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Abstract Unsteady motion of a Maxwell fluid over an
infinite plate that applies an oscillating shear to the fluid is
studied by means of integral transforms. The obtained solu-
tions satisfy all initial and boundary conditions. They are
presented as a sum of steady-state and transient solutions
and can easily be reduced to the similar solutions for Newto-
nian fluids. They describe the motion of the fluid some time
after its initiation. After that time, when the transients disap-
pear, the motion of the fluid is described by the steady-state
solutions which are periodic in time and independent of the
initial conditions. However, they satisfy the governing equa-
tions and boundary conditions. Finally, the required time to
reach the steady-state, as well as a comparison between mod-
els, is determined by graphical illustrations.
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1 Introduction

There are many fluids with complex microstructure whose
behavior cannot be described by the Navier–Stokes equa-
tions. These fluids, while exhibit a non-linear relationship
between the stress and the rate of strain are called non-
Newtonian fluids. Their motion has been an important subject
in the field of chemical, biomedical, environmental engineer-
ing and science. Numerous models have been proposed to
describe their behavior in different circumstances. They are
usually classified as fluids of differential type, rate type and
integral type. The rate type and differential models are used
to describe the response of fluids that have slight memory
such as dilute polymeric solutions. The first Vis-co-elastic
rate type model, which is still being used widely in the lit-
erature, was given by Maxwell [1]. The rate type fluids are
increasingly, being recognized as more appropriate in the
modern technological applications. The governing equations
for motions of these fluids lead to flow problems in which
the order of differential equations exceeds the number of
available conditions and their solutions are generally more
difficult to be obtained.

The motion of a fluid over an infinite plate is of interest
both for academic research and its practical applications. It
can be obtained as a result of several effects such as vari-
ous types of motion of boundaries or application of a shear
stress on the wall. The flow of a fluid caused by the sinu-
soidal/co-sinusoidal oscillations of an infinite plate is called
the Stokes’ second problem [2], and has been successfully
studied in [3–9]. The Stokes’s second problem is considered
in the assumption that the fluid adheres to the solid boundary
(non-slip boundary condition), therefore, the velocity of the
fluid on the plate is identical with the velocity of the plate.
The non-slip boundary condition is one of the central tenets
of the Navier–Stokes theory. More experiments are in favor
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of the non-slip boundary condition for a large class of flows.
However, there are situations where the assumption of non-
slip is not fulfilled. Navier [10] had proposed a slip bound-
ary condition where the slip velocity depends linearly on the
shear stress. In general, the slip velocity strongly depends on
the shear stress, and most governing equations developed for
slip assume that it depends only on the shear stress. The slip
that appears at the wall has led to the study of an interest-
ing class of problems in which the shear stress (or the shear
rate) is given on the solid boundary. The unsteady motion
of a viscous fluid between two side walls perpendicular to a
plate that applies an oscillating shear stress to the fluid was
studied in [11]. More useful results regarding steady flows
of Newtonian or Maxwell fluids induced by an oscillating
plate can be found in the references [12–15]. Other interest-
ing results about flows with slip or non-slip conditions are in
the references [16–19].

The aim of this paper was to provide exact solutions for
the motion of a Maxwell fluid over an infinite plate under
assumption that the shear rate is given on the plate. More
exactly, we consider the plate situated in the plane y = 0 of a
Cartesian coordinate system Oxyz, the domain of the flow is
the half-space y > 0 and the shear rate is given on the plate
by the expression ∂V (y,t)

∂y |y=0 = f
μ

sin(ω t) or ∂V (y,t)
∂y |y=0 =

f
μ

cos(ω t). The solutions of the initial-boundary value prob-
lems that govern the flow are obtained by means of the inte-
gral transforms method. It is important to point out that these
solutions are written as a sum between steady-state solutions
(permanent solutions) and transient solutions. Closed-form
exact solutions for this type of the flow are new in the liter-
ature and can easily be reduced to the similar solutions for
Newtonian fluids. The required time after which the transient
solution can be neglected (therefore, the fluid flows according
to the permanent solution) is determined by graphical illus-
trations. The influence of the frequency and the relaxation
time on the motion is also studied.

2 Governing Equations

The constitutive equations for an incompressible Maxwell
fluid are given by

T = −pI + S, S + λ(S − LS − SLT) = μA, (1)

where T is the Cauchy stress tensor, S is the extra-stress ten-
sor, L is the velocity gradient, A is the first Rivlin–Ericksen
tensor, −pI denotes the indeterminate spherical stress, μ is
the dynamic viscosity,λ is the relaxation time, the superscript
T indicates the transpose operation and the dot denotes the
material time differentiation. In the following, we shall look
for a velocity field of the form

V = V(y, t) = V(y, t)i, (2)

where i denotes the unit vector along the x direction of the
Cartesian coordinate system Oxyz. For such flows, the con-
straint of incompressibility is automatically satisfied. We also
assume that the extra-stress S depends only on y and t . By
substituting (1) and (2) into the balance of linear momentum
equation, neglecting body forces and assuming that there is
no applied pressure gradient along the x axis, we attain to
the following partial differential equations(

1 + λ
∂

∂t

)
τ(y, t) = μ

∂V (y, t)

∂y
; y, t > 0, (3)

λ
∂2V (y, t)

∂t2 + ∂V (y, t)

∂t
= ν

∂2V (y, t)

∂y2 ; y, t > 0, (4)

that govern the motion of the fluid. Here, ν = μ/ρ is the
kinematic viscosity of the fluid, ρ being its constant density
and τ(y, t) = Sxy(y, t) is the non-trivial shear stress.

3 Statement of the Problem and Solutions

Let us consider an incompressible Maxwell fluid at rest over
an infinite flat plate. After time t = 0, the plate applies an
oscillating shear to the fluid f

μ
sin(ω t) or f

μ
cos(ω t) where

f and ω are constants. Owing to the shear, the fluid is grad-
ually moved. The governing equations are given by Eqs. (3)
and (4) and the appropriate initial and boundary conditions
are

V (y, 0) = ∂V (y, 0)

∂t
= 0, τ (y, 0) = 0; y > 0, (5)

∂V (y, t)

∂y
|y=0 = f

μ
sin(ω t), or

f

μ
cos(ω t), t > 0, (6)

V (y, t) → 0, as y → ∞. (7)

3.1 Calculation of the Velocity Field

To determine the solution of the initial-boundary value prob-
lem (4)–(7), we shall use the Fourier cosine and Laplace
transforms. All calculi will be presented for the sine oscilla-
tions only.

Multiplying Eq. (4) by
√

2
π

cos(yξ), integrating the result
with respect to y from 0 to infinity and using Eqs. (5)–(7),
we find that

λ
∂2Vc(ξ, t)

∂t2 + ∂Vc(ξ, t)

∂t
+ νξ2Vc(ξ, t)

= −
√

2

π

f sin(ω t)

ρ
; ξ, t > 0, (8)

Vc(ξ, 0) = ∂Vc(ξ,0)
∂t = 0 for ξ > 0, (9)
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where Vc(ξ, t) is the Fourier cosine transform of the function
V (y, t). Applying the Laplace transform to Eq. (8) and using
Eq. (9), we have

Vc(ξ, q) = −
√

2

π

f

ρ

ω

q2 + ω2

1

λq2 + q + νξ2 ,
(10)

where V c(ξ, q) denotes the Laplace transform of the function
Vc(ξ, t).

Equation (10) can be written as a sum, namely

V c(ξ, q) = V c1(ξ, q)+ V c2(ξ, q)+ V c3(ξ, q), (11)

where

V c1(ξ, q) =
√

2

π

f ω

ρ

1

(νξ2 − λω2)2 + ω2

q

q2 + ω2 ,

V c2(ξ, q) = −
√

2

π

f

ρ

(νξ2 − λω2)

(νξ2 − λω2)2 + ω2

ω

q2 + ω2 ,

V c3(ξ, q) = −
√

2

π

f ω

ρ

1

(νξ2 − λω2)2 + ω2

×
[
λq + 1 − λ(νξ2 − λω2)

λq2 + q + νξ2

]
.

(12)

Applying the inverse Laplace transform and then the inverse
Fourier cosine transform to Eq. (12)1, we obtain

V1(y, t) = 2

π

f ω

μν
cos(ω t)

∞∫
0

cos(yξ)(
ξ2 − λω2

ν

)2 + (
ω
ν

)2
dξ. (13)

In view of Eq. (A1) from Appendix, it results that

V1(y, t)= f

μ
cos(ω t)

e−y B

A2+B2 [A cos(y A)+ B sin(y A)] ,

(14)

where

A2 = ω

2ν

[√
1 + (λω)2 + (λω)

]
,

B2 = ω

2ν

[√
1 + (λω)2 − (λω)

]
. (15)

Similarly, from Eq. (12)2, we get

V2(y, t) = − 2

π

f ω

μν
sin(ω t)

∞∫
0

(
ξ2 − λω2

ν

)
cos(yξ)

(
ξ2 − λω2

ν

)2 + (
ω
ν

)2
dξ

(16)

which, in view of Eq. (A2) from Appendix, becomes

V2(y, t) = f

μ
sin(ω t)

e−y B

A2 + B2 [A sin(y A)− B cos(y A)] .

(17)

Direct computations lead to the following expression for
V1(y, t)+ V2(y, t):

V1(y, t)+V2(y, t)= f

μ

e−y B

√
A2 + B2

sin
(
ω t − y A+ϕ+ π

2

)
,

(18)

where tan ϕ = B/A.
To determine the inverse Laplace transform of V c3(ξ, q),

we write the function

F(ξ, q) =
[
λq + 1 − λ(νξ2 − λω2)

λq2 + q + νξ2

]

= λq + 1 − λ(νξ2 − λω2)

λ
[(

q + 1
2λ

)2 − 1−4λνξ2

4λ2

] (19)

in the following equivalent form:

F(ξ, q) =
(
q + 1

2λ

)
(
q + 1

2λ

)2 −
(√

1−4λνξ2

2λ

)2

+1−2λ(νξ2−λω2)√
1−4λνξ2

√
1−4λνξ2

2λ(
q+ 1

2λ

)2−
(√

1−4λνξ2

2λ

)2 .

(20)

Applying the inverse Laplace transform and then the inverse
Fourier cosine transform to Eq. (12)3 and using Eq. (20), we
obtain, for V3(y, t), the expression

V3(y, t) = − 2

π

f ω

μν
e− t

2λ

∞∫
0

cos(yξ)(
ξ2 − λω2

ν

)2 + (ω
ν
)2

×
[

ch

(√
1 − 4λνξ2

2λ
t

)
+ 1 − 2λ(νξ2 − λω2)√

1 − 4λνξ2

× sh

(√
1 − 4λνξ2

2λ
t

)]
dξ. (21)

Finally, the velocity field corresponding to the sine oscilla-
tion of the shear is given by

Vs(y, t) = f

μ

e−y B

√
A2 + B2

sin
(
ω t − y A + φ + π

2

)

− 2

π

f ω

μν
e− t

2λ

∞∫
0

cos(yξ)(
ξ2 − λω2

ν

)2 + (
ω
ν

)2

×
[

ch

(√
1 − 4λνξ2

2λ
t

)
+ 1 − 2λ(νξ2 − λω2)√

1 − 4λνξ2

× sh

(√
1 − 4λνξ2

2λ
t

)]
dξ. (22)
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In a similar way, we obtain the velocity field

Vc(y, t) = f

μ

e−y B

√
A2 + B2

cos
(
ω t − y A + φ + π

2

)

+ 2

π

f

μ
e− t

2λ

∞∫
0

cos(yξ)(
ξ2 − λω2

ν

)2 + (
ω
ν

)2

×
[
(ξ2 − λω2/ν)ch

(√
1 − 4λνξ2

2λ
t

)

+ ξ2 + λω2/ν√
1 − 4λνξ2

sh

(√
1 − 4λνξ2

2λ
t

)]
dξ. (23)

corresponding to the cosine oscillations of the shear stress.
The starting solutions (22) and (23) are presented as a
sum between the steady-state and transient solutions. They
describe the motion of the fluid some time after its initiation.
After that time, when the transients disappear, the motion of
the fluid is described by the steady-state solutions

Vss(y, t) = f

μ

e−y B

√
A2 + B2

sin
(
ω t − y A + ϕ + π

2

)
, (24)

Vcs(y, t) = f

μ

e−y B

√
A2 + B2

cos
(
ω t − y A + ϕ + π

2

)

= f

μ

e−y B

√
A2 + B2

sin(ω t − y A + ϕ + π), (25)

which are periodic in time and independent of initial con-
ditions. However, they satisfy the governing equations and
boundary conditions. Furthermore, as it was to be expected,
they differ by a phase shift.

3.2 Calculation of the Shear Stress

Applying the Laplace transform to Eq. (3) and having in mind
the initial condition (5)3, we find that

τ(y, q) = μ

λq + 1

∂V (y, q)

∂y
; y > 0.

The function V (y, q) can immediately be obtained by apply-
ing the inverse Fourier cosine transform to Eq. (10). By com-
bining these results, we find that

τ(y, q) = 2 f ων

π

∞∫
0

ξ sin(yξ)
1(

q2 + ω2
) · 1

(1 + λq)

· 1(
λq2 + q + νξ2

)dξ. (26)

Equation (26) can also be written as a sum, namely

τ(y, q) = τ 1(y, q)+ τ 2(y, q)+ τ 3(y, q)+ τ 4(y, q), (27)

where

τ 1(y, q) = −2 f ων

π
· q

q2 + ω2

×
∞∫

0

ξ sin(yξ)
[
1 + λ

(
νξ2 − λω2

)]
(
1 + λ2ω2

) [(
νξ2 − λω2

)2 + ω2
]dξ,

τ 2(y, q) = 2 f ν

π
· ω

q2 + ω2

×
∞∫

0

ξ sin(yξ)
[(
νξ2 − λω2

) − λω2
]

(
1 + λ2ω2

) [
(νξ2 − λω2)2 + ω2

]dξ,

τ 3(y, q) = 2 f ων

π
· 1

λq + 1

×
∞∫

0

ξ sin(yξ)
λ2

νξ2(1 + λ2ω2)
dξ,

τ 4(y, q) = 2 f ων

π

∞∫
0

ξ sin(yξ)[(
νξ2 − λω2

)2 + ω2
]
νξ2

·λ
(
νξ2 − λω2

)
q + νξ2

λq2 + q + νξ2 dξ.

(28)

Applying the inverse Laplace transform to Eqs. (28)1,2 and
using Eqs. (A1–A5) from Appendix, we find the expressions

τ1(y, t) = − f

1 + λ2ω2 cos(ω t) sin(Ay)e−By

− f λω

1 + λ2ω2 cos(ω t) cos(Ay)e−By . (29)

τ2(y, t) = f

1 + λ2ω2 sin(ω t) cos(Ay)e−By

− f λω

1 + λ2ω2 sin(ω t) sin(Ay)e−By . (30)

Lengthy but straightforward computation leads to the simple
relation

τ1(y, t)+ τ2(y, t) = f e−By

√
1 + λ2ω2

sin(ω t − Ay − ψ) (31)

where tan(ψ) = λω.
Applying the inverse Laplace transform to Eq. (28)3 and

using Eq. (A3), we find that

τ3(y, t) = f λω

(1 + λ2ω2)
e− t

λ , (32)

The last factor of Eq. (28)4, namely

G(y, q) = λ(νξ2 − λω2)q + νξ2

λq2 + q + νξ2 ,
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can be written in the equivalent form;

G(y, q) = (νξ2 − λω2) · (q + 1
2λ )(

q + 1
2λ

)2 −
(√

1−4λνξ2

2λ

)2

+ (νξ2 + λω2)√
1 − 4λνξ2

√
1−4λνξ2

2λ(
q + 1

2λ

)2 −
(√

1−4λνξ2

2λ

)2 .

(33)

Applying the inverse Laplace transform to Eq. (28)4 and
using Eq. (33) we obtain

τ4(y, t) = 2 f

π

ω

ν
e− t

2λ

∞∫
0

sin(yξ)

ξ

[(
ξ2 − λω2

ν

)2 + (
ω
ν

)2
]

×
[
(ξ2 − λω2/ν)ch

(√
1 − 4λνξ2

2λ
t

)

+ ξ2 + λω2/ν√
1 − 4λνξ2

sh

(√
1 − 4λνξ2

2λ
t

)]
dξ. (34)

In view of Eqs. (31), (32) and (34), the final expression
for the shear stress is

τs(y, t)= f e−By

√
1 + λ2ω2

sin (ωt−y A−ψ)+ f λω

1 + λ2ω2 e− t
λ

+2 f

π

ω

ν
e− t

2λ

∞∫
0

sin(yξ)

ξ

[(
ξ2 − λω2

ν

)2 + (
ω
ν

)2
]

×
[(
ξ2 − λω2/ν

)
ch

(√
1 − 4λνξ2

2λ
t

)

+ ξ2 + λω2/ν√
1 − 4λνξ2

sh

(√
1 − 4λνξ2

2λ
t

)]
dξ, (35)

where A and B are given by Eq. (15).
In a similar fashion, we obtain the shear stress

τc(y, t) = f e−By

√
1 + λ2ω2

cos(ωt − y A − ψ)− f

1 + λ2ω2 e− t
λ

+2 f

π

(ω
ν

)2
e− t

2λ

∞∫
0

sin(yξ)

ξ

[(
ξ2 − λω2

ν

)2 + (
ω
ν

)2
]

×
[

ch

(√
1 − 4λνξ2

2λ
t

)
− 1 + 2ξ2

(
ν
ω

)2 (
ξ2 − λω2/ν

)
√

1 − 4λνξ2

× sh

(√
1 − 4λνξ2

2λ
t

)]
dξ, (36)

corresponding to the cosine oscillation of the shear. The
starting shear stresses given by Eqs. (35) and (36), are also

presented as a sum of steady-state and transient solutions.
Furthermore, the steady-state solutions can be written under
the condensed form

τ(y, t) = f e−By

√
1 + λ2ω2

sin(ω t − y A − ψ + γ ),

γ ∈
{

0,
π

2

}
. (37)

Indeed, making γ = 0 or γ = π
2 in Eq. (37), the compo-

nent parts τss(y, t) and τcs(y, t) corresponding to the sine or
the cosine oscillations respectively are obtained.

4 Particular Case λ → 0 (Newtonian Fluids)

By making λ → 0 into Eqs. (15), (22) and (23) and using
the limits,

lim
λ→0

e
−t
2λ ch

(√
1−4λνξ2

2λ
t

)
= lim

λ→0
e

−t
2λ sh

(√
1−4λνξ2

2λ
t

)

= 1

2
e−νξ2t ,

the known solutions [11]—Eqs. (20) and (22)

Vs N (y, t) = f

μ

√
ν

ω
e−y

√
ω
2ν sin

(
ω t − y

√
ω

2ν
+ 3π

4

)

− 2 f

πμ

ω

ν

∞∫
0

cos(yξ)

ξ4 + (
ω
ν

)2 e−νξ2t dξ, (38)

VcN (y, t) = f

μ

√
ν

ω
e−y

√
ω
2ν cos

(
ω t − y

√
ω

2ν
+ 3π

4

)

+ 2 f

πμ

∞∫
0

ξ2 cos(yξ)

ξ4 + (
ω
ν

)2 e−νξ2t dξ, (39)

corresponding to the Newtonian fluids performing the same
motion are recovered. Similarly, from Eqs. (35) and (36) we
recover the adequate shear stresses [11, Eqs. (21) and (23)].

τs N (y, t) = f e−y
√

ω
2ν sin

(
ωt − y

√
ω

2ν

)

+2 f ω

πν

∞∫
0

ξ sin(yξ)

ξ4 + (
ω
ν

)2 e−νξ2t dξ, (40)

τcN (y, t) = f e−y
√

ω
2ν cos

(
ωt − y

√
ω

2ν

)

−2 f

π

∞∫
0

ξ3 sin(yξ)

ξ4 + (
ω
ν

)2 e−νξ2t dξ. (41)
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Fig. 1 The required time to
reach the steady-state for sine
oscillations of the shear stress
for f = 2, v = 0.001457,
μ = 1.48, λ = 0.5 and different
values of t and ω. V (y, t) is the
velocity given by Eq. (22) and
Vss(y, t) is the steady-state
velocity given by Eq. (24)

5 Numerical Results

In this work, the unsteady motion of an incompressible Max-
well fluid due to an infinite plate that applies an oscillating
shear to the fluid is studied using integral transforms. The
starting solutions that have been obtained, given by Eqs. (22),
(23), (35) and (36), satisfy all imposed initial and boundary
conditions and can easily be reduced to the similar solutions
(38)–(41) for Newtonian fluids performing the same motion.
They are presented as a sum between steady-state and tran-
sient solutions and describe the motion of the fluid some time
after its initiation. After that time, when the transients disap-
pear, the motion of the fluid is described by the steady-state
solutions that are periodic in time and independent of the

initial conditions. However, they satisfy the governing equa-
tions and the boundary conditions. Furthermore, as it was to
be expected, the steady-state solutions corresponding to sine
and cosine oscillations of the shear stress differ by a phase
shift.

Generally speaking, the starting solutions for unsteady
motions of fluids are important for those who need to elim-
inate the transients from their rheological measurements.
Consequently, an important problem regarding the techni-
cal relevance of these solutions is to approximate the time
after which the fluid is moving according to the steady-
state solutions only. More exactly, in practice, it is neces-
sary to know the required time to reach the steady-state.
This time, for sine and cosine oscillations of the shear
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Fig. 2 The required time to
reach the steady-state for cosine
oscillations of the shear stress
for f = 2, v = 0.001457,
μ = 1.48, λ = 0.5 and different
values of t and ω. V (y, t) is the
velocity given by Eq. (23) and
Vss(y, t) is the steady-state
velocity given by Eq. (25)

stress is determined in Figs. 1, 2, 3, 4 for several values
of the frequency ω and the relaxation time λ. For com-
pleteness, as well as for a check of the main graphs, the
diagrams of the corresponding transient components are
also plotted on the second column for the same values of
the material constants. Figure 1 contains the diagrams of
velocity V (y, t) given by Eq. (22), the permanent solu-
tion given Vss(y, t) by Eq. (24) and the transient solution
Vts(y, t) = V (y, t) − Vss(y, t) for the sinusoidal oscilla-
tions of the shear rate. These diagrams were plotted versus
the spatial coordinate y for different values of the frequency
ω and time t . Comparing these diagrams, we obtain the

values of time t for which the difference between the veloc-
ity V (y, t) and the steady-state velocity Vss(y, t) is insig-
nificant (hence, the transient solution can be neglected). For
example, if ω = 0.4 s−1, the fluid flows according to the
permanent solution after 95 s. Also, from these diagrams, we
find that the required time to reach the steady-state decreases
if ω increases.

In Fig. 2, we have plotted the velocity V (y, t)given
by Eq. (23), the permanent solution Vtc(y, t)given by
Eq. (25) and the transient solution Vtc(y, t) = V (y, t) −
Vcs(y, t) in the case of co-sinusoidal oscillations of the
shear rate. These diagrams were plotted versus y for different
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Fig. 3 The required time to
reach the steady-state for sine
oscillations of the shear stress
for f = 2, v = 0.001457,
μ = 1.48, ω = 0.5 and different
values of t and λ. V (y, t) is the
velocity given by Eq. (22) and
Vss(y, t) is the steady-state
velocity given by Eq. (24)

values of the frequencyω and time t . It is easy to find the time
for which the velocity V (y, t) can be approximated by the
permanent solution (the transient solution can be neglected).
Similar to the case of sinusoidal oscillations, the required
time to reach the steady-state is decreasing for increasing ω.
Figure 3 contains the diagrams of velocity, permanent veloc-
ity and transient velocity for sine oscillations of the shear,
versus y and for different values of the time t and the relaxa-
tion time λ. From these diagrams, we find the required time
to reach the steady-state. This time decreases if λ increases.
Figure 4 contains similar results as in Fig. 3 but for cosine
oscillations of the shear.

6 Conclusions

The motion of a Maxwell fluid over an infinite plate that
applies an oscillating shear to the fluid is studied by means
of integral transforms. Closed-forms of solutions are writ-
ten as a sum between steady-state (permanent solutions)
and transient solutions. For large values of time t tran-
sient solutions tend to zero and the fluid flows accord-
ing to the permanent solutions. The required time to reach
steady-state was determined using numerical results and
graphical illustrations. The main outcomes are the given
below.
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Fig. 4 The required time to
reach the steady-state for cosine
oscillations of the shear stress
for f = 2, v = 0.001457,
μ = 1.48, ω = 0.5 and different
values of t and λ. V (y, t) is the
velocity given by Eq. (23) and
Vss(y, t) is the steady-state
velocity given by Eq. (25)

The relaxation time as well as the frequency have signif-
icant influence on the motion. This influence seems to be
stronger for the motion due to the sinusoidal oscillations of
the shear.

The required time to reach the steady-state is lower for
co-sinusoidal oscillations in comparison with the sine oscil-
lations of the shear stress.

The required time to get steady-state decreases if fre-
quency or the relaxation time increases.

The required time to reach the steady-state is lower for
Maxwell fluids in comparison with Maxwell fluids.
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Appendix

∞∫
0

cos(mx)(
x2 − b2

)2 + c2
dx

= πe−m B

2c
(

A2 + B2
) [A cos(m A)+ B sin(m A)] (A.1)

∞∫
0

(
x2 − b2

)
cos(mx)(

x2 − b2
)2 + c2

dx

= πe−m B

2
(

A2 + B2
) [B cos(m A)− A sin(m A)] , (A.2)

∞∫
0

sin(yξ)

ξ
= π/2, (A.3)

∞∫
0

(
x2 − b2

)
) sin(mx)

x
[(

x2 − b2
)2 + c2

]dx

= π

2
(
b4 + c2

) {
−b2 +

[
b2 cos(m A)+ c sin(m A)

]

. exp (−m B)
}
, (A.4)

∞∫
0

sin(mx)

x
[(

x2 − b2
)2 + c2

]dx

= π

2c
(
b4 + c2

) {
c +

[
b2 sin(m A)− c cos(m A)

]

. exp(−m B)
}
, (A.5)

where b = ω

√
λ
ν
, c = ω

ν
, A =

√√
b4+c2+b2

2 and B =√√
b4+c2−b2

2 .
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