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Exact Solutions for Oscillating Motion of a
Second-Grade Fluid along an Edge with
Mixed Boundary Conditions

M. A. IMRAN, A. SOHAIL, AND NAZISH SHAHID

Abdus Salam School of Mathematical Sciences, GC University,
Lahore, Pakistan

Exact solutions corresponding to the oscillating motion of a second-grade fluid along
the inside of an edge are established by means of integral transforms. The motion of
the fluid is due to the walls of the edge. One of them applies an oscillating shear to
the fluid and the other one is subject to an oscillatory motion in its plane. The
solutions that have been obtained are presented in the form of simple and multiple
integrals and satisfy all imposed initial and boundary conditions. Finally, some char-
acteristics of the fluid motion, as well as the influence of Reynolds number on the
velocity, are graphically underlined.

Keywords Exact solutions; Second-grade fluid; Shear stresses; Unsteady motion;
Velocity field

Introduction

The motion of a fluid along the inside of an edge has attracted much attention due to
its practical importance and fundamental value for theory. An elegant solution cor-
responding to the Rayliegh—Stokes problem for an edge, was given by Zierep (1979)
for Newtonian fluids. This solution has been extended to non-Newtonian fluids by
Fetecau (2002) and for the fluids with fractional derivatives by Khan (2009) and
Corina Fetecau et al. (2009). Interesting results have been also obtained by Fetecau
and Corina Fetecau (2004) and Fetecau and Prasad (2005) for the flow induced by a
constantly accelerating edge in non-Newtonian fluids and by Nadeem (2007) for per-
iodic flows of fractional Oldroyd-B fluids through an edge. However, there is no
result in the literature in which the shear stress is given on the edge or one of its sides.
The first exact solutions for the motions of second-grade fluids in which the shear
stress is given on a part of the boundary seem to be those of Bandelli and Rajagopal
(1995). They have been recently extended to more general fluids (Jamil et al., 2011)
and other interesting results on hydromagnetic bounary layer flow over a moving
surface have been obtained by Subhas Abel et al. (2010) and Pantokratoras (2011).

Our aim here is to study the oscillating motion of a second-grade fluid along the
inside of an edge whose settlement leads to a mixed initial boundary-value problem.
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More exactly, a side of the edge applies an oscillating shear to the fluid and the other
one is oscillating in its plane. An interesting aspect of the problem being studied is
that unlike the usual no-slip boundary condition that is used, a secondary condition
on the shear stress is used. This is very important since in some problems what is
specified is the force applied on the boundary. It is also important to bear in mind
that the no-slip boundary condition may not be necessarily applicable for flows of
polymeric fluids that can slip or slide on the boundary. Thus, a shear stress boundary
condition can be particularly meaningful. Moreover, in addition to being a study of a
time-dependent problem, it leads to exact solutions. Such exact solutions are not
common in the literature and in addition to providing an elegant resolution of the
problem, they are an important check for numerical methods that are used to study
the flows of such fluids in a complex domain. It is hoped that the current analysis
will add to the useful literature concerning second-grade fluids. Finally, some char-
acteristics of the fluid motion are underlined by graphical illustrations.

Governing Equations

The constitutive equation of an incompressible second-grade fluid is (Dunn and
Rajagopal, 1995)

T=—pl+S=—pl+uA; + A + A} (1)

where T is the Cauchy stress tensor, S is the extra-stress tensor, —pl denotes the inde-
terminate spherical stress, A; and A, are the first two Rivlin—-Ericksen tensors, u is
the dynamic viscosity, and o, o, are the normal stress moduli. The Clausius-Duhen
inequality and the assumption that the Helmhotz free energy is minimum in equilib-
rium provide the following restrictions (Dunn and Fosdick, 1974)

w>0, o1 >0, o +a=0

A comprehensive discussion on these restrictions can be found in the work of
Dunn and Rajagopal (1995). The sign of the material moduli «; and o, was the sub-
ject of much controversy. In experiments on several non-Newtonian fluids, the last
two restrictions have not been confirmed. However, the conclusion was that the
fluids that have been tested are not fluids of second grade and they are characterized
by a different constitutive structure. If the second inequality is reversed, so that
o <0, then the fluid model considered leads to an unacceptable general instability
(Dunn and Fosdick, 1974). The flows to be here considered have the velocity field
(Fetecau and Fetecau, 2004; Fetecau and Prasad, 2005)

V=V(,zit)=u(yzi)i (2)

where i denotes the unit vector along the x-direction of the Cartesian coordinates
system x, y, and z. For these flows, the constraint of incompressibility is automati-
cally satisfied. Using Equations (1) and (2) and the balance of linear momentum, in
the absence of body forces and a pressure gradient in the x-direction, we obtain the
following partial differential equations (Vieru et al., 2011):

— 9\ Ou(y,z,1) _ 0 Ou(y,z,1)
r1<y,2,t)—(u+a1&>87y, Tz()’#ﬁ)—(#—i—ouE)T (3)
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Ou(y,z.t) o\| o &
T_ (V—FOCE) la—ﬁ+@ Ll(y,Z, l) (4)

where 7,(y, z, 1) =S (y, z, 1) and 12(y, z, 1) =S..(y, z, t) are the nontrivial shear
stresses, o = o/ p, p is the constant density of the fluid, and v = u/p is the kinematic
viscosity. In the following the governing Equation (4) together with suitable initial
and boundary conditions will be solved by means of the Laplace and the Fourier
transforms.

Statement of the Problem and Solutions

Let us consider an incompressible second-grade fluid at rest occupying the space of
the first dial of a rectangular edge (Fetecau and Fetecau, 2004; Fetecau and Prasad,
2005) (—oo < x <00, y>0, z>0). After time =0 a side of the boundary applies
an oscillating shear fisin (w?) or ficos (wt) to the fluid while the other part is being
subjected to an oscillatory motion in its plane. Owing to the shear the fluid is gradu-
ally moved. Its velocity is of the form (2) and the governing equation is given by
Equation (4). The appropriate initial and boundary conditions are

u(y,Z,O):O, J@ZZO (5)

0 Ou(y,z,t o
71(0,z,1) = (u + o 5) % =1 sin(w;1), ©
y=0

or f,cos(wit) z>0,1>0

u(y,0,t) = fysin(wat) or fhcos(wat), y>0,1>0 (7)
Furthermore, the natural condition (Fetecau and Fetecau, 2004)
u(y,z,t) - 0, for y — oo and z — oo (8)

has to be also satisfied.
Introducing the dimensionless variables

t y 4 u
t*: y*: , Z*: u*:_
o ? ’ ’ ’
) (42) () 2
T T wio oo
T=1, g=2, ol=—2, oj=—
S 1 v v

into Equations (3) and (4) and neglecting the asterisks, we find that

B 0\ du(y,z,t) B 0\ Ju(y,z,1)
T](y,Z,l) - (1 +E> Ty TZ(y7Z7 t) - V(l +8t> 32 (9)
ou 1 o\ | &
E_R_e(l—'_E) a—yz'f'@ M(y,Z,f) (10)
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where Re = (%)2 /o is the Reynolds number. The initial and boundary conditions
become

u(»,2,0)=0, »,z>0, (11)

71(0,z, 1) = <1+gt)au(i;’yz’t)|y_0:sin(wlt), z>0,1>0 (12)

u(y,0,1) =sin(wyt), y>0,1>0 (13)

u(y,z,t) - 0, fory— ooandz— oo (14)

Calculation of the Velocity Field

In order to avoid repetition we present all calculations, as well as the final results, for
the case of sine oscillations. Applying the Laplace transform to Equations (10) and
(12)—~(14) and using Equation (11), we get (Sneddon, 1955; Debnath and Bhatta,
2007)

_ Cltgq | O
qu(y,2,q4) = —p= a2 a2 u(y,z,q) (15)
du(y,z,q) w1 _ @2
1+ - . w(y,0,q) = =22 16
(1+4q) o | Frar (»,0,9) pegr (16)
u(y,z,q) — 0, fory— ocoandz— oo (17)

where u(y, z, ¢) is the Laplace transform of the function u(y, z, ).
Multiplying Equation (15) by \/%sin(zn) and integrating with respect to z from 0
to co, we obtain

O’u(y,n,9) (1 + Re)g+n* 2 o
)2 - g1 us(y,n,9) = —n ;m (18)
where %(y, 7, ¢) is the Fourier sine transform of the function #(y, z, q).

The general solution of Equation (18) is

2 1 )
w,(y,n,q) = Cre?VWa) 1 CrerVWing) 4 \/7 2 19
s, q) = G 2 W) @ + o2 (19)

where Cj, C, are arbitrary constants and

(n* + Re)q + n*

Wn,q) = .
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The boundary conditions (16); and (17) also imply

au, (0,1, 2 W 1 1 _
%:\/;qzﬁwzma,us@,wwo as y — 00 (20)
1

Combining Equations (19) and (20), we find that

12 o 1 eV
yanv ) 2 (21)
qu +w2 nVng*+orq+1/Wn,q)

Denoting by

ﬂ( ) \/E q+1 ()
s1\1, 4 n (77 +Re)q+17 q2+0)2

_ 1 \/5 o1 B W)
u? b = Ty Ty T 1 W b b u.Y b ) = T N
(1, 9) Vrgd+arg s (n,q), us(y,n,9)

it results that

us(}/, ’17 l) = Us1 (717 t) - uSz(’% t) * Ug3 (y7 '/I? t) (22)

where = denotes the convolution product and u, (1, 1), ux(1, 1), and ug(y, 1, t) are the
inverse Laplace transforms of # (1, q), un(n, q), and ug(y,1,q), respectively. In
order to determine u (1, £) and uy(n, 1), we write g (17, ¢) and U (7, ¢) under suitable
forms:

) 2 n Re 1
us1(1n,9 :\/: b B
s ( ) an_i_w% (;72—|—R€) (7] +R€)q+(2+Re) ( )

_ 2w ) Re

=/- Re) —

un(1,9) \/;qz T w% {(’7 + Re) i+ J
1 1

X 2 272 +R 2 2
+Re Re
nv/n? + Re \/(q—i- LR ) — ()

(24)

Applying the inverse Laplace transform to the functions u;, u,, %; and using
Equations (A1)-(A6) from the Appendix, we find (Roberts and Kaufman, 1968)

2 n .
usi (n,1) = \/;msm(wﬂ)
2 R t - 112 s
+ \/:iz/ sin(wys)e AR g
T (n* + Re)” Jo
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, \/7./71 +Re/ sin(@15)] [Re(l—s)}
s2 ’7; 1 7(17 +R€)
_ 2;7;+Rz’ ( 73) \/7 / /
X e 2R Vg — sin(w; ) (26)
Tn\/n*+ Re
Re(c —5) ] —22ke (o o (1_q)
-~ 7 2(12 +Re)
x I, {2(172—|—Re)]e dsdo
*© [uRe —y/1P+Re
— —u(n*+Re)—t e’
uga(n, 1) /0 erfc< \/_>Il [2\/ utRe} du + 5(t )7172 T Re
(27)
where d(.) is the Dirac delta function.
Introducing Equations (25)—(27) in Equation (22), it results that
2 . \/5 nRe
s(yn,t) = - t i e—
b \/;nz F RSN TN T Ry
! 0 ) 3 o VVP+Re
x [ exp|—— (t—s) | sin(was)ds — | ———=—=
0 n + Re ﬂf;/] ;/’2 + Re
L[ Re(t—s) 2n* + Re .
Iy 55—~ - (t— d
<), (2<n2 ) 0| (g 0 —9) s
f v+ Re / / (Re c—s )
T n(n®+ Re) n(? + Re)*? (n* + Re)
2n* + Re .
X €xp [(- m (0—s)—(t— a))] sin(w;s)ds da
L G G w)
-\ H\a i) \ar + Re) 28)
x I {2\/uRet—a}\/ sm (wy)
X exp K—%(a —5) = (t—0) —u(p® + Re)ﬂdsdadu

; fﬁ/ L ()
x I, (21;?( )11 [2%}

y eprM(as) ~(t—0) u(,72+Re)>}

uRe .
X 4/
-7

Applying the inverse Fourier sine transform to Equation (28) and using Equa-
tions (A7)-(A9) from the Appendix, we obtain the velocity field

(w18)dsdo dt du



Downloaded by [Nazish Shahid] at 23:31 12 June 2012

Oscillating Motion of a Second-Grade Fluid 1091

P
us(y,z, 1) = e B sin(wat — Az) + e P sin(Az)e Por

-y ;12+Re Relt —
/ / ¢ ——————sin(nz)l, (M)
o n(v/n? + Re) 2(n> + Re)

X exp [(—%(z - s))] sin (coys)ds dn

2Re/ // eIV Re sin(nz)1 (Re(as)>
[ Rele =)
0 n(n*+ Re) WP+ Rey 2 e 2(n* + Re)

«exp| 2T T Re.
Pl7 207+ Re)

AL e )
xll{Zm}exp[ 217 + Re (a—s)—(t—a)—u(n2+Re)]

2(n? + Re)
X \/Wsm(w]s)dsdodudn
TN =t

‘1, (2’?( )11 [zm]

2n° + Re

X exp[(—m(a—s) —(t—0) —u(n? +Re)>}

X ”tuRe sin(w, s)ds do dt du dn
-1

where A and B are defined in the Appendix.

(o0—s5)—(t— 0)} sin(ws)dsda dn

Calculation of the Shear Stresses

Applying the Laplace transform to Equation (9); and the Fourier sine transform
with respect to z to the obtained result, we find that

wng) = (1+g) 2D (30)

Introducing #(y, 1, ¢) from Equation (21) into this relation, we get

2 o 1
Ta(y.1,q) = \ﬁil_ey W) (1)

T+ i
which can be written under the form

Ta (0, 1,9) = Ta(n,q) — To(n,)Ta(v,n,9), (32)
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where
\/;q +w 11 (33)
\/711 + Re w; 2Re 1
¢* + w T @ +oqg+l
and
_ 1 — eIV Wn4)

W(n,q)

Applying the inverse Laplace transform to Equations (33) and (34) and using
Equations (A1)—-(A7) from Appendix, we obtain

Ta(n,t) = \/%lsin(wl 7) (35)

n
2n* + R 2Re ['
To(n,t) = \/;7 : esin(wll) - \/;Fe/o sin(wys)e” " ds (36)

and

Tg(y,n,t) :/0 erf ( \/—)11 [2\/@]\/@

x exp[—u(n® + Re) — t]du + §(1)

1 — e_y\/ﬂz‘"—R(’ (37)

0> + Re

Now applying the inverse Laplace transform to Equation (32) and using
Equations (35)—(37) and the convolution theorem for the last term, we find that

2 . Y\/ﬂz"v’Ré’ 2 1 —eV 712+R€ '
w0 ) = \/;sm(wll)e : / sin(w;s)e” ) ds

. n(n:+ Re) Jy

_\/%’72:&3/0 /Osin(wﬂ)erf(zlﬁ)ll [2\/m}

UuRe

S EXP [fu(nz + Re) — (t — s)]ds du

f ‘[ // smwlserf<2f)zl[zm]

X ¢ exp [—u(n* + Re) — (t — 5)| ds do du

t—o
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Finally, applying the inverse Fourier sine transform to Equation (38) we obtain
the shear stress 7;(y, z, ) under the form

v/ 2+ Re sin 1,12 2R€/ / eV 11“+R(’

T (y, z, ——sm W
stV 1 o R

x sin(nz) sin(wys)e " ds dn — —/ / / i Re

x sin(nz) 51n(w1s)erf( )Il [ZJM} \/E

x exp[—u(n® + Re) — (t — s)]dsdudn

2Re/ / // SAZ i wﬂ)é’ﬂ(z\/_)]l[z\/ﬁ}

; Re exp[—u(n® + Re) — (t — 5)|ds do dudn
—q

(39)

In order to determine the second shear stress, from Equation (9), we have

ou(y,z,q)

% (40)

f52()}727 q) = (1 + Q)

Applying the inverse Fourier sine transform to Equation (21) and introducing
the result in Equation (40) it results that

_ 2/00 2 w7 (1+1
To(y,z,4) == | n°cos(nz n
( )= 0 ( )q2+w§W(n,q)

2 [0 W -/ Wing)
_E/ cos(nz) il (n.q) e dn
0

¢+ o}/ Wn,q) Wn,q)

To determine the inverse Laplace transform of the function 7y (y, z, ¢) we use the
relation

(41)

_ 2 [ -
To(y,2,9) = /0 n* cos(nz) T 51 (n, q)dn

. (42)
_E/o cos(nz) T (n,q) T 3 (v, 1, q)dn
where
— (0] q+1
T*s n,q) =
101:4) q* + w3 W(n,q)
(43)

s q n> +2Re (Re)*

@+ o3 [P+ Re (12 + Re): (n? + Re)’[g +

n? +Re]
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2

— 0] W(n,
Patn) = s T o R !

¢+ ot /W, q)
1

X
2P +Re \2 Re 2
\/(q +iomre) — Goiirg)

and

eIV W)
w(n,q)

Using Equations (A1)—(A7) from Appendix, we can write

T a(y,n,q) =

) n> + 2Re
T (n, t) = —=——cos(wst R
31(77 ) 112+R€ ( 2) (I’[ +R€)

R 2 o2 ]
el R
n-+ Re

sin(ws1)

2
TH(n, / wi\/n* + Recos(w;s) + S —
V> + Re
[Ret—s] 2R

— )
/12+R4 d
(n? + Re

= [ (G

eIV P+Re
7>+ Re

sin(wls)]

x exp[—u(n® + Re) — t]du + &(1)

2—|—w1 V2 + Re q? +a)1

(45)

(46)

(48)

Applying the inverse Laplace transform to Equation (42), using Equations (46)—

(48) and the convolution theorem, we obtain

. 2R
10 (y,2,1) = —wyV Re cos(wzt)e_z‘/R_e — V Resin(wyt)e —=VRe | =€ sm(a)zt)

2R
x/ n COS(Z'I e / / n cos(zn) 1 COS(E) it ()
o (1> + Re)’ (n* + Re)’

2(t — yV/*+Re
x exp |— n( / /cosnze

7+ Re R + Re
X G)lmcos(ww)—i—nism(wls)

n? + Re

Re(t —s) B ()
T R T AV A AR
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2

n .
X [wl V' 1?4+ Recos(mys) + ——=sin(w,s)
V1? + Re

x I [%/W} erfc (ﬁ) uRe (49)

t—o

—21*> + Re

m((f —s) —u(n* + Re) — (t — a)} dsdo dudn

X exp{

05 T T T T
03 T T T T
t=05
y=05
N
=
=1
=
B
°
@
>
1 1 1 1
-0lg 02 04 06 08 1
z
1 T T T T
t=
Re=5
0.5 y=1 - "
»
=1
=
k=
°
0 y=056 3 =
y=0
_ 1 1 1 1
0'50 02 04 06 08 1
z
05 T T T T
t=6
Re=5
04 i .
N
yF 1 -
=1
03 7 =
B
y=05 2
>
0.2 y=0
1 1 1 1
015 02 04 06 08 1
z z

Figure 1. Profiles of the velocity u(y, z, ) for since oscillations, w; =n/5. w,=mn/7, and dif-
ferent values of y, Re, and t.
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Numerical Results and Conclusions

In previous sections, exact analytical solutions have been established for a mixed
initial boundary-value problem corresponding to the oscillating motion of a second-
grade fluid along the inside of a rectangular edge. The motion of the fluid is due to
the motion of the walls of an edge. One of them applies an oscillating shear to the
fluid and the other one is oscillating in its plane. The solutions that have been
obtained, in the form of simple and multiple integrals, satisfy all imposed initial
and boundary conditions.

Shear stress Ti{y, z, 1)
o =

Shear stress T2(y. Z. 1)

_02 I I I I

Uj T T T T
= =
N N
3 )
=0 o
3 e
[} 0
: g
et bt
® i
T §
o 0 @
< P
%] 0]
-1
Z z
1 05 T T T T
t=13
— =
:l. N
4 >
= 05 J‘
e 0
0 [
g o
= 7]
0} ot
o 0 [
© i}
g 5
6]

|

o

i
o
ol
=3
ol
=
ol
o
ol
oo

1

i
ol
o
ol
=

06 08 1

z z

Figure 2. Profiles of shear stresses t1(y, z, 1), ©2(y, z, ?) vs. z, for sine oscillations, w; =7/5,
w,=mn/7, and different values of y and .
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Finally, in order to reveal some relevant physical aspects of obtained results, the
diagrams of the velocity u(y, z, ) and the shear stresses 7,(y, z, t) and 17,5(y, z, f) have
been drawn against z for different values of y, Re, and time ¢ (Figures 1 and 2) and
against ¢ for different values of y and z (Figures 3, 4, and 5). A series of diagrams
were created for different situations with typical values. It clearly results from
Figure 1 that, at the beginning of a cycle, the velocity of the fluid increases with
respect to y and decreases with regard to the Reynolds number Re. Of course, it is
a decreasing function with respect to z. The velocity of the fluid on the wall z=0

02 T T T

z=005

Velocity uly, z, 1)

Velocity uly, z, t)

Velocity u(y, z, 1)

Figure 3. Profiles of the velocity u(y, z, ) vs. t, for sine oscillations, w;=mn/5, w,=m/7,
Re =3, and for different values of y and z.
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y 5 1.00

Shear stress T1(y, Z, 1)

v=005 ' z=010

Shear stress T1(y, Z, 1)

Shear stress T 4{y, Z, 1)

-

Figure 4. Profiles of the shear stress 7;(y, z, 1) vs. t. for sine oscillations, w; =n/5, w,=n/7,
Re =3, and for different values of y and z.

is same for a fixed value of Re and all values of y. It is different for different values of
t, being just the velocity of the wall at that time. At small values of ¢, the velocity of
the fluid decreases with respect to Re on the whole domain. After =2 the velocity
of the fluid changes its monotony with respect to z. Figure 2 presents the diagrams of
the shear stresses 71(y, z, ¢) and 175(y, z, ¢) for t=1, 7, and 13, Re=5, and y=0, 0.3,
0.6, and 1. At the beginning of a cycle, more precisely for =1, the shear stress
t1(y, z, t), as well as 15(y, z, ?) in absolute value, decreases with respect to y. The shear
stress 71(y, z, t) on the wall z=0 in comparison with 7,(y, z, 7) has same value for all
the values of y and the fixed values Re and 7. Both stresses decrease with respect to z
near the boundary, but their intervals of changing of the monotony are different.
The oscillating values of 7,(y, z, t) are clearly brought to light on the left side of
Figure 2. The values of 17,5(y, z, t), as expected, are different for different values of
y and the fixed values of Re and .
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Figure 5. Profiles of the shear stress t,(y, z, #) vs. t. for sine oscillations, w; =mn/5, w,=7/t,
Re =3, and for different values of y and z.

The variations of the velocity and the shear stresses with respect to time ¢ are pre-
sented in Figures 3, 4, and 5 for different values of y and z. Qualitatively, the variation
of the velocity is almost the same as that of the shear stress 7,(y, z, ). Their amplitudes
are increasing functions with respect to y. With respect to ¢, they are increasing
functions on a small part of the interval (0, co) and then decrease. The variation of
71(y, z, t) with respect to y seems to be the opposite. For all values of y and z, the
oscillations of the three functions decrease in time. They are damping with time.
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Appendix
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