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ABSTRACT. The present paper studies the effects of thermal radiation and mass diffusion on

MHD flow over a vertical plate that applies time dependent shear to the fluid. This study is meant

to provide framework for improved thermal system where induced automated shear on chemical

(fluid) will increase velocity of fluid and hence enhances the smooth flow. This study will also throw

light on an important aspect of controlling temperature of thermal system in the context of emitting

thermal radiation. Exact expressions for velocity field, temperature and mass concentration corre-

sponding to the radiative flow of viscous fluid have been calculated. These expressions are obtained

by using Laplace transform of corresponding fractional differential equations. The expressions of

temperature and mass concentration of fluid have been presented in series form. However, velocity

field is presented in the form of integral solutions. All exact expressions satisfy initial and boundary

conditions. Some significant limiting cases of fluid parameters and of fractional parameters have

been discussed. Two special cases of shear stress; shear stress in the form of Heaviside function and

oscillating shear stress have also been taken into account to compare the behavior of fluid motion

graphically. An analysis has also been prepared to compare analytical and numerical solutions for

concentration of fluid using numerical algorithm. Validity of analytical solutions up to a certain

order of accuracy has been established.

Key Words: MHD viscous fluid, fractional derivatives, velocity, mass concentration,

temperature, exact solutions, discrete laplace transforms, thermal radiation, mass dif-
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1. IINTRODUCTION

In recent times, a great deal of work has been done on studying radiative

heat and mass transfer of free convective flows[1-7]. The importance of these flows

arise from their applications in industrial and chemical processes, filtration processes

as well as in biological and physical processes [8-11]. Many studies reflecting on com-

bined heat and mass transfer have appeared recently with various physical scenarios.
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The phenomenon of mass transfer in fluid at rest owes its appearance to concentra-

tion gradients in the fluid that cause molecular diffusion. Due to similar nature of

conservative heat and mass transfer processes for low mass concentration and low

mass transfer, many authors are tended to deal with heat and mass convective flows

simultaneously[12-17]. Moreover, as magnetic hydrodynamic (MHD) fluid is used in

many engineering and industrial applications, like cooling of metal in nuclear reactors

and magnetic control of iron flow in steel industry, etc. [18-21], the study of proper-

ties of radiative heat and mass transfer in MHD fluids has become a central topic of

present time work.

Many authors have studied convective flows over or past vertical plates to

contribute towards development of heat sinks, heat exchanger plate used in isother-

mal chemical reactor and heating blocks. The problem of convective flow past a

vertical oscillating plate was first considered by Soundalgekar [22] and same prob-

lem was extended to study mass transfer in fluid by Soundalgekar and Akolkar [23].

Soundalgekar [24] continued his work on this line by studying effects of mass transfer

on the flow past an infinite vertical oscillating plate with constant heat flux. Thermal

radiation effects on laminar free convection boundary layer of an absorbing gass and

on the combined free and forced convection of electrically conducting fluid in the

presence of transverse magnetic field have been studied by England and Emery [25]

and Gupta and Gupta [26]. Many interesting physical aspects of radiative flows and

effects of mass transfer on fluid motion with respect to varying temperatures have

been explored by Hosain and Takhar [27], Mazumdar and Deka [28], and Gebhart and

Pera [29]. The combined effects of radiation and chemical reaction on free convective

flow in porous medium were studied by Deka and Neog [30]. The important thing

to bear in mind here is that in all above works, the initial and boundary condition

on velocity, shear stress and mixed conditions were employed for various physical

situations but the behavior of fluid motion with condition that the force or shear is

applied on boundary has yet to be explored. The above mentioned literature reflected

on the impact of temperature variation of plate and induced magnetic field on veloc-

ity of fluid. The added force of translating and oscillating plates also influences the

energy transfer processes, was also described in great details. However, to the best

of our knowledge, the influence of induced time dependent shear on heat energy and

mass transfer applied by vertical plate has not been discussed yet. This aspect of

convective flow is explored here. The concerned theoretical findings are expected to

enhance smooth transport of heat energy and mass, and accelerate conduction pro-

cesses while dealing with anomaly of raised system temperature. Waters and King

[31], Bandelli et al [32] , as well as some authors [33-35] have pursued the study of

simple fluid motion when shear stress on boundary is specified and have described

how this particular boundary condition influences the flow.



DIFFERENTIAL INCLUSIONS 3

Furthermore, the complex dynamics of various viscous fluids can be aptly

described by fractional calculus mainly because fractional constitutive relationship

model assesses information about molecular substance more efficiently than custom-

ary constitutive relationship models. Fractional calculus is considered to be an im-

portant tool that gives way to achieving generalization of many classical physical

results. Its applications include fractional Hamiltonian dynamics [36,37], fractal me-

dia [38] and fractional diffusion equation [39], etc. In order to study the properties of

viscous fluids, Germant [40] firstly proposed the use of fractional derivatives. Then,

Slonimsky [41] described the relaxation process by introducing fractional derivatives

into Kelvin-Voigt model. This theory was, then, extended by Bagley and Torvik

[42,43] and Koeller [44]. They established the fact that constitutive relations with

fractional derivatives predicted the theory of hereditary solid mechanics and the the-

ory of viscoelasticity of coiling polymers. Consistence of fractional derivatives model

with basic theories make them more reliable. Many recent contributions [45-54] have

been made using fractional calculus approach to study motion of fluids for different

physical settings.

The present work is motivated to improve a thermal system, say a heating

block, where induction of automated shear on chemical (fluid) above plate will en-

hance smooth flow while keeping the temperature in control. In particular, this paper

studies the dynamics of fluid model in which transfer of heat energy and mass is influ-

enced by shear applied on fluid by vertical plate. Though, the shearing force does not

affect the temperature of fluid but it inreases the flow velocity. Transfer of heat energy

is heightened with increase in temperature which in turn increases the thermal radi-

ation. Temperature check of fluid gets important as increase in temperature beyond

certain measure could lead to final product flaw or further complications of chemical

reactions. The present study will throw light on how thermal radiation energy could

influence the temperature of fluid, how considered geometrical configuration of model

impacts the temperature and how conduction procedures could be improved based

on relation of temperature of fluid with Prandtl number. Mainly, the purpose of this

paper is to determine the factors that would ensure increase in velocity of fluid under

the application of time-dependent shear. The obstruction caused by magnetic and

viscous forces to prevent smooth flow of fluid will also be discussed and illustrated

through mathematical and graphical approach.

Here, we obtain exact solutions for unsteady MHD fluid over an infinite plate

that applies time dependent shear f(t) to the fluid. The free convection of flow is

studied using fractional derivatives to describe more naturally the complex dynamics

of radiative heat and mass transfer in the flow. Viscous dissipation is assumed to be

negligible and species concentration is taken to be very low. The effects of thermal

radiation, mass concentration and temperature parameters on free convective flow
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are studied in the presence of magnetic field. All initial and boundary conditions are

satisfied by obtained general solutions with fractional parameters and limiting values

of these fractional parameters lead to exact solutions of ordinary differential equa-

tions for present model. Some recently obtained exact solutions for convective flow

problems with boundary condition on velocity have also been retrieved by consider-

ing limiting values of the fractional parameters, validating our solutions in this paper.

Also, many interesting physical aspects of radiative flow with mass transfer have been

depicted and verified by graphs. In particular, we have compared velocity profiles for

two special cases of shear stress i.e. one case corresponds to fluid motion when plate

applies constant shear, f(t) = 1 to the fluid and in the second case velocity profiles

have been drawn for oscillating shear stress, f(t) = sin(ωt) applied by the plate to

fluid.

2. MATHEMATICAL FORMULATION OF THE PROBLEM

Let us consider the unsteady flow of an incompressible viscous electrically con-

ducting MhD fluid over an infinite vertical plate. The x-axis of the Cartesian coor-

dinate system is taken along the plate in vertical direction and the y-axis is normal

to the plate. Initially, the fluid and the plate are at the temperature T∞ and species

concentration C∞. At time t = 0+, the plate applies a time-dependent shear stress

h(t) to the fluid in the direction of x-axis. Also, at the same time the plate tempera-

ture is raised to TW and species concentration to CW linearly with time. A uniform

magnetic field B0 is applied in the normal direction of plate. It is assumed that mag-

netic Reynold’s number is very small and the induced magnetic field is negligible in

comparison to transverse magnetic field. The viscous dissipation and Soret & Duoffer

effects due to lower level of concentration are assumed to be negligible.

Above assumptions and Boussinesq’s approximation lead to the following set of gov-

erning equations of unsteady flow

(2.1)
∂u(y, t)

∂t
= ν

∂2u(y, t)

∂y2
+ gβ(T (y, t)−T∞) + gβ∗(C(y, t)−C∞)− σB2

0

ρ
u(y, t); y, t > 0

(2.2) ρCP
∂T (y, t)

∂t
= κ

∂2T (y, t)

∂y2
− ∂qr(y, t)

∂y
; y, t > 0

(2.3)
∂C(y, t)

∂t
= D

∂2C(y, t)

∂y2
; y, t > 0

and initial and boundary conditions with the assumption of no slip between fluid and

plate are

(2.4) u(y, t) = 0, T (y, t) = T∞, C(y, t) = C∞, y ≥ 0, t = 0
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(2.5)
∂u(y, t)

∂y

∣∣∣∣
y=0

=
h(t)

µ
, T (0, t) = TW , C(0, t) = C∞ + (CW − C∞)

U2
0 t

ν
, t > 0

(2.6) u(y, t)→ 0, T (y, t)→ T∞, C(y, t)→ C∞ as y →∞

where u(y, t),T (y, t), C(y, t),ν, g, β, β∗, κ, qr, CP , ρ and D are velocity of the fluid,

its temperature, species concentration in the fluid, kinematic viscosity, gravitational

acceleration, coefficient of thermal expansion, coefficient of expansion with concentra-

tion, thermal conductivity of the fluid, radiative heat flux, specific heat at constant

pressure, density of fluid and mass diffusion coefficient, respectively.

Also in Eq. (2.5), µ = ρν is the coefficient of viscosity and the function h(t) satisfies

the condition h(0) = 0.

Following Cogly-Vincentine-Gilles equilibrium model based on assumption of opti-

cally thin medium with relative low density, we have

(2.7)
∂qr(y, t)

∂y
= 4(T (y, t)− T∞)

∫ ∞
0

KW

(
∂eb
∂T

)
W

dλ = 4I∗(T (y, t)− T∞)

where KW and eb are absorption coefficient and plank function.

Introducing Eq. (2.7) in Eq. (2.2), we have

(2.8) ρCP
∂T (y, t)

∂t
= κ

∂2T (y, t)

∂y2
− 4I∗(T (y, t)− T∞); y, t > 0

To obtain solutions of Eqs. (2.1), (2.3) and (2.8) along with initial and boundary

conditions (2.4), (2.5) and (2.6), we first convert these equations in dimensionless

form.

The following dimensionless quantities have been introduced

u∗ =
u

U0

, y∗ =
yU0

ν
, t∗ =

tU2
0

ν
, T ∗ =

T − T∞
TW − T∞

(2.9)

C∗ =
C − C∞
CW − C∞

, Pr =
µCP
κ

, Sc =
ν

D
, Gr =

ρβν(T − T∞)

U3
0

Gm =
gβ∗ν(C − C∞)

U3
0

, M =
σB2

0ν

ρU2
0

, F =
4I∗ν2

κU2
0

where U0, Pr, Sc, Gr, Gm, M and F are a constant, Prandtl number, Schmidth

number, thermal Grashof number, mass Grashof number, Hartmann number and

dimensionless thermal radiation parameter, respectively.

Using dimension less quantities (2.9) in governing equations (2.1), (2.3) and (2.8) and

dropping ” ∗ ” notation, we obtain

(2.10)
∂u(y, t)

∂t
=
∂2u(y, t)

∂y2
+GrT (y, t) +GmC(y, t)−Mu(y, t) ; y, t > 0

(2.11)
∂T (y, t)

∂t
=

1

Pr

∂2T (y, t)

∂y2
− F

Pr
T (y, t) ; y, t > 0
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(2.12)
∂C(y, t)

∂t
=

1

Sc

∂2C(y, t)

∂y2
; y, t > 0

The corresponding initial and boundary conditions are

u(y, 0) = T (y, 0) = C(y, 0) = 0, ; y ≥ 0(2.13)

∂u(y, t)

∂y

∣∣∣∣
y=0

=
1

ρU2
0

h

(
t∗ν

U2
0

)
= f(t), T (0, t) = 1, C(0, t) = t ; t > 0(2.14)

u(y, t), T (y, t), C(y, t)→ 0 as y →∞

To obtain analytical formulas for velocity, temperature and concentration, we use

fractional derivative approach. In particular, we consider Caputo fractional derivative

operator. Equations (2.10), (2.11) and (2.12) with Caputo differential operator take

the form

(2.15) Dα
t u(y, t) =

∂2u(y, t)

∂y2
+GrT (y, t) +GmC(y, t)−Mu(y, t) ; y, t > 0

(2.16) Dβ
t T (y, t) =

1

Pr

∂2T (y, t)

∂y2
− F

Pr
T (y, t) ; y, t > 0

(2.17) Dγ
t C(y, t) =

1

Sc

∂2C(y, t)

∂y2
, y, t > 0

where Caputo differential operator Dα
t is defined as [55,56]

Dα
t f(t) =

1

Γ(1− α)

∫ t

o

f ′(τ)

(t− τ)α
dτ ; 0 < α < 1

where Γ(.) is the Gamma function.

3. Analytical solutions

Analytical solutions will be obtained by means of Laplace transform and inverse

Laplace transform.

Applying Laplace transform to Eq. (2.17) and using Laplace transform of correspond-

ing initial and boundary condition (2.13) and (2.14), we obtain

(3.1) C̄(y, q) =
1

q2
e−
√
Scqγy

where C̄(y, q) is the Laplace transform of C(y, t).

In order to obtain C(y, t), we write Eq. (3.1) in the form

(3.2) C̄(y, q) =
1

q2
+

1

q2

∞∑
n=1

(−
√
Scy)n

n!
q
γn
2
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Applying Laplace inverse transform to (3.2), we obtain

(3.3) C(y, t) = t+
∞∑
n=1

(−
√
Scy)n

n!

t
−γn
2

+1

Γ(2− γn
2

)

satisfying initial and boundary conditions for mass concentration of the fluid.

Now, applying Laplace transform to Eq.(2.16) and using Laplace transform of corre-

sponding initial and boundary conditions (2.13) and (2.14), we obtain

(3.4) T̄ (y, q) =
1

q
e−
√
Prqβ+Fy

To find T (y, t) = L−1{T̄ (y, q)}, we firstly write Eq. (3.4) in the following form

(3.5) T̄ (y, q) =
1

q
+

1

q

∞∑
n=1

(−
√
Fy)n

n!

∞∑
j=0

Γ(n
2

+ 1)(Pr
F

)jqβj

j!Γ(n
2
− j + 1)

Taking Laplace inverse transform of Eq. (3.5), we obtain

(3.6) T (y, t) = 1 +
∞∑
n=1

(−
√
Fy)n

n!

∞∑
j=0

Γ(n
2

+ 1)( Pr
Ftβ

)j

j!Γ(n
2
− j + 1)Γ(1− βj)

satisfying initial and boundary conditions of temperature.

We can also write the above expression in terms of Fox-H function,

T (y, t) = 1 +
∞∑
n=1

(−
√
Fy)n

n!
H1,1

1,3

[
−Pr
Ftβ

∣∣∣∣ (−n
2
, 0)

(0, 1), (−n
2
,−1), (0,−β)

]
(3.7)

where Fox- H function is defined as[57]

∞∑
n=0

(−z)n
∏p

j=1 Γ(aj + Ajn)

n!
∏q

j=1 Γ(bj +Bjn)
= H1,p

p,q+1

[
z

∣∣∣∣ (1− a1, A1), ..., (1− ap, Ap)
(0, 1), (1− b1, B1), ..., (1− bq, Bq)

]
.

To find the exact expression for velocity field u(y, t), we apply discrete Laplace trans-

form to Eq. (2.15) and obtain

(3.8)
∂2ū(y, q)

∂y2
− (qα +M)ū(y, q) = −GrT̄ (y, q)−GmC̄(y, q)

where ū(y, q) is the Laplace transform of u(y, t). Also, ū(y, q) has to satisfy the

condition

(3.9)
∂ū(y, q)

∂y

∣∣∣∣
y=0

= F (q)

where F (q) is Laplace transform of f(t).

Solving Eq. (3.8) with the help of Eqs. (3.1), (3.4) and (3.9), we obtain

ū(y, q) = −F (q)e−
√
qα+My

√
qα+M

+
Gr
√
Prqβ+Fe−

√
qα+My

q
√
qα+M [Prqβ−qα+(F−M)]

+ Gm
√
Scqγe−

√
qα+My

q2[Scqγ−qα−M ]
√
qα+M

(3.10)

− Gre−
√
Prqβ+Fy

q[Prqβ−qα+(F−M)]
− Gme−

√
qγScy

q2[Scqγ−qα−M ]
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To find u(y, t) = L−1{ū(y, q)}, we firstly write Eq. (3.10) in a more suitable form as

follows

ū(y, q) = −F (q)e−
√
qα+My

√
qα+M

(3.11)

+GrPr

(
e−
√
qα+My

√
qα+M

qβ−1√
Prqβ+F

)(
1

Prqβ−qα+(F−M)

)
+GrF

(
e−
√
qα+My

√
qα+M

q−1√
Prqβ+F

)(
1

Prqβ−qα+(F−M)

)
+
√
ScGm

(
e−
√
qα+My

√
qα+M

q
γ
2
−2

)(
1

Scqγ−qα−M

)
− Gre−

√
Prqβ+Fy

q[Prqβ−qα+(F−M)]
− Gme−

√
qγScy

q2[Scqγ−qα−M ]

Applying Laplace inverse transform to Eq. (3.11) and using Appendix A1, A2, A3,

A4 and A5, we obtain analytic expression of velocity field

u(y, t) = ut(y, t) + uTC(y, t)(3.12)

where

ut(y, t) = −
∫ t

0

∫ ∞
0

e−
y2

4u
−Mu

√
πu

h(u, s)f(t− s)duds(3.13)

represents velocity field corresponding to time dependent shear stress and

uTC(y, t) = 1
Pr

∑∞
p=0

1
(Pr)p

∫ t
0

∫ s′
0

∫∞
0

e−
y2

4u−Mu
√
πu

h(u, s)(3.14)

×
{
Gr

√
PrGβ,β−1, 1

2
(−F
Pr
, s
′ − s) + GrF√

Pr
Gβ,−1, 1

2

(
−F
Pr
, s
′ − s

)}
Gα,pα,p+1(−F

Pr
, t− s′)dudsds′

+ Gm√
ScΓ(2− γ

2
)

∑∞
m=0

1
(Sc)m

∫ t
0

∫ s′
0

∫∞
0

e−
y2

4u−Mu
√
πu

h(u, s)(s
′ − s)1− γ

2Gγ,αm,m+1(M
Sc
, t− s′)dudsds′

−Gr
Pr

∑∞
n=0

(−
√
Pry)n

n!

∑∞
m=0

(
F
Pr

)m
Γ(n

2
+1)

m!Γ(n
2
−m+1)Γ(βm−βn

2
)

∑∞
p=0

1
(Pr)p

∫ t
0
(t− s)βm−βn2 −1

×Gβ,pα−1,p+1(M−F
Pr

, s)ds− Gm
Sc

∑∞
n=0

(−
√
Scy)n

n!Γ(2− γn
2

)

∑∞
m=0

1
(Sc)m

∫ t
0
(t− s)1− γ

2Gγ,αm,m+1(M
Sc
, s)ds

corresponds to thermal radiation and mass concentration of fluid.

In Eqs. (3.13) and (3.14), h(u, t) is defined as

h(u, t) = L−1{e−uqα} =
1

αΓ(α)

∞∑
n=0

(−u)n

(n+ 1)!Γ(α(n+ 1))

∫ t

0

∫ ∞
0

(t− s)α−1J0(2
√
xs)xα(n+1)dxds

where J0(.) is the Bessel function.

4. Limiting cases

For α, β, γ → 1 in Eqs. (3.1), (3.4) and (3.10), we can obtain (y, t) solutions of

governing equations in ordinary differential operator. Some significant limiting cases

have been discussed below.
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4.1. Solution in the absence of magnetic field. The absence of magnetic field

i.e. M = 0 and assumption of α, β, γ → 1 lead to the following expression of

velocity field

u(y, t) = −
∫ t

0
e−

y2

4s√
πs
f(t− s)ds+ Gr

√
Pr

π(Pr−1)

∫ t
0

∫ s′
0

e
− y

2

4s−
F
Pr

(s
′
−s)− −F

Pr−1
(t−s

′
)

√
s(s′−s)

dsds
′

(4.1)

+ GrF
π(Pr−1)

∫ t
0

∫ s′
0

∫ t−s′
0

e
− y

2

4s−
F
Pr

(s
′
−s)− F

Pr−1
u

√
s(s′−s)

dsduds
′
+ Gm

√
Sc

Sc−1

∫ t
0
erfc( y

2
√
s
)(t− s)ds

− Gm
Sc−1

∫ t
0
erfc(

√
Scy

2
√
s

)(t− s)ds− Gr
Pr−1

∑∞
n=0

(−
√
Pry)n

n!

∑∞
m=0

( F
Pr

)m

m!

Γ(n
2

+1)

Γ(n
2
−m+1)Γ(m−n

2
)

×
∫ t

0

∫ s′
0
e−

F
Pr−1

s(t− s′)m−n2−1dsds
′

4.2. Solution in the case of constant radiative heat flux and β → 1. Assuming

radiative heat flux to be constant along y-direction of plate, F=0 (or qr=constant)and

β → 1, we obtain from Eq. (3.4) the following expression

(4.2) T̄ (y, q) =
1

q
e−
√
Prqy

Applying Laplace inverse transform to Eq. (4.2), we obtain an expression for tem-

perature of the fluid in the absence of thermal radiation i.e.

(4.3) T (y, t) = erfc(

√
Pry

2
√
t

)

satisfying also the corresponding boundary condition (2.14) for temperature where

erfc(.) represents complementary error function.

4.3. Solution in the absence of magnetic field and constant radiative heat

flux. The absence of magnetic field, constant radiative heat flux along y-direction of

plate, F=0 (or qr=constant) and assumption of α, β, γ → 1 in Eq. (3.10) lead to

the following expression of velocity field

u(y, t) = −
∫ t

0
e−

y2

4s√
πs
f(t− s)ds+ Gr

√
Pr

Pr−1

∫ t
0
erfc( y

2
√
s
)ds(4.4)

+ GrF√
Pr(Pr−1)

∫ t
0
erfc( y

2
√
s
)(t− s)ds+ Gm

√
Sc

Sc−1

∫ t
0
erfc( y

2
√
s
)(t− s)ds

− Gr
Pr−1

∫ t
0
erfc(

√
Pry

2
√
s

)ds− Gm
Sc−1

∫ t
0
erfc(

√
Scy

2
√
s

)(t− s)ds

4.4. Velocity part corresponding to shear stress for α→ 1. Assuming α→ 1

in shear stress part of Eq. (3.10), we calculate ut(y, t)

ut(y, t) = L−1{ūt(y, q)} = L−1{−F (q)e−
√
q+My

√
q +M

}(4.5)

velocity field corresponding to time dependent shear stress and it is

ut(y, t) = −
∫ t

0

e−
y2

4s
−Ms

√
πs

f(t− s)ds(4.6)
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and

∂ut(y, t)

∂y
=

y

2
√
π

∫ t

0

e−
y2

4s −Ms

s
3
2

f(t− s)ds(4.7)

Eq. (4.7) can also be written as

∂ut(y, t)

∂y
=

2√
π

∫ ∞
y

2
√
t

e−s
2−M y2

4s2 f(t− y2

4s2
)ds(4.8)

Putting y = 0 in Eq. (4.8), we obtain

∂ut(y, t)

∂y

∣∣∣∣
y=0

= f(t)(4.9)

satisfying the corresponding boundary condition (2.14) for velocity ut(y, t) and as for

velocity field uTC(y, t), we observe from Eq. (3.14)

∂uTC(y, t)

∂y

∣∣∣∣
y=0

= 0(4.10)

5. Results and Discussion

In order to study the influence of fractional parameters α, β, γ on motion of

MHD fluid over an infinite plate that applies time dependent shear to the fluid, we

have drawn several graphs. The effects of physical parameters Gr, Gm, Sc, Pr, M ,

F and of fractional parameters α, β, γ on free convection of radiative flow will be

discussed for the cases of constant shear and oscillating shear applied to fluid.

Fig. 1 corresponds to the expression of velocity field for different values of t

and fixed values of Gr, Gm, Sc, Pr, M , F , α, β, γ when plate applies constant shear

f(t) = 1 to the fluid. This graph exhibits that velocity is increasing with increasing

values of time as well as verifying the boundary condition u(y, t) → 0 as y → ∞.

Fig. 2 shows velocity profiles for varying parametric values of Gr, Gm and M and for

fixed values of Sc, Pr, F , α, β, γ at t = 0.2 when plate applies constant shear f(t) = 1

to the fluid. It is observed that velocity increases with increase in thermal Grashof

number Gr and mass Grashof number Gm but it has inverse relation with Hartman

number M.

In Fig. 3 velocity profiles for different values of F and M are shown at t = 0.1

and Gr, Gm, Sc, Pr, α, β, γ are taken to be fixed when plate applies constant shear

f(t) = 1 to the fluid. It is clear from the figure that velocity increases with the

decrease in F and M . Velocity profiles for different values of Sc and M are shown at

t = 0.5 for fixed values of Gr, Gm, F Pr, α, β, γ for the case of shear stress f(t) = 1.

This figure depicts the inverse relation of velocity field with Sc and M .

In Fig. 5 and Fig. 7 comparison has been made between velocity profiles for

different values of y for the cases of constant shear, f(t) = 1 and oscillating shear,

f(t) = sin(ωt), where ω is frequency of oscillation. The values of parameters Gr, Gm,
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Sc, Pr, M , F , α, β, γ and ω are taken to be fixed. As expected, velocity is decreas-

ing in both cases for increasing value of y because with increasing y, the impact of

shear applied to fluid by the plate is decreased, reducing the magnitude of velocity.

Furthermore, it is observed from Fig. 5 that velocity profiles show oscillating pattern

of velocity of viscous MHD fluid owing to oscillating shear. Fig. 7 represents velocity

profiles for different values of t and fixed values of Gr, Gm, Sc, Pr, F , α, β, γ, ω

when plate applies oscillating shear to the fluid. It can be observed that velocity

is increasing with increasing t, coinciding with the case of constant shear f(t) = 1

applied to the fluid, shown in Fig. 1. Also, in Fig. 7, the boundary condition,

u(y, t)→ 0 as y →∞ is observed to be verified. Another important aspect can also

be observed by comparing Fig. 1 and Fig. 7 that velocity in case of oscillating shear

has greater magnitude than in the case of constant shear at a particular time t.

Fig. 9 shows temperature profiles for different values of F and Pr at t = 0.2

and fixed value of fractional parameter β. It can be seen that temperature increases

with decreasing values of F and Pr. However, a rapid change is observed in tem-

perature profiles for the values of Pr = 0.7 and Pr = 5 i.e. temperature decreases

sharply for rapid increase in Prandtl number Pr. In Fig. 10, we observe the behavior

of mass concentration of fluid for different values of Sc at t = 0.2 and fixed value

of fractional parameter γ. It clearly shows that increasing Schmidt number, Sc has

negative impact on concentration of MHD fluid and vice versa.

Lastly, Fig. 8, Fig. 10 and Fig. 11 reflects on the influence of fractional

parameters α, β, γ on velocity, temperature and mass concentration of fluid, respec-

tively, for the case of constant shear f(t) = 1 applied to the fluid by infinite plate.

These figures show that for decreasing values of parameters α, β and γ, velocity,

temperature and mass concentration of fluid increase, respectively. Also, we retrieve

profiles of velocity, temperature and concentration for governing equations with ordi-

nary differential operators by taking α, β, γ → 1.

To establish the validity of analytical solutions, the numerical results for con-

centration have been prepared. A comparison of values of concentration obtained by

using Stehfest’s numerical algorithm [58] for calculating inverse Laplace transform of

Eq. (3.1) has been made with the values of concentration calculated from Eq. (3.3)

for n = 55 terms. These results are shown in Table 1. Stehfest’s algorithm is defined

by followinng relation

(5.1) C(y, t) = L−1{C̄(y, q)} ≈ ln 2

t

2r∑
k=1

bkC̄

(
y, k

ln 2

t

)
,
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where r is a positive integer,

(5.2) bk = (−1)k+r

min(k,r)∑
s=

[
k+1
2

] sr(2s)!

(r − s)!s!(s− 1)!(k − s)!(2s− k)!

and [p] denotes the integer part of the real number p. Table 1 shows the accuracy of

analytical results upto the order of 10−6, thus validating our solutions of concentra-

tion. Similar approach could be adopted for validation of velocity and temperature

results.

Table 1. Values of concentration C(y, t) resulting from the analytic so-

lution Eq. (3.3) and the numerical algorithm applied to Eq. (3.2) at t = 5,

Sc = 1 and γ = 0.58

y C(y,t)-Eq. (3.3) C(y,t)-Eq. (3.2) Absolute Error

0 5 5.00001 6.031× 10−6

0.1 4.66656 4.66658 1.694× 10−5

0.2 4.35403 4.35404 1.338× 10−5

0.3 4.06119 4.0612 3.346× 10−6

0.4 3.7869 3.78691 6.425× 10−6

0.5 3.53007 3.53008 5.33× 10−6

0.6 3.28967 3.28968 4.329× 10−6

0.7 3.06472 3.06473 6.388× 10−7

0.8 2.8543 2.8543 5.092× 10−6

0.9 2.65753 2.65754 6.509× 10−6

1 2.47359 2.47359 2.626× 10−6

6. Conclusion

Theoretical study of an MHD viscous fluid flow over an infinite plate that

applies an arbitrary shear to the fluid has been performed and an analysis of flow-

enhancing and flow-hindering factors has been prepared. Caputo fractional differen-

tial operator owing the efficiency of fractional constitutive equations to assess informa-

tion about molecular movement of particles as well as for the purpose of generalization

has been employed. Exact expressions of velocity field, temperature and mass concen-

tration have been obtained by taking Laplace transform of dimensionless fractional

differential equations. Both temperature and mass concentration are represented in

series solutions. The velocity of fluid is expressed as a sum of two functions i.e. one

corresponds to the shear applied by the plate to fluid and the second part corresponds

to thermal radiation and mass concentration. We observe that initial and boundary
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conditions for temperature and mass concentration are verified by the obtained so-

lutions directly. However, for the case of velocity field we verified the shear stress

boundary condition for the shear f(t) = 1. It could also be observed that the part

of velocity corresponding to shear stress vanishes if plate is applying no stress to the

fluid i.e. f(t) = 0

Some significant limiting cases of fluid parameters and fractional parame-

ters have also been discussed. Particularly, β → 1 and thermal radiation parameter,

F = 0 lead to known expression of temperature in the form of complementary error

function. Some interesting facts are established by considering two cases of shear

stress. The first case corresponds to the motion of fluid over an infinite plate that

applies constant shear f(t) = 1 to the fluid and in the second case, plate applies os-

cillating shear to the fluid. Finally, some physical aspects of fluid motion are brought

to light through graphs. Graphical findings are summed up as follows:

1. Both temperature and mass concentration of fluid are independent of shear being

applied to fluid by the plate. Temperature has inverse relation with Prandtl num-

ber, Pr and thermal radiation parameter, F . As increase in temperature will cause

increase in thermal radiation emission that will ultimately decrease the temperature.

Also, concentration has inverse relation with Schmidth number, Sc.

2. Velocity increases with the increase in the parametric values of thermal Grashof

number, Gr and mass Grashof number, Gm and decreases with the increase of pa-

rameters Sc, F and M .

3. Comparison of velocity profiles for both cases of shear stress verifies the fact that

velocity decreases for increasing values of y. This decrease in velocity is due to less

impact of shear induced on fluid being away from the plate at height. A significant

difference between graphs of velocity for two cases is observed as an oscillating pat-

tern of velocity profiles for the case of oscillating shear distinguishes it from the other

case of constant shear stress.

4. The influence of fractional parameters on fluid motion is also depicted through

graphs. It is observed that velocity, temperature and concentration decrease with

increasing values of parameters α, β and γ for the case of constant shear applied to

fluid by the plate.

5. We have obtained numerical solutions for concentration of fluid and have compared

these solutions with analytical solutions. The accuracy and validity of analytical so-

lutions have been established by calculating absolute error being of order 10−6. Such

validity could be checked for temperature and velocity.

The graphical results are in direct correspondence with physical understand-

ing of the model as the added force of shear applied by the plate on fluid increases

the mass and thermal diffusivity near the boundary and thus increasing the thermal

Grashof number, Gr and mass Grashof number, Gm. The increased turbulence near
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boundary causes increase in velocity of fluid. However, magnetic forces and collective

movement of fluid particles impede smooth flow of fluid over plate, causing decrease

in velocity of fluid. This fact is illustrated in graphs that increase in Schmidt number,

Sc and Hartmann number, M cause decrease in velocity.

Appendix

L−1{qαe−uqα} =

∫ ∞
0

J0(2
√
xt)

1

α

∞∑
n=0

(−u)nxα(n+1)

(n+ 1)!Γ[α(n+ 1)]
, (A1)

L−1{ qb

(qa − d)c
} = Ga,b,c(d, t); Re(ac− b) > 0, Re(q) > 0, | p

qa
| < 1, (A2)

1

Prqβ − qα + (F −M)
=

1

Pr

∞∑
p=0

( 1
Pr

)pqpα

(qα − M−F
Pr

)p+1
, (A3)

1

Scqγ − qα −M
=

1

Sc

∞∑
m=0

( 1
Sc

)mqmα

(qγ − M
Sc

)m+1
, (A4)

L−1

{
e−
√
q+My

√
q +M

}
= e−Mt

(
e−

y2

4t

√
πt

)
, (A5)

L−1

{
e−
√
Prqy

q

}
= erfc

(√
pry

2
√
t

)
, (A6)
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