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Abstract
An investigation of thixotropic parameter influence on blood flow in a stenosed
tapered vessel has been carried out by means of analytical and numerical methods.
We have studied how variation of a parameter in a range [0, 1], chosen following the
evolution of transient shear, flows with time in this particular range and impacts the
dynamics of an unsteady, non-Newtonian fluid flow. An approximation of a simpler
dynamical system was approached with the help of a particular set of
non-dimensional variables. Unique representations of axial velocity, shear stress and
flow rate have been made such that their dependence on pressure gradient can be
further analysed. Some factors that either impede the flow or help to accelerate it in a
narrow channel in addition to varying yield stress and thixotropic parameter have
been numerically investigated. The purpose of the current investigation is also to
decide whether the particular model parameter regulates the dynamics of flow in a
vessel differently from other known non-Newtonian models and what specific range
or values of this parameter bring this model’s results to coincide with other models’
results

Keywords: Thixotropy; Blood flow; Tapering; Axial velocity; Pressure-gradient;
Structural parameter

1 Introduction
The understanding of vascular dynamics and mechanism of arterial blood rheology has
been important not only for advancement of medical science but also to overcome the
development of complexities caused by overlooking minute details that can potentially
change the course of a system. The arterial malfunction and disturbance in blood flow
propagation caused by stenosis have been a subject of long-term investigation and has
added to valuable material to smooth understanding and better projection of rather a com-
plex scenario. The study of modelling of blood flow through arterial stenosis by means of
theoretical and experimental methods has been done to establish grounds for implanted
vascular system.

Over the course of time, many researchers have contributed to this area of investiga-
tion. Young [1] and Young and Tsai [2] laid grounds for the study of dynamics of flow
through stenosed arteries and recorded results for steady flow on the matter. An inves-
tigation of flow dynamics in a tubular channel on arterial stenosis with inclusion of time
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parameter was also done by Young [3]. These studies invited multi-faceted analyses [4–
17] of propagation of Newtonian fluid through constricting channels including factors of
magnetic field, body acceleration and pulsatile nature of blood flow. Deshpande et al. [18]
gave a new dimension to this investigation by developing a scheme to study Newtonian
fluid flow through a stenosis that can be described axisymmetrically. How approximation
of Reynolds number depending upon particular geometric facet of flow can alter the dy-
namics was discussed analytically by Smith [19].

Due to non-Newtonian characteristics of blood, many investigations were carried out
to encompass these characteristics in flow modelling. In addition to inclusion of non-
Newtonian behaviour of blood in propagation, structural limitations of stenosis were ac-
commodated by considering various appropriate models such as power law, Herschel–
Bulkley, Casson and Carreau models [20–33]. A study of blood rheology brings up
thixotropic and viscoplastic nature of dense blood suspension, platelets, leucocytes, etc.
These characteristics along with responses of blood cells to varying shear were analysed by
Merill, Cokelet and Dintenfass [34–36]. Classification of appropriate models to describe
blood flow through stenosis involving the aspect of particular structural aggregation in
low-shear was done by Owens [37]. According to his experimental and theoretical results,
non-Newtonian characteristics of blood were better projected by Herschel–Bulkley and
Casson models. However, limitation of Casson model in a complete description of blood
flow dynamics was brought up by Blair and Spanner [38]. The use of Herschel–Bulkley
model to include many physiological characteristics of blood flow was adopted by Priyad-
harshini and Ponalgusamy [39, 40]. The factors of timed movement of channel due to
peristaltic flow and tapering of the channel wall were studied by Mandal, Manton and
Whitemore [41–43].

An elaborate analysis of thixotropic characteristic of blood was prepared [44, 45] by
means of structural parameter, but Mewis and Wagner [46] studied the characteristics
of yield stress and time-dependent viscosity by relating these with above structural pa-
rameter. This parameter time evolution was discussed in defining the characteristics of
thixotropy. A study by Apostolidis and Beris [47] reflected on suitability of Casson model
to describe the properties of thixotropy and viscoplasticity for low-shear rate flows, but its
lack of encompassing the time-dependent viscosity as in colloidal blood suspension was
already pointed out by Mewis [48].

The current investigation has also been inspired by an experimental study conducted by
Apostolidis [47] in which he linked the characteristics of yield stress and thixotropy with a
structural, time-evolving parameter. In addition to describing non-Newtonian character-
istics of time-dependent viscosity of blood, this model’s limiting results can help to validate
available results in history. Here, we have prepared a theoretical analysis of unsteady blood
flow though a stenosed artery with tapering described by a model such that this model’s
structural parameter is linked with yield stress and shear thinning of fluid in time. Follow-
ing a recent analysis prepared by Apostolidis [49], we have chosen [0, 1] as the range of
structural parameter, and over this range, we have recorded variation in dynamics of flow.
In addition to collecting analytical and numerical results regarding axial velocity, shear
stress, flow rate and flow resistance with the help of chosen pressure gradient, we have
pointed out a range of parameter variation that hints at our model’s results being closer to
experimental results than the results obtained by Herschel–Bulkley model.
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Figure 1 Two-dimensional stenosed and tapering channel

2 Geometry of flow in a tapered artery
A cylindrical coordinate system (r, θ , z) has been chosen to study dynamics of blood flow
through an elastic tapered vessel with mild stenosis. We have considered z-axis to be in
the direction of channel such that it is perpendicular to radius of channel, r to be in the
direction of radius of a vessel (Fig. 1) and θ is taken along the circumferential direction. In
order to model unsteady motion of a non-Newtonian fluid, we have considered a structural
parameter modelling that is thixotropic modelling for incompressible fluid. The tapering
of channel has been represented by an angle φ which is different from circumferential
angle. The following geometric representation of artery with stenosis has been considered
[41]:

R̄(z, t) =

⎧
⎪⎨

⎪⎩

((m′z + R0) – γm′ secφ(z–d)
l20
4 –γ 2

m′ sin2 φ

(l0 – (z – d)))η̄(t), for d ≤ z ≤ d + l0,

(m′z + R0)η̄(t), otherwise,
(1)

where R̄(z, t) describes the radius of tapered artery. φ is taken as an angle of tapering where
φ < 0, φ > 0 and φ = 0 represent converging tapering, diverging tapering and no tapering,
respectively. Also, d, R0, l0, γm′ and m′ = tanφ denote the position of stenosis, constant ra-
dius of non-tapered artery in the non-stenotic region, length of stenosis, height of stenosis
at z = d + l0

2 (no tapering) and slope of tapering, respectively.
In the above geometry, η̄(t) is defined as

η̄(t) = 1 – g
{
cos(ωt) – 1

}
e–gωt ,

where the constant g represents the amplitude of small oscillations and angular frequency
is defined as ω = 2π f with f being the pulse frequency.

3 Mathematical formulation
The description of two-dimensional, axisymmetric flow has been made through the conti-
nuity equation and the governing equations of momentum for r and z components. These
equations are

ρ

(
∂u
∂t

+ u
∂u
∂r

+ w
∂u
∂z

)

= –
(

1
r

∂(rτrr)
∂r

+
∂(τzr)
∂z

)

–
∂p
∂r

, (2)

ρ

(
∂w
∂t

+ u
∂w
∂r

+ w
∂w
∂z

)

= –
(

1
r

∂(rτrz)
∂r

+
∂(τzz)
∂z

)

–
∂p
∂z

, (3)

∂u
∂r

+
u
r

+
∂w
∂z

= 0, (4)
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where u = u(r, z, t), w = w(r, z, t) and ρ represent radial component of velocity, axial com-
ponent of velocity and density of incompressible fluid, respectively.

The constitutive equations are taken to be

τ = λτy + (1 – λ)k̄(–γ̇ )n; τ > τy, 0 < λ < 1, (5)

where τ , γ̇ , τy, k̄ and n denote shear stress, rate of deformation, yield stress, consistency
index and flow behaviour index, respectively, along with τ = |τrz| = –τrz .

The time-dependent thixotropic model (5) describes the flow of non-Newtonian flu-
ids. Particularly, those fluids which are viscoplastic in nature and depend on deformation
history for complete description of flow dynamics. The phenomenon of resting state of
fluid under static condition and movement of particles under application of shear (change
of viscosity) is completely enveloped in this model. This model encompasses the time-
dependence variation of viscosity through the link of single structural parameter, λ. Also
[50],

γ̇ = 0, τ ≤ τy (6)

has been placed to ensure the continuation of flow for our considered model (5).
The boundary conditions chosen for our system are

w(r, z, t) = 0 at r = R̄(z, t); τrz(r, z, t) = 0 at r = 0. (7)

Following the analysis of mechanism in human beings by Burton [51], pressure gradient
has been considered in the given form

–
∂p
∂z

= A0 + A1 cos(ωt), t > 0, (8)

where A0 represents the constant amplitude of pressure gradient and A1 helps to describe
systolic and diastolic pressure, being amplitude of pulsatile component.

The following non-dimensional variables have been chosen:

w∗ =
w
w0

, u∗ =
u
u0

, t∗ =
w0t

l
, z∗ =

z
l

, p∗ =
p
p0

,

τ ∗
rz =

R0τrz

μw0
, τ ∗

zz =
lτzz

μw0
, t0 =

l
w0

, w0 =
u0l
R0

, r∗ =
r

R0
,

d∗ =
d
l

, l∗0 =
l0

l
, ω∗ =

t0ω

2π
, p0 =

μlw0

R2
0

, R∗ =
R̄
R0

,

m =
m′l
R0

, γ ∗
m′ =

γm′

R0
, Re =

ρR0w0

μ
, Q∗ =

Q̄
w0R2

0
,

A∗
0 =

A0R2
0

μw0
, A∗

1 =
A1R2

0
μw0

, τ ∗
y =

R0τy

μw0
, K =

k̄
μ

(
w0

R0

)n–1

,

(9)

where w0 and u0 are characteristic scales.
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Simplification of our system is reached using non-dimensional quantities (9), very small
Reynolds number, Re, and

R0 � l,

where l is the finite length of artery. Thus, we obtain (ignoring ∗)

–
∂p
∂z

=
1
r

∂(rτrz)
∂r

, (10)

∂p
∂r

= 0, (11)

τ = λτy + (1 – λ)K
(

–
∂w
∂r

)n

, (12)

–
∂p
∂z

= A0 + A1 cos(2πωt), t > 0. (13)

And the boundary conditions are

w(r, z, t) = 0, r = R(z, t); τrz(r, z, t) = 0, r = 0. (14)

Now the geometry of the wall will be presented as

R(z, t) =
{

(mz + 1) –
4γm secφ(z – d)(l0 – (z – d))

l2
0

}

η(t), (15)

for d ≤ z ≤ d + l0, where

η(t) = 1 – g
{
cos(2πωt) – 1

}
e–2πgωt . (16)

4 Analytical expressions of velocity, shear stress and flow rate
x = r

R(z,t) has been used to make a coordinate transformation, and we obtain from
Eqs. (10), (11), (12) and (14) the following:

–
∂p
∂z

=
1

xR(z, t)
∂(xτxz)

∂x
, (17)

–
∂p
∂x

= 0, (18)

τ = λτy +
(1 – λ)K
Rn(z, t)

(

–
∂w
∂x

)n

(19)

with boundary conditions

w(x, z, t) = 0 at x = 1; τxz(x, z, t) = 0 at x = 0. (20)

We also have

∂w
∂x

= 0, 0 ≤ x ≤ Rpc, (21)
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Figure 2 Shear stress vs radial distances for φ = –0.1, 0, 0.1 at z = 28, t = 1, τy = 0.4, K = 1.6

where Rpc is the radius of plug core region.
With the help of Eqs. (17) and (18), we can write pressure as a function of only an axial

coordinate, that is,

p = p(z). (22)

Solving Eq. (17) with (20)2 and (22), we obtain an expression of shear stress

τxz =
xR(z, t)

2

(

–
∂p
∂z

)

. (23)

And the expression for wall shear stress (x = 1) is

τws =
R(z, t)

2

(

–
∂p
∂z

)

. (24)

Solving Eq. (19) with (20)1 and (23), we get an expression for axial velocity

w(x, z, t) =
nR(z, t)

(n + 1)(M + 2λτy)(2K(1 – λ)) 1
n

× {
M

n+1
n –

(
Mx + 2λτy(x – 1)

) n+1
n

}
, (25)

where M = R(z, t)(– ∂p
∂z ) – 2λτy and Rpc ≤ x ≤ R(z, t).

And the velocity in the plug core region is

wpc(x, z, t) =
nR(z, t)

(n + 1)(M + 2λτy)(2K(1 – λ)) 1
n

{
M

n+1
n

}
(26)

for 0 < x ≤ Rpc and Rpc = 2λτy

R(z,t) –∂p
∂z

.
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Figure 3 Shear stress vs radial distances for φ = –0.1, 0, 0.1 at z = 28, t = 3, τy = 0.4, K = 1.6

Figure 4 Shear stress vs radial distances for φ = –0.1, 0, 0.1 at z = 28, t = 5, τy = 0.4, K = 1.6

Volume flow rate is defined as

Q̄ = 2π

∫ r=R̄(z,t)

r=0
rw(r, z, t) dr (27)

which in non-dimensional form (ignoring ∗) can be written as

Q(z, t) = 2π

∫ r=R(z,t)

r=0
rw(r, z, t) dr. (28)

Equation (28) in terms of x coordinate is

Q(z, t) = 2πR2(z, t)
∫ 1

0
xw(x, z, t) dx. (29)
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Figure 5 Shear stress vs radial distances for φ = –0.1, 0, 0.1 at z = 28, t = 7, τy = 0.4, K = 1.6

Figure 6 Shear stress vs radial distances for φ = –0.1, 0, 0.1 at z = 28, t = 9, τy = 0.4, K = 1.6

Equation (29) can be simplified using Eqs. (25) and (26). Thus, we obtain

Q(z, t) =
πnR3(z, t)

(2n2 + 3n + 1)(3n + 1)(M + 2λτy)3(2K(1 – λ)) 1
n

× {
(n + 1)(2n + 1)M

3n+1
n

+ 4λτy(n + 1)(3n + 1)M
2n+1

n

+ 4λ2τ 2
y (2n + 1)(3n + 1)M

n+1
n

}
, (30)

where M = R(z, t)(– ∂p
∂z ) – 2λτy.
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Figure 7 Shear stress vs radial distances for φ = –0.1, 0, 0.1 at z = 28, t = 11, τy = 0.4, K = 1.6

Figure 8 Shear stress vs radial distances for φ = –0.1, 0, 0.1 at z = 28, t = 13, τy = 0.4, K = 1.6

For a given time, resistance to flow can be obtained using

� =
∫ z

0

(– ∂p
∂z )

Q
dz (31)

with the help of Eqs. (13) and (30).
Table 1 has been constructed to get an estimate of the values of axial velocity corre-

sponding to λ-variation for converging tapering at a given position of stenosis and time.
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Table 1 Values of axial velocity w(x, z, t;λ) resulting from Eq. (25) corresponding to λ-values for
φ = –0.1, t = 0.45 and z = 28

x 0.6 0.7 0.8 0.9 1

w(x, z, t; 0) 1.071 0.879 0.639 0.347 0
w(x, z, t; 0.1) 1.242 1.020 0.742 0.404 0
w(x, z, t; 0.2) 1.467 1.206 0.879 0.478 0
w(x, z, t; 0.3) 1.776 1.462 1.066 0.581 0
w(x, z, t; 0.4) 2.220 1.829 1.335 0.728 0
w(x, z, t; 0.5) 2.900 2.392 1.747 0.953 0
w(x, z, t; 0.6) 4.037 3.334 2.437 1.331 0
w(x, z, t; 0.7) 6.217 5.138 3.760 2.055 0
w(x, z, t; 0.8) 11.507 9.521 6.974 3.815 0
w(x, z, t; 0.9) 33.402 27.669 20.286 11.109 0

Figure 9 Shear stress vs radial distances for φ = –0.1, 0, 0.1 at z = 28, t = 15, τy = 0.4, K = 1.6

5 Discussion
In order to get validation for results corresponding to approximation of our modelling
parameter, we have considered the following numerical values [41]:

γm = 0.2, l0 = 16, d = 20, l = 50, ω = 6, g = 0.1,

n = 0.639, R0 = 0.8.

In Figs. 2–9, time-dependent shear stress has been plotted against radial distances at a
given position of stenosis, z = 28, and varying time in the range t ∈ [1, 15]. These graphs
show consistent increase in shear stress such that it reaches its maximum value on the
boundary wall (x = 1). Also it is noted that shear stress is higher for the case of diverging
tapering in comparison to the cases of converging and no tapering. In these images, ob-
serving the wall shear stress, τws(x, z, t) (x = 1) (say for diverging tapering) data points show
that shear stress decreases initially (t ∈ [1, 5]), starts increasing (t ∈ (5, 9]), decreases again
(t ∈ (9, 15]) and the cycle goes on, concluding that shear stress varies in an oscillating pat-
tern. The oscillations in shear stress correspond to relaxing and constricting movement
of a vessel with change in time.
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Figure 10 Wall shear stress vs time for φ = –0.1, 0, 0.1 at z = 28, τy = 0.4, K = 1.6

Figure 11 Axial velocity vs radial distances for φ = –0.1, 0, 0.1 at z = 28, t = 0.45, τy = 0.4, K = 1.6, λ = 0.7

A clear image of oscillating pattern of wall shear stress variation in response to change
in time has also been presented in Fig. 10 for the cases of converging, diverging and no-
tapering. Figures 11–13 represent variation in axial velocity corresponding to changes in
near-wall radial distances. It is observed that the axial velocity continues to decrease in
such a way that it reaches zero on the wall vessel (x = 1), satisfying the no-slip bound-
ary condition. It is also noted that the magnitude of axial velocity for diverging tapering
is higher than that for the cases of converging and no-tapering. It is due to the fact that
diverged opening in the neighbourhood of stenosis provides a way for fluid to propagate
with higher speed, comparatively. An analysis of axial velocity dependence on thixotropic
parameter λ was also made through these graphs. It shows that the axial velocity decreases
for decreasing values of λ. Thus, in a theoretical scheme, the higher values of λ can play a
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Figure 12 Axial velocity vs radial distances for φ = –0.1, 0, 0.1 at z = 28, t = 0.45, τy = 0.4, K = 1.6, λ = 0.5

Figure 13 Axial velocity vs radial distances for φ = –0.1, 0, 0.1 at z = 28, t = 0.45, τy = 0.4, K = 1.6, λ = 0.1

role in increasing the magnitude of axial velocity that can be used in further implementa-
tion of model in the construction of an implanted vascular system.

We have made a comparison of axial velocity profiles in Figs. 14–16 for power law
fluid, Newtonian fluid and thixotropic fluid (for some different values of λ). In response
to changing radial distances, near the boundary wall, velocity is decreasing and reaching
zero on the vessel wall. For all the cases of converging, diverging and no-tapering, we have
made a note of increasing velocity for increasing values of λ. Interestingly, the velocity
for power law fluid attains values smaller than thixotropic velocity for λ = 0.1, indicating
the phenomenological differences of both models in regards to describing the viscosity
and viscoplasticity levels. The lower magnitude of velocity for power law fluid also points
to its lesser viscosity (in comparison to thixotropic fluid for λ = 0.1) that needed lesser
pressure-gradient for flow propagation, which resulted in higher magnitude of velocity
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Figure 14 Axial velocity vs radial distances (near wall) for φ = –0.1, λ = 0.1, 0.5, 0.7 at z = 28, t = 0.45, τy = 0.4,
K = 1.6, Power Law model (λ → 0) and Newtonian fluid (λ → 0, K̄ = 0.035, n = 1)

Figure 15 Axial velocity vs radial distances (near wall) for λ = 0.1, 0.5, 0.7 and φ = 0 at z = 28, t = 0.45, τy = 0.4,
K = 1.6, power law model (λ → 0) and Newtonian fluid (λ → 0, K̄ = 0.035, n = 1)

for λ = 0.1 level fluid. An observation of lowest profiles of Newtonian fluid is also made
in all Figs. 14–16, validating the lowest pressure gradient required for Newtonian fluid
flow. The lowest-velocity-magnitude profiles for Newtonian fluid is more apparent in di-
verging tapering case (Fig. 16). The lowest magnitude of velocity for power law fluid in
comparison to thixotropic fluid (λ = 0.1, 0.5, 0.7) velocity also corroborates the available
results in non-Newtonian fluid modelling [41]. It can be seen that velocity for all models
attains higher values for diverging tapering in comparison to no-tapering and converging
tapering, the latter being smallest in terms of magnitude.

In Figs. 17–19, we have plotted flow resistance against time for the case of converging
tapering. It is observed that the resistance to flow increases in the beginning of a cycle at
the position of stenosis due to propagation of fluid through constriction and then it starts
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Figure 16 Axial velocity vs radial distances (near wall) for φ = 0.1, λ = 0.1, 0.5, 0.7 at z = 28, t = 0.45, τy = 0.4,
K = 1.6, power law model (λ → 0) and Newtonian fluid (λ → 0, K̄ = 0.035, n = 1)

Figure 17 Flow resistance vs time for φ = –0.1 at z = 28, τy = 0.4, K = 1.6, λ = 0.7

decreasing for the relaxation part of the cycle. The continuation of cyclic movement of
flow resistance with time leads to an oscillating pattern depicted in graphs. It is interesting
to observe that resistance to flow increases for smaller values of λ and decreases for larger
values of λ.

Figures 20–22 express the flow rate tendency to change in response to varying pres-
sure gradient for the cases of converging, diverging and no-tapering. It is interesting to
note that the rate of increase in flow rate for rising pressure-gradient is non-linear for
thixotropic fluid unlike the established results in history. However, the flow rate profile for
converging tapering is almost linear. A direct relation between flow rate and thixotropic
parameter λ has also been observed here for the same values of pressure-gradient.
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Figure 18 Flow resistance vs time for φ = –0.1 at z = 28, τy = 0.4, K = 1.6, λ = 0.5

Figure 19 Flow resistance vs time for φ = –0.1 at z = 28, τy = 0.4, K = 1.6, λ = 0.1

In Figs. 23–25, we have investigated the response of axial velocity against radial dis-
tances for varying yield stress τy and for the case of converging tapering. These graphs
show that the axial velocity decreases for rising values of yield stress in corroboration
with phenomenal results of higher-yield stress fluid being subject to higher resistance in
comparison to lower-yield stress fluid. It is interesting to note that, for smaller values of
λ (say 0.1 < λ < 0.5), not only the axial velocity curve mutual separation is decreasing, but
also for very small values (say λ = 0.1) near the wall of a vessel, the profiles seem to be
coinciding. A direct relation of axial velocity and parametric value of λ is also verified as
in the case of one-value yield stress fluid.

The analysis of variation flow rate with respect to time has been done through graphs.
We have obtained the profiles for flow rate at the position of stenosis, z = 28, and for the
cases of converging, diverging and no-tapering. In Figs. 26–28, flow rate has been observed
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Figure 20 Flow rate vs pressure gradient for φ = –0.1, 0, 0.1 at z = 28, t = 0.45, τy = 0.4, K = 1.6, λ = 0.7

Figure 21 Flow rate vs pressure gradient for φ = –0.1, 0, 0.1 at z = 28, t = 0.45, τy = 0.4, K = 1.6, λ = 0.5

to follow an oscillating pattern with respect to time. It is also noted that flow rate assumes
higher magnitude for diverging tapering in comparison to no-tapering. Also, due to con-
striction of the channel at the position of stenosis, z = 28, flow rate for converging tapering
assumes smallest magnitude with varying time. These figures also reflect on the influence
of thixotropic parameter λ on flow rate. It can be observed that flow rate decreases for
smaller values of λ.

6 Conclusions
The following conclusions have been reached regarding the study of propagation of blood
through a stenosed channel with tapering. How a structural parameter and timed move-
ment of vessel influence dynamics and validation of some of available results has also been
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Figure 22 Flow rate vs pressure gradient for φ = –0.1, 0, 0.1 at z = 28, t = 0.45, τy = 0.4, K = 1.6, λ = 0.1

Figure 23 Axial velocity vs radial distances (near wall) for varying yield stress at z = 28, t = 0.45, K = 1.6,
φ = –0.1, λ = 0.7

recorded here with the help of analytical and numerical analysis. These salient points are
as follows:

1. At given stenosis position and time, shear stress continues to increase with
increasing radial distances, attaining its maximum value on a boundary wall of the
vessel. Shear stress assumes higher magnitudes for diverging tapering due to
comparatively higher influx of fluid in a diverged part of the channel.

2. The oscillating movement of shear stress (or wall shear stress) with time owes its
pattern to the nature of pressure gradient in particular and the wall movement of
the vessel in general.

3. In a manner of verifying the no-slip boundary condition, the response of axial
velocity was recorded for near-wall radial distance changes. In addition to
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Figure 24 Axial velocity vs radial distances (near wall) for varying yield stress at z = 28, t = 0.45, K = 1.6,
φ = –0.1, λ = 0.5

Figure 25 Axial velocity vs radial distances (near wall) for varying yield stress at z = 28, t = 0.45, K = 1.6,
φ = –0.1, λ = 0.1

continuous drop in axial velocity while approaching boundary wall, the velocity
magnitude is higher for diverging tapering as fluid endures lesser hindrance in its
propagation in a widening channel.

4. The magnitude of axial velocity at a given radial distance drops for decreasing
values of thixotropic parameter λ (0 < λ < 1).

5. The study of comparative profiles of axial velocity for Newtonian, power law and
thixotropic fluid (λ = 0.1, 0.5, 0.7) reflects on two interesting phenomena. The first
being the occurrence of lower profile of axial velocity for power law fluid among
non-Newtonian fluids, matching with available theoretical results and obtaining
lowest-magnitude-velocity profile for Newtonian fluid being the second one. The
first fact describes that the thixotropic fluid for λ = 0.1 encounters more resistance
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Figure 26 Flow rate vs time for φ = –0.1, 0, 0.1 at z = 28, τy = 0.4, K = 1.6, λ = 0.7

Figure 27 Flow rate vs time for φ = –0.1, 0, 0.1 at z = 28, τy = 0.4, K = 1.6, λ = 0.5

in its propagation than power law and Newtonian fluids. Also, axial velocity
increases for increasing values of λ.

6. The comparison of axial velocity profiles for different models here with theoretical
and experimental values of axial velocity profile for Herschel–Bulkley fluid model
[39] reflects on the possibility for the latter to coincide with thixotropic fluid profile
for 0.6 ≤ λ ≤ 0.8. Thus, it would be interesting to further investigate flow properties
of thixotropic fluid for 0.8 < λ < 1, treating a thixotropic fluid model different from
Herschel–Bulkley fluid model.

7. For converging tapering, resistance to flow follows an oscillating pattern with time
in accordance with oscillating variation in pressure gradient.

8. The resistance to flow decreases for larger values of λ, verifying the fact here that
axial velocity increases for larger values of λ.
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Figure 28 Flow rate vs time for φ = –0.1, 0, 0.1 at z = 28, τy = 0.4, K = 1.6, λ = 0.1

9. Flow rate increases with increase in pressure gradient. This increase is represented
by slight parabolic curves for diverging and no tapering unlike the available results
for Newtonian and non-Newtonian fluids. However, the increase in flow rate with
rising pressure gradient for converging tapering is almost linear.

10. Flow rate assumes higher values for diverging tapering in comparison to
no-tapering and converging tapering, respectively.

11. Flow rate has a direct relation to parametric value λ in validation with the results
here that flow resistance increases for smaller λ-values and vice-versa.

12. For converging tapering, axial velocity decreases for increasing values of yield stress
τy and its response to λ is observed to be direct.

13. As λ assumes values near zero, axial velocity response to varying yield stress gets
considerably smaller. This phenomenon is apparent in axial velocity profiles for
λ = 0.1.

14. Owing to rise and drop of pressure gradient, flow rate varies in oscillations with
time, assuming a direct relation with λ.
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