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Some Couette flows of a Maxwell fluid caused by the bottom plate applying shear rate
on the fluid, are studied. Exact expressions for velocity and shear stress corresponding
to the fluid motion are determined using Laplace transform. Two particular cases of
constant shear rate on the bottom plate and sinusoidal oscillations of the wall shear rate
are discussed. Some important characteristics of fluid motion are highlighted through
graphs.
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1. Introduction

Some fluids are observed to exhibit both characteristics of viscosity and elasticity.

Such fluids, known as Maxwell fluids, comprise a bigger subclass of rate type flu-

ids. The constitutive relation corresponding to Maxwell fluids is given by [Bird,

1987],[Bohme, 1987],[Joseph, 1990]

S + λ(Ṡ− LS− SLT ) = µA,

where S is the extra stress tensor, L is the velocity gradient, A = L + LT is the

first Rivlin-Erickson tensor, λ and µ are the relaxation time and dynamic viscosity,

respectively and the superposed dot indicates the material time derivative. Some

viscoelastic fluids showing characteristics of stress relaxation, creep and normal

stress differences, being developed in simple shear flows, are better represented by

a rather larger class of fluids, known as Oldroyd-B fluids. The constitutive equation

corresponding to Oldroyd-B fluids involves relaxation time as well as retardation

time, λr. Maxwell model can also be considered as a special case of Oldroyd-B model

and this case can be achieved by making λr → 0 in Oldroyd-B fluids constitutive
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equation. Maxwell fluid model has been the subject of study for many researchers

because of its simple and convenient approach in regards to determining analyt-

ical solutions for various fluid motion problems. In course of time, the motion of

Maxwell fluids [Riccius et al., 1987], [Renardy 1986, 1988, 1990, 2000], [Böhme,

2000], [Fetecau and Fetecau, 2005, 2011], [Hayat et al., ] has been studied in various

circumstances e.g. fluid owing its motion to the motion of boundary, application of a

body force, imposition of pressure gradient and application of tangential shear. The

first exact solution of Rayleigh’s Stokes’ problem for Maxwell fluids was given by

[Tanner, 1962]. Some other interesting solutions of Stokes’ first problem correspond-

ing to Maxwell fluids have been determined by [Jordan et al., 2004] and [Jordan

and Puri, 2005]. Christov [2010] has proposed convincing results corresponding to

Stokes’ first problem for Oldroyd-B fluid.

The flow of a fluid is called Couette flow if the fluid is bounded by two parallel walls

such that they are in relative motion. The flow between two parallel plates such

that one plate is at rest and the other one is moving in its plane with a constant

speed, is called the simple Couette flow. The flow between two plates produced

by a constant pressure gradient in the direction of the flow is termed as Poiseuille

flow. The generalized Couette flow is a superposition of the simple Couette flow

over Poiseuille flow [Schlichting, 1968]. Some practical applications of this type of

flows have been presented in the reference [Erdogan, 1998]. Recently, considerable

amount of work regarding Couette flow problem has been done. Siddiqui et al. [2005]

considered the problem of steady plane Couette flows between two parallel plates

sliding with respect to each other. Asghar et al. [2009] studied the behavior of un-

steady Couette flow for second grade fluids. Jha [2001] analyzed natural convection

effects on fluid in an unsteady MHD Couette flow. Marques et al. [2000] brought

into light the effects of fluid slip at the boundary for Couette flow under steady

state conditions. Khalid and Vafai [2004] have studied the effect of slip condition on

Couette flows due to an oscillating wall. Denn and Porteous [1971] have presented

interesting results regarding unsteady Couette flow of a Maxwell fluid between two

infinite parallel plates while similar solution corresponding to second grade fluids

were established by [Jordan and Puri, 2002] and [Jordan, 2005]. Some interesting

results regarding Couette or Stokes’ flows of non-Newtonian fluids can be found in

references [Hayat et al., 2007],[Hayat and Javed, 2011],[Danish and Kumar, 2012].

In this paper, we have dealt with Couette flows of a Maxwell fluid caused by the

bottom plate which applies on the fluid a shear rate of the form ∂u(0,t)
∂y = τ0

µ f(t).

Similar solutions of the same generality have been recently obtained by [Fetecau

et al., 2011] for second grade fluids. Laplace transform has been used to determine

exact expressions for velocity and shear stress corresponding to the fluid motion.

In particular, the cases of constant shear rate on the bottom plate and sinusoidal

oscillations of the wall shear rate are studied. Some relevant properties of velocity

and shear stress are brought to light through graphical illustrations.
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2. Problem Formulation and Calculation of the Velocity Field

Let us consider an incompressible, homogeneous Maxwell fluid between two flat,

infinite solid plates situated in the planes y=0 and y=h of a Cartesian coordinate

system Oxyz with the positive y-axis in the upward direction, Fig. 1.

Initially, both the fluid and the plates are considered to be at rest. At the moment

t = 0+ the motion of the fluid is caused by the bottom plate that applies a shear

stress of the form τ0
µ f(t) to the fluid. Here f(t) is a piecewise continuous function

defined on [0,∞) and f(0)=0. We also assume that the Laplace transform of function

f(t) exists.

For the present fluid motion problem, the velocity vector has the form [Jordan et

al., 2004],[Jordan and Puri, 2005]

V = u(y, t)i. (2.1)

while the constitutive and governing equations are(
1 + λ

∂

∂t

)
τ(y, t) = µ

∂u(y, t)

∂y
, (2.2)

(
1 + λ

∂

∂t

)
∂u(y, t)

∂t
= ν

∂2u(y, t)

∂y2
, (y, t) ∈ (0, h)× (0,∞), (2.3)

where τ(y, t) is the tangential shear stress, µ is the dynamic viscosity of the fluid

and ν = µ
ρ is the kinematic viscosity, ρ being the constant density of the fluid.

Also, the initial and boundary conditions are given by

u(y, 0) = 0,
∂u(y, 0)

∂t
= 0, τ(y, 0) = 0, y ∈ [0, h], (2.4)
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∂u(0, t)

∂y
=
τ0
µ
f(t), u(h, t) = 0. (2.5)

By using the following dimensionless variables and functions

y∗ =
y

h
, t∗ =

νt

h2
, τ∗ =

τ

τ0
, u∗ =

u

hτ0/µ
, g(t∗) = f

(
h2t∗

ν

)
, (2.6)

we obtain the next non dimensional initial boundary value problem (dropping the

” ∗ ” notation)(
1 +D

∂

∂t

)
τ(y, t) =

∂u(y, t)

∂y
, (y, t) ∈ (0, 1)× (0,∞), (2.7)

(
1 +D

∂

∂t

)
∂u(y, t)

∂t
=
∂2u(y, t)

∂y2
, (y, t) ∈ (0, 1)× (0,∞), (2.8)

∂u(0, t)

∂y
= g(t), u(1, t) = 0, t ≥ 0, (2.9)

u(y, 0) = 0,
∂u(y, 0)

∂t
= 0, τ(y, 0) = 0, y ∈ [0, 1], (2.10)

where D = λ(
h2/ν

) is the Deborah number.

By applying the temporal Laplace transform L [Debnath and Bhatta, 2007], to Eqs.

(2.7)-(2.9) and employing the initial conditions (10), we obtain the problem

(1 +Dq)τ̄(y, q) =
∂ū(y, q)

∂y
, y ∈ (0, 1), Req > 0, (2.11)

∂2ū(y, q)

∂y2
= (Dq2 + q)ū(y, q), y ∈ (0, 1), Req > 0, (2.12)

∂ū(0, q)

∂y
= G(q), ū(1, q) = 0, (2.13)

where τ̄(y, q) = L{τ(y, t)}, ū(y, q) = L{u(y, t)}, G(q) = L{g(t)} are the Laplace

transforms of the functions τ(y, t), u(y, t) and g(t), respectively.

The transform domain solution of Eq. (2.12) with the boundary conditions (2.13)

is given by

ū(y, q) = G(q)G1(y, q), (2.14)

where

G1(y, q) =
sh[(y − 1)

√
Dq2 + q]√

Dq2 + qch(
√
Dq2 + q)

. (2.15)
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In order to find the inverse Laplace transform of the right part of Eq. (2.14), we

consider the auxiliary function

F1(y, q) =
sh[(y − 1)

√
q]

√
qch(
√
q)

, (2.16)

which is the image of the function

f1(y, t) = −2

∞∑
n=0

cos(αny) exp(−αn2t), (2.17)

with αn = (2n+1)π
2 , n=0,1,2,...

Since G1(y, q) = (F1ow)(q) = F1(y, w(q)), with w(q) = Dq2+q = D

(
q+ 1

2D

)2

− 1
4D

, then its inverse Laplace transform is

g1(y, t) = L−1{G1(y, q)} =

∫ ∞
0

f1(y, z)p(z, t)dz, (2.18)

where

p(z, t) = L−1{e−zw(q)} = L−1
{
e

z
4D .e

−zD

(
q+ 1

2D

)2}
. (2.19)

By using Eq. (A.1) from Appendix, we obtain

p(z, t) =
t

2
e

z−2t
4D

∞∑
k=0

(−Dz)k

(k + 1)!(2k + 1)!

∫ ∞
0

J2(2
√
xt)dx, (2.20)

where Jν(.) is the Bessel function of first kind and order ν.

Replacing (2.17) and (2.20) into (2.18) we find that

g1(y, t) = −te− t
2D

∞∑
n=0

cos(αny)

∞∑
k=0

(−Dz)k

(k + 1)!(2k + 1)!

∫ ∞
0

x2k+1J2(2
√
xt)dx

∫ ∞
0

zke
−

(
αn

2− 1
4D

)
z

dz

= −te− t
2D

∞∑
n=0

cos(αny)

∫ ∞
0

J2(2
√
xt)

∞∑
k=0

(−D)kΓ(k + 1)x2k+1

(k + 1)!(2k + 1)!bk+1
n

dx, (2.21)

where bn = αn
2 − 1

4D > 0 and Γ is the Gamma function.

By using Eq. (A.2) from Appendix, we obtain the following simpler expression of

the function g1(y, t):

g1(y, t) = −2t

D
e−

t
2D

∞∑
n=0

cos(αny)

∫ ∞
0

J2(2
√
xt)

1

x

[
1− cos

(
x

√
D

bn

)]
dx. (2.22)
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Now, using the properties of the Bessel functions [Abramowitz and Stegun, 1972],

we obtain

g1(y, t) = −2e−
t

2D

∞∑
n=0

cos(αny)√
bnD

sin

(
t

√
bn
D

)
. (2.23)

Finally, using Eqs. (2.14), (2.23) and the convolution theorem we obtain the expres-

sion of the velocity given by

u(y, t) = (g ∗ g1)(t) = −2

∞∑
n=0

cos(αny)√
bnD

∫ t

0

g(t− s)e− s
2D sin

(
s

√
bn
D

)
ds. (2.24)

3. Calculation of the Shear Stress

In order to determine the shear stress τ(y, t), we use Eqs. (2.11), (2.14) and (2.23).

Introducing Eq. (2.14) into Eq. (2.11) we find that

τ̄(y, q) =
1

1 +Dq
G(q)

∂G1(y, q)

∂y
=
G(q)

D

1

q + 1
D

∂G1(y, q)

∂y
=

1

D
G(q)G2(y, q),(3.1)

where the function

G2(y, q) =
1

q + 1/D

∂G1(y, q)

∂y
(3.2)

has the inverse Laplace transform

g2(y, t) =

∫ t

0

e−
(t−s)

D
∂g1(y, s)

∂y
ds = 2e−

t
D

∞∑
n=0

αn sin(αny)√
bnD

∫ t

0

e
s

2D sin

(
s

√
bn
D

)
ds.

By evaluating the last integral, it results

g2(y, t) = e−
t
D + 2e−

t
2D

∞∑
n=0

sin(αny)

αn

[
1

2
√
bnD

sin

(
t

√
bn
D

)
− cos

(
t

√
bn
D

)]
.(3.3)

Consequently, the shear stress can be written in the simpler form

τ(y, t) =
1

D
(g ∗ g2)(t) =

1

D

∫ t

0

g(t− s)g2(y, s)ds, (3.4)

where g2(y, s) is given by the above relation.

4. Some particular cases of the motion

In this section we consider the following two expressions of the function g(t)

• g(t) = H(t), H(t) =

{
0, t ≤ 0

1, t > 0
being the Heaviside function;

• g(t) = sin(Ωt), Ω > 0 is the constant frequency of the oscillations.
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In the first case, replacing g(t− s) = 1 into Eq. (2.24) we obtain

u(y, t) = −2

∞∑
n=0

cos(αny)√
bnD

∫ t

0

e−
s

2D sin

(
s

√
bn
D

)
ds

= −2

∞∑
n=0

cos(αny)

αn2
+ 2e−

t
2D

∞∑
n=0

cos(αny)

αn2

[
1

2
√
bnD

sin

(
t

√
bn
D

)
+ cos

(
t

√
bn
D

)]
.

By using Eq. (A.3) from Appendix we get the velocity field under the form

u(y, t) = y − 1 + 2e−
t

2D

∞∑
n=0

cos(αny)

αn2

[
1

2
√
bnD

sin

(
t

√
bn
D

)
+ cos

(
t

√
bn
D

)]
.(4.1)

The velocity given by Eq. (4.1) has the following temporal limits:

lim
t→0+

u(y, t) = 0, lim
t→∞

u(y, t) = y − 1. (4.2)

From Eq. (4.2) it results that the velocity u(y, t) does not exhibit a jump of discon-

tinuity at t=0 and, for t → ∞ it reduces to the ”permanent solution” (or steady

solution) us = y − 1. Furthermore, all initial and boundary conditions are clearly

satisfied.

By using the illustrations generated with the software Mathcad, we discuss

some physical aspects of the flow. In all figures we use ν = 0.1655m2/s λ =

0.062951s, ρ = 840 kg/m3 . In Fig. 2, we have plotted the profiles of the veloc-

ity u(y, t) given by Eq. (4.1), versus y ∈ [0, 1], t ∈ {1, 1.5, 3} and for different values

of the Deborah number D. It is clear that the absolute values of the velocity de-

crease if the Deborah number decreases.

For large values of the time t the diagrams of the velocity tend to the diagram of

the ”permanent velocity” up = y− 1. Figure 3 contains diagrams of velocity u(y, t)

, versus t, for y ∈ {0.1, 0.4, 0.6} and different values of Deborah number D. For

small values of the time t the influence of the Deborah number on the velocity is

insignificant. In the interval t ∈ [1, 4] the influence of the Deborah number on the

velocity is significant and the velocity increases if the Deborah number decreases.

For t≥ 4 the velocity tends to the permanent velocity.

In order to determine the velocity field corresponding to the oscillating shear

rate g(t) = sin(Ωt) we use Eq. (2.24) with g(t− s) = sin Ω(t− s) and have

u(y, t) = up(y, t) + ut(y, t) (4.3)

where

up(y, t) = 2Ω cos(Ωt)

∞∑
n=0

cos(αny)

(αn2 −DΩ2)2 + Ω2

−2 sin(Ωt)

∞∑
n=0

(αn
2 −DΩ2) cos(αny)

(αn2 −DΩ2)2 + Ω2
, (4.4)
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ut(y, t) = −Ωe−
t

2D

∞∑
n=0

cos(αny)√
bnD[(αn2 −DΩ2)2 + Ω2]

×
[
2
√
bnD cos

(
t

√
bn
D

)
+ [1− 2D(αn

2 −DΩ2)] sin

(
t

√
bn
D

)]
. (4.5)

The permanent solution (4.4) can also be written in the simpler form

up(y, t) =
1

(A2 +B2)(sh2A+ cosh2B)

{ [AM2(y)−BM1(y)] cos(Ωt)

+[AM1(y) +BM2(y)] sin(Ωt)

}
,

(4.6)

where

2A2 = Ω
√
D2Ω2 + 1−DΩ2; 2B2 = Ω

√
D2Ω2 + 1 +DΩ2, (4.7)

M1(y) = chA cosBsh[A(y − 1)] cos[B(y − 1)]

+shA sinBch[A(y − 1)] sin[B(y − 1)], (4.8)

M2(y) = chA cosBch[A(y − 1)] sin[B(y − 1)]

−shA sinBsh[A(y − 1)] cos[B(y − 1)]. (4.9)

Physical aspects of the flow in the case of sinusoidal shear rate on the bottom plate

are illustrated by means of the figures 4 and 5.

In Fig. 4 we plotted the velocity u(y, t) given by Eq. (4.3), versus y, for Ω =

2, t ∈ {5, 10, 15} and for different values of the Deborah number D. As shown in

these diagrams, for a fixed time t, the influence of the Deborah number on the

velocity can be different. For example, for t ∈ {5, 15} the velocity increases if the

Deborah number decreases, and for t = 10 the velocity decreases if the Deborah

number decreases.

Fig. 5 contains the profiles of the starting velocity u(y,t) given by Eq. (4.3) and

the ”permanent solution” given by Eq. (4.4).These diagrams were plotted versus

t, for y = 0.5, Ω ∈ {0.5, 1.2} and for different values of the Deborah number D.

An important practical aspect of this type of flow is the achievement of ”steady-

state” flow. In this case the flow is in accordance with the permanent solution and

it achieves after a time t from which the transient solution can be neglected. It is

clear that, for given values of the frequency of oscillations of the shear rate, the

time to reach the steady-state is decreasing if the Deborah number decreases. Also,

this time decreases if the frequency Ω increases.

5. Conclusions

The aim of this paper is to find some new exact solutions for Couette flows of

a Maxwell fluid generated by a time-dependent shear rate given on the bottom

plate. Expressions for velocity and shear stress are obtained for the general case
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∂u(y,t)
∂y

∣∣∣∣
y=0

= τ0
µ f(t). Two particular cases corresponding to a constant shear rate

and sinusoidal oscillations of the shear rate are analyzed. The influence of the Deb-

orah number on the fluid motion was studied by means of numerical and graphical

results generated with the software Mathcad. The time to reach the steady-state

flow can also be obtained by graphical illustrations. The dependence of this time of

the Deborah number was also studied.

Appendix

The following relations are used:

L−1
{(

q +
1

2D

)2

e
−zD

(
q+ 1

2D

)2}
=
e

−t
2D

2

∫ ∞
0

J0(2
√
xt)

∞∑
k=0

(−Dz)kx2(k+1)

(k + 1)!(2k + 1)!
dx, (A.1)

Also, ∫ ∞
0

(t− s)J0(2
√
xs)ds =

t

x
J2(2
√
xt).

∞∑
k=0

(−1)kx2k+1

(k + 1)(2k + 1)!
=

2

x
(1− cosx), (A.2)

−
∞∑
n=0

cos(αny)

αn2
= y − 1. (A.3)
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