern of oscillations along with change in time. Figure 7
also shows that the magnitude rises initially (y = 0.3, 2)
but it starts dropping for higher values of y(= 4, 8). This
phenomenon is reflected in velocity profiles for y = 4
that appears below the oscillating curve for y = 2 and
also for the profile of y = 8 that appears at the low-
est of profiles. For higher values of y, the amplitude of
oscillations begin to reduce and these oscillations are
eliminated in curves for further higher values of y, turn-
ing into slowly increasing curves (y = 8). Like case (a)
(Figure 6), velocity profiles for case (b) (Figure 7) remain
unchanged after a certain time. Comparing the graphs
for two cases, it is inspected that the velocity strength

is much higher for the case (a) as compared to abso-
lute magnitude for case (b) at corresponding y-values.
Oscillating time-dependent temperature on the bound-
ary seems to hinder the speed of flow of elastoviscous
fluid.

The graphs presented in Figure 8 reflect on the dif-
ference of magnitude of velocity in contrast to vary-
ing y for rising Gr statistics in the disposition of f (t) =
sin(ωt). This case is comparedwith the scenario f (t) = 1
(Figure 2). It is evident that in the former case (sin(ωt)),
the magnitude of velocity drops for each Gr , however,
maintaining the pattern of initial rise and decline of
velocity as well as of escalation in velocity with expand-
ing Gr numbers.

In Figure 9, the temperature variations have been
conspired opposing y for different Prandtl numbers
Pr(= 0.7, 3, 7) at t = 2. The temperature depreciation
with enhancing Prandtl number has been observed. In
general, the temperature starts dropping as y increases
such that all profiles for varying Pr coincide at higher
y-values. The sharper decline of temperature akin to
advancing Prandtl values (Pr > 1) can be attributed to

Figure 8. Viscoelastic velocity vs. y; t = 2, f (t) = sin(ωt),ω =
2, K = 4,M = 0.5,Gr = 5, γ = 0.3, Pr = 0.7, a = 5.

Figure 9. Temperature vs. y; t = 2, γ = 0.3, a = 5.
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Figure 10. Temperature vs. y; t = 2, γ = 0.3, a = 0.

momentum transfer of flow exceeding the heat transfer
flow.

How a constant boundary condition of temperature
(a = 0) influences the temperature course through fluid
propagation has been discussed through Figure 10.
Here, temperature profiles have been obtained against
y for Prandtl number (Pr = 0.7, 3, 7) as was done for
the case of temporal temperature condition (Figure 9).
Figure 10 displays that the constant temperature on
boundary condition tends to decrease the magnitude
of temperature as compared to case described by tem-
poral temperature condition (Figure 9).

To retrieve the results for Newtonian fluid propaga-
tion as well as to validate our present results, we have
also obtained graphs by considering limiting values of
parameters K, a andM.

Figures 11 and 12 display the velocity profiles for
Newtonian fluid against y at t = 2 corresponding to ris-
ing Gr-values. In addition to manifestation of usual pat-
ternof velocity increasingand thendecreasingathigher
y-values, velocity magnitude tends to drop in magnetic
field presence (Figure 11) in comparison to the case of
no magnetic field (Figure 12). Newtonian fluid velocity

Figure 11. Newtonian fluid velocity vs. y; t = 2, f (t) = 1, γ =
0.3, Pr = 0.7, a = 5.

Figure 12. Newtonian fluid velocity vs. y; t = 2, f (t) = 1, γ =
0.3, Pr = 0.7, a = 5.

Figure 13. Newtonian fluid velocity vs. y; t = 2, f (t) = 1, γ =
0.3, Pr = 0.7, a = 0.

is also directly influenced by increasing or decreasing
Gr , matching to elastoviscous fluid scenario. Comparing
with elastoviscous fluid velocity (Figure 2), it is also vali-
dated that the velocity magnitude attains higher values
for Newtonian fluid (Figure 11) due to viscous effects
partaking in the elastoviscous fluid propagation.

An interesting case of Newtonian fluid’s response to
the condition of constant temperature onboundary has
been recorded through Figure 13. These profiles show
that maintaining the constant temperature on bound-
ary tends to give a substantial drop in the velocity in
comparison to temporal temperature boundary condi-
tion (Figure 11). This shows that with constant tem-
perature on boundary, both velocity and temperature
decrease.

The case of constant velocity boundary condition
(u(0, t) = 1) for elastoviscous fluid (Figure 14) has been
compared with time-dependent motion of plate with
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Figure 14. Viscoelastic velocity vs. y; t = 2, K = 4,M =
0.5, γ = 0, Pr = 0.7, a = 5.

flow slip (Figure 2). It is recorded that velocity magni-
tude increases due to time-dependent movement of
plate with fluid slipping on channel rather than the
forceof constant velocitybrought tobearby thebound-
ary. Evidently, the constant velocity boundary condition
does not impact the direct relation of Gr with elastovis-
cous flow velocity.

It is interesting to note that limiting results obtained
here as Equations (22)–(25) and (28) are seen to be
matching previously obtained results [18,25] for Gm →
0 & F → 0, hence validating the exactitude of our cur-
rent method and outcomes.

6. Conclusion

We have determined the exact expressions of velocity
and temperature of elastoviscous MHD fluid slipping
past an unbounded upright plate with vacillating tem-
perature. These expressions are obtained for a free con-
vection flow. The main results have been collected as
follows:

(1) Elastoviscous fluid velocity was discussed for con-
stant temperature, f (t) = 1, and variable tempera-
ture, f (t) = sin(ωt), on the boundary. It was estab-
lished that at a proposed time and magnetic field,
initial rise in the velocity is ascertained that gives
way to abating magnitude (Gr ≥ 1) for advancing y
values. However, for smaller values of Gr , owing to
empowering viscous forces, the velocity continues
to decrease unlike the pattern of initial rise and the
drop forGr ≥ 1. An observation of drop in themag-
nitude of elastoviscous velocity was also made for
variable temperature case. The constant tempera-
ture on boundary tends to play its role in acceler-
ating the motion of particles of fluid, causing the
velocity to rise.

(2) In magnetic habitation, elastoviscous fluid velocity
tends to be inversely proportional to elastoviscous
parameter, K. Here, the velocity deteriorates for
higher values of K in accordancewith phenomenon

of escalation of viscous forces in this case and vice
versa.

(3) Elastoviscous fluid velocity is directly influenced
by values of Gr , Grashof (thermal) number, and is
inversely affected by M, Hartmann number. The
higher value of Gr plays its role in raising the con-
duction strength that overcomes the resistance
caused by viscous forces, hence increasing the
velocity of fluid.

(4) Elastoviscous fluid velocity against time displays
the slowly increasing profiles (it retains the pattern
of unchanging trajectories after a certain time) for
constant temperature on the boundary and oscil-
lating pattern velocity profiles for variable tem-
perature (f (t) = sin(ωt)). Oscillations in the later
case start ebbing away after a certain time, turn-
ing the profiles into slowly rising curves. Also, the
hindrance to flow caused by oscillating variable
temperature is observed in terms of drop in the
magnitude of velocity.

(5) Temperature decrease due to increasing Prandtl
number, Pr , has been recorded both for variable
temperature and constant temperature adminis-
tered on extremity of flat upstanding channel.

(6) The results of Newtonian fluid velocity correspond-
ing to the cases of absence of magnetic field, con-
stant temperature and uniform velocity allowed at
the end on channel were retrieved and validated to
be accurate. Analogous to elastoviscous fluid sce-
nario, Newtonian fluid velocity increments due to
inflating Gr numbers and vice versa. Also, in mag-
netic occupation, the velocity drops as to the situ-
ation of non-existent magnetic field. Due to lesser
viscous effects, Newtonian fluid velocity’s magni-
tude is validated to be higher than elastoviscous
velocity.

(7) Non-varying temperatureboundary condition tends
tobringon a considerable drop in themagnitudeof
velocity of velocity of Newtonian fluid, opposite to
elastoviscous case.

(8) An interesting phenomenon of developing elasto-
viscous velocity corresponding to time-dependent
motion of plate with flow slip was also observed
unlike the non-varying velocity on extremity of
plate. However, the variation of boundary condi-
tion of velocity does not affect the direct relation of
velocity with thermal Grashof number, Gr .

Nomenclature

u(y, t) velocity (m/s)
T(y, t) temperature (K)
ρ density of fluid (kg/m3)
ν kinematic viscosity (m2/s)
σ electrical conductivity (S/m)
κ thermal conductivity (J/(s·m·K))
Cp specific heat at constant pressure (J/(kg·K))
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qr radiation heat flux (J/(s·m2))
β thermal expansion coefficient (1/K)
g gravitational acceleration (m/s2)
M Hartmann number (dimensionless)
Gr thermal Grashof number (dimensionless)
F thermal radiation parameter (J/(s·m2))
Pr Prandtl number (dimensionless)
ω frequency of oscillation (1/s)
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