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Abstract

The unsteady flow of an incompressible Oldroyd-B fluid with fractional derivatives induced by

a plane wall that applies a time-dependent shear stress fta to the fluid is studied using Fourier sine

and Laplace transforms. Exact solutions for velocity and shear stress distributions are found in inte-

gral and series form in terms of generalized G functions. They are presented as a sum between the

corresponding Newtonian solutions and non-Newtonian contributions and reduce to Newtonian solu-

tions if relaxation and retardation times tend to zero. The solutions for fractional second grade and

Maxwell fluids, as well as those for ordinary fluids, are obtained as limiting cases of general solutions.

Finally, some special cases are considered and known solutions from the literature are recovered. An

important relation with the first problem of Stokes is brought to light. The influence of fractional

parameters on the fluid motion, as well as a comparison between models, is graphically illustrated.
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1 Introduction

Many models have been proposed to describe the response characteristics of fluids that

cannot be described by classical Navier-Stokes equations. Among them, the Oldroyd-B model

can describe stress-relaxation, creep and normal stress differences that develop during simple
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shear flows. This model can be viewed as one of the most successful models for describing the

response of a sub-class of polymeric liquids. It is amenable to analysis and more importantly

experimental corroboration. An Oldroyd-B fluid is one which stores energy like a linearized

elastic solid, its dissipation however being due to two dissipative mechanisms that implies that

it arises from a mixture of two viscous fluids. Recently, there has been considerable interest

in describing the behavior of incompressible Oldroyd-B fluids [1-11]. However, since one may

expect that the behavior of viscoelastic liquids to deviate most from that of non-elastic non-

Newtonian fluids in transient flows, it seems necessary to investigate new transient flows in

order to have an overall view of elastic liquid behavior.

In view of the above motivation, we are interested to find exact solutions for the motion

of an Oldroyd-B fluid induced by an infinite flat plate that applies a time-dependent shear

stress to the fluid. Such exact solutions serve a dual purpose, that of providing an explicit

solution to a problem that has physical relevance and as a means for testing the efficiency of

complex numerical schemes for flows in more complicated flow domains. An interesting aspect

of the problem to be studied is that unlike the usual no slip boundary condition, a boundary

condition on the shear stress is used. This is very important as in some problems, what is

specified is the force applied on the boundary. It is also important to bear in mind that the ”no

slip” boundary condition may not be necessarily applicable to flows of polymeric fluids that

can slip or slide on the boundary. Thus, the shear stress boundary condition is particularly

meaningful. Furthermore, in order to include a larger class of fluids, the general solutions will

be established for Oldroyd-B fluids with fractional derivatives. Particularly, the solutions for

Oldroyd-B fluids will be obtained as limiting cases.

In the last time, the fractional calculus is increasingly seen as an efficient tool and

suitable framework within which useful generalizations of various classical physical concepts can

be obtained. The list of its applications is quite long and augments almost yearly. It includes

fractal media [12], fractional wave diffusion [13], fractional Hamiltonian dynamics [14,15] as

well as many other topics in physics. In other cases, it has been shown that the constitutive

equations employing fractional derivatives are linked to molecular theories [16]. In particular,

it has been shown that the predictions of fractional derivative Maxwell model are in excellent

agreement with the linear viscoelastic data in glass transition and α- relaxation zones [17].

The use of fractional derivatives within the context of viscoelasticity was firstly proposed by

Germant [18]. Then, Slonimsky [19] introduced fractional derivatives into Kelvin-Voigt model

to describe the relaxation processes. Subsequently, Bagley and Torvik [20, 21] and Koeller

[22], among others, extended the theory. They demonstrated that the theory of viscoelasticity

of coiling polymers and the theory of hereditary solid mechanics predict constitutive relations

with fractional derivatives. As such, these models are consistent with basic theories and are
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not arbitrary constructions that happen to describe experimental data.

It is also important pointing out that the interest for viscoelastic fluids with fractional

derivatives came from practical problems. In order to predict the dynamic response of viscous

dampers, for instance, Makris et al. [23] firstly used conventional models of viscoelasticity. It

was not possible to achieve satisfactory fit of the experimental data over the entire range of

frequencies. However, a very good fit of the experimental data was achieved when the fractional

Maxwell model

τ + λDατ = µDβγ,

has been used. Here τ and γ are the shear stress and strain, λ and µ are generalized material

constants and Dα is a fractional derivative operator of order α with respect to time. This

model is a special case of the more general model of Bagley and Torvik [20]. It collapses to

the conventional Maxwell model with α = β = 1, in which case λ and µ become the relaxation

time and the dynamic viscosity, respectively. Based on the fact that at vanishingly small strain

rates, the behavior of the viscoelastic fluid reduces to that of Newtonian fluid, the parameter

β was set equal to unity. The other three parameters were determined for the silicon gel fluid

and the predicted mechanical properties are in excellent agreements with experimental results.

Similar excellent agreements between frequency sweep experimental data obtained on other

polymers (e.g. polystyrenes) and theoretical predictions of linear fractional derivative models

are reported in [24-26].

However, despite these successful attempts, it must be emphasized that a constitutive

relation should be expressed in a three dimensional setting such that it is also frame indifferent.

The first objective law which characterizes an incompressible fractional derivative Maxwell fluid

seems to be that of Palade et al. [27, Eq. (16)]. This constitutive relation, under linearization,

reduces to the fractional integral Maxwell model exhibited in [27. Eq. (8)]. Using the definition

of a fractional integral, the last equality (8) is equivalent to the present equality proposed by

Makris et al. [23]. Consequently, if one wishes to study one-dimensional behavior only, then

it would appear that these models are successful. So in the following we shall establish exact

solutions for velocity and shear stress corresponding to the unsteady flow of an incompressible

fractional Oldroyd-B fluid due to an infinite plate that applies a time-dependent shear to the

fluid. These solutions, that satisfy all imposed initial and boundary conditions, are presented

as sums of Newtonian solutions and non-Newtonian contributions. They can easily be special-

ized to give both the solutions for fractional Maxwell and second grade fluids and those for

ordinary fluids. Finally, the influence of fractional parameters on the fluid motion, as well as a

comparison between models, is underlined by graphical illustrations.
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2 Governing equations

For the problem under consideration we shall assume the velocity field v and the extra-stress

tensor S of the form

v = v(y, t) = v(y, t)i, S = S(y, t), (1)

where i is the unit vector along the x-direction of the Cartesian coordinate system x, y and

z. For this flow, the constraint of incompressibility is automatically satisfied. Substituting

Eq. (1) into the constitutive equations corresponding to an incompressible Oldroyd-B fluid and

assuming that the fluid is at rest till the moment t = 0, we obtain the relevant equation [2,6](
1 + λ

∂

∂t

)
τ(y, t) = µ

(
1 + λr

∂

∂t

)
∂v(y, t)

∂y
, (2)

where µ is the viscosity of the fluid, λ and λr are relaxation and retardation times and τ(y, t) =

Sxy(y, t) is the nontrivial shear stress.

In the absence of body forces and a pressure gradient in the flow direction, the balance

of linear momentum leads to the significant equation

∂τ(y, t)

∂y
= ρ

∂v(y, t)

∂t
, (3)

where ρ is the density of the fluid. Eliminating τ(y, t) between Eqs. (2) and (3), we obtain the

following governing equation

(1 + λ
∂

∂t
)
∂v(y, t)

∂t
= ν(1 + λr

∂

∂t
)
∂2v(y, t)

∂y2
, (4)

for velocity. Here, ν = µ
ρ
is the kinematic viscosity of the fluid.

The governing equations corresponding to incompressible fractional Oldroyd-B fluids

(FOF), in such motions [28,29]

(1 + λαDα
t ) τ(y, t) = µ

(
1 + λβ

rD
β
t

) ∂v(y, t)

∂y
, (5)

(1 + λαDα
t )

∂v(y, t)

∂t
= ν(1 + λβ

rD
β
t )
∂2v(y, t)

∂y2
, (6)

are derived from Eqs. (2) and (4) via substituting the inner time derivatives by the fractional

differential operator (also called Caputo fractional operator with zero initial condition) [30, 31]

Dp
t f(t) =

1

Γ(1− p)

∫ t

0

f ′(τ)

(t− τ)p
dτ ; 0 ≤ p < 1, (7)
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where Γ(.) is the Gamma function. The constraint α ≥ β is explained in [32]. In the following

the system of fractional partial differential equations (5) and (6) with appropriate initial and

boundary conditions will be solved by means of integral transforms.

3 Statement of the problem and its solution

Let us consider an incompressible FOF occupying the space above a flat plate situated in

the (x,z) plane. Initially, the fluid as well as the plate is at rest. At time t = 0+ let the plate

be pulled with the time-dependent shear

τ(0, t) =
f

λα

∫ t

0

(t− s)aGα,0,1

(
− 1

λα
, s

)
ds; a ≥ 0, (8)

along the x-axis. Here, f and a are constants and (see [33], the pages 14 and 15)

Ga,b,c(d, t) =
∞∑
j=0

Γ(c+ j)

Γ(j + 1)Γ(c)

ta(j+c)−b−1

Γ[a(j + c)− b]
dj.

Owing to the shear the fluid is gradually moved. Its velocity is of the form (1)1, the governing

equations are given by Eqs. (5) and (6) while the appropriate initial and boundry conditions

are

v(y, 0) =
∂v(y, 0)

∂t
= 0, τ(y, 0) = 0; y > 0, (9)

(1 + λαDα
t ) τ(0, t) = µ

(
1 + λβ

rD
β
t

) ∂v(y, t)

∂y

∣∣∣∣
y=0

= fta; t > 0. (10)

Moreover, the natural condition

v(y, t) → 0 as y → ∞, (11)

has to be also satisfied. Of course, as we shall see later, τ(0, t) given by Eq. (8) is just the

solution of the fractional differential equation (10)1.

3.1 Calculation of the velocity

Multiplying Eq. (6) by
√

2
π
cos(yξ), integrating the result with respect to y from 0 to infinity

and taking into account the above initial and boundary conditions, we find that

(1 + λαDα
t )

∂vc(ξ, t)

∂t
+ νξ2

(
1 + λβ

rD
β
t

)
vc(ξ, t) = −f

ρ
ta
√

2

π
; ξ, t > 0, (12)
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where the Fourier cosine transform vc(ξ, t) of v(y, t) has to satisfy the initial conditions

vc(ξ, 0) =
∂vc(ξ, 0)

∂t
= 0; ξ > 0. (13)

Applying the Laplace transform to Eq. (12), using the Laplace transform formula for

sequential fractional derivatives [31] and having in mind the initial conditions (13), we find for

the image function v̄c(ξ, q) of vc(ξ, t) the expression

v̄c(ξ, q) = −f

ρ

√
2

π

Γ(a+ 1)

qa+1

1

q + λαqα+1 + νξ2 + γξ2qβ
, (14)

where q is the transform parameter and γ = νλβ
r . In order to obtain vc(ξ, t) = L−1{v̄c(ξ, q)} and

to avoid the burdensome calculations of residues and contour integrals, we apply the discrete

inverse Laplace transform method [34]. However in order to obtain a more suitable presentation

of final results, we firstly rewrite Eq. (14) in the equivalent form

v̄c(ξ, q) = −f

µ

√
2

π

Γ(a+ 1)

qa+1

1

ξ2
+

f

µ

√
2

π

1

ξ2
F (ξ, q) +

f

ρ

√
2

π
F (ξ, q)G(ξ, q), (15)

where F (ξ, q) = F1(q)F2(ξ, q) and

F1(q) =
Γ(a+ 1)

qa
, F2(ξ, q) =

1

q + νξ2
and G(ξ, q) =

λαqα + γξ2qβ−1

q + λαqα+1 + νξ2 + γξ2qβ
. (16)

Denoting by f1(t), f2(ξ, t), f(ξ, t) and g(ξ, t) the inverse Laplace transforms of F1(q),

F2(ξ, q), F (ξ, q) and G(ξ, q) and bearing in mind Eq. (A1) from the Appendix A, we can write

vc(ξ, t) = −f

µ

√
2

π

ta

ξ2
+

f

µ

√
2

π

1

ξ2
f(ξ, t) +

f

ρ

√
2

π
h(ξ, t), (17)

where

f(ξ, t) = (f1 ∗ f2)(t) =

{
e−νξ2t, a = 0

a
∫ t

0
(t− s)a−1e−νξ2sds, a > 0

(18)

and h(ξ, t) = L−1{F (ξ, q)G(ξ, q)} = (f ∗ g)(t) =
∫ t

0
f(ξ, t− s)g(ξ, s)ds.

Applying the inverse Fourier transform to Eq. (17) and using Eqs. (A2) and (A3), we

find for the velocity v(y, t), the simple expression

v(y, t) = vN(y, t) +
2f

ρπ

∫ ∞

0

h(ξ, t) cos(yξ)dξ, (19)
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where [34, Eq. (4.1) with α=0]

vN(y, t) =
f

µ
yta − 2f

µπ

∫ ∞

0

{ta − f(ξ, t) cos(yξ)}dξ
ξ2

, (20)

is the velocity corresponding to a Newtonian fluid performing the same motion and

h(ξ, t) =
∞∑
k=0

k∑
m=0

(
−νξ2

λα

)k
k!λmβ

r

m!(k −m)!

×
∫ t

0

f(ξ, t− s)

{
Gα,αm,k+1

(
− 1

λα
, s

)
+ νξ2

λβ
r

λα
Gα,βm,k+1

(
− 1

λα
, s

)}
ds, (21)

with αm = α +mβ − k − 1 and βm = (1 +m)β − k − 2.

The velocity v(y, t), as it results from Eq. (19), is presented as a sum between the

Newtonian solution vN(y, t) and the non-Newtonian contribution

vnN(y, t) =
2f

ρπ

∫ ∞

0

h(ξ, t) cos(yξ)dξ. (22)

Of course, in view of Eq. (A4), it clearly results that for λr and λ → 0, vnN(y, t) → 0 and

therefore v(y, t) → vN(y, t).

3.2 Calculation of the shear stress

Applying the Laplace transform to Eq. (5), we obtain

τ̄(y, q) = µ
1 + λβ

r q
β

1 + λαqα
∂v̄(y, q)

∂y
, (23)

where

v̄(y, q) = −2f

ρπ

Γ(a+ 1)

qa+1

∫ ∞

0

cos(yξ)

q + λαqα+1 + νξ2 + γξ2qβ
dξ, (24)

is obtained from Eq. (14). Introducing Eq. (24) in Eq. (23), it results

τ̄(y, q) =
2fν

π

Γ(a+ 1)

qa+1

1 + λβ
r q

β

1 + λαqα

∫ ∞

0

ξ sin(yξ)

q + λαqα+1 + νξ2 + γξ2qβ
dξ. (25)

In the following, in order to obtain for the shear stress τ(y, t) = L−1{τ(y, q)} a similar

form to that of velocity, we shall use the identity

Γ(a+ 1)

qa+1

1 + λβ
r q

β

1 + λαqα
1

q + λαqα+1 + νξ2 + γξ2qβ
=

1

νξ2

[
Γ(a+ 1)

qa+1
− F (ξ, q)

]
+F1(q)G1(ξ, q)G2(ξ, q),
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where F1(.) and F (ξ, .) have been previously defined,

G1(ξ, q) =
1

q + λαqα+1 + νξ2 + νξ2λαqα
, G2(ξ, q) =

λβ
r q

β − 2λαqα − λ2αq2α − γξ2λαqα+β−1 − νξ2λαqα−1

q + λαqα+1 + νξ2 + γξ2qβ

and follow the same way as before. In order to avoid repetition, we give the final result in the

simple form

τ(y, t) = τN(y, t) +
2fν

π

∫ ∞

0

ξ sin(yξ)(f1 ∗ g1 ∗ g2)(t)dξ, (26)

where [34, Eq. (4.2) with α=0]

τN(y, t) = fta − 2f

π

∫ ∞

0

sin(yξ)

ξ
f(ξ, t)dξ, (27)

represents the shear stress corresponding to Newtonian fluids

f1(t) =

{
δ(t), a = 0

ata−1, a > 0
, δ(.) being the Dirac delta function,

g1(ξ, t) =
1

λα

∞∑
k=0

k∑
m=0

(
−νξ2

λα

)k
k!λmα

m!(k −m)!
Gα,mα−k−1,k+1

(
− 1

λα
, t

)
,

g2(ξ, t) =
1

λα

∞∑
k=0

k∑
m=0

(
−νξ2

λα

)k
k!λmβ

r

m!(k −m)!


λβ
rGα,βm+1,k+1

(
− 1

λα , t
)
− 2λαGα,αm,k+1

(
− 1

λα , t
)

−λ2αGα,αm+α,k+1

(
− 1

λα , t
)
− γξ2λαGα,βm+α,k+1

(
− 1

λα , t
)

−νξ2λαGα,αm−1,k+1

(
− 1

λα , t
)

 .

A simple analysis clearly shows that τ(y, t) → τN(y, t) for λr and λ → 0.

3.3 Special cases a = 0, 1, 2, 3, ...

By making a = 0 into Eqs. (19) and (26) and having in mind Eq. (18), (A5) and the entry

6 of Table 5 from [35], we find that

v0(y, t) = v0N(y, t) +
2f

ρπ

∞∑
k=0

k∑
m=0

k!λmβ
r

m!(k −m)!

∫ ∞

0

(
−νξ2

λα

)k

cos(yξ)

×
∫ t

0

e−νξ2(t−s)

{
Gα,αm,k+1

(
− 1

λα
, s

)
+ νξ2

λβ
r

λα
Gα,βm,k+1

(
− 1

λα
, s

)}
dsdξ, (28)
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τ0(y, t) = τ0N(y, t) +
2fν

π

∫ ∞

0

ξ sin(yξ)

∫ t

0

g1(ξ, t− s)g2(ξ, s)dsdξ, (29)

where the expressions of

v0N(y, t) =
f

µ
y − 2f

µπ

∫ ∞

0

{1− e−νξ2t cos(yξ)}dξ
ξ2

=
fy

µ
erfc

(
y

2
√
νt

)
− 2f

µ

√
νt

π
exp

(
− y2

4νt

)
(30)

and

τ0N(y, t) = f − 2f

π

∫ t

0

sin(yξ)

ξ
e−νξ2tdξ = f erfc

(
y

2
√
νt

)
, (31)

are identical to those obtained in [3, Eqs. (4.3) and (4.4)].

The solutions corresponding to a = 1, namely,

v1(y, t) = v1N(y, t) +
2f

ρπ

∞∑
k=0

k∑
m=0

k!λmβ
r

m!(m− k)!

∫ ∞

0

(
−νξ2

λα

)k

cos(yξ)

×
∫ t

0

e−νξ2(t−s)

{
Gα,αm−1,k+1

(
− 1

λα
, s

)
+ νξ2

λβ
r

λα
Gα,βm−1,k+1

(
− 1

λα
, s

)}
dsdξ, (32)

τ1(y, t) = τ1N(y, t) +
2fν

π

∫ ∞

0

ξ sin(yξ)

∫ t

0

(g1 ∗ g2)(s)dsdξ, (33)

where

v1N(y, t) =
f

µ
yt− 2f

µπ

∫ ∞

0

{
t− 1− e−νξ2t

νξ2
cos(yξ)

}
dξ

ξ2
, (34)

τ1N(y, t) = ft− 2f

π

∫ ∞

0

1− e−νξ2t

ξ3
sin(yξ)dξ = f

∫ t

0

erfc

(
y

2
√
νs

)
ds, (35)

are also identical to those obtained in [36, Eqs. (21) and (22)] by a different technique.

In order to get Eq. (32), for instance, we made an integration by parts into Eq. (21) and used

Eqs. (18) and (A6). A simple analysis shows that

v1(y, t) =

∫ t

0

v0(y, s)ds and τ1(y, t) =

∫ t

0

τ0(y, s)ds. (36)

Lengthy but straightforward computations allow us to prove that

vn(y, t) = n!

∫ t

0

∫ s1

0

∫ s2

0

...

∫ sn−1

0

v0(y, sn)dsndsn−1...ds1, (37)
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τn(y, t) = n!

∫ t

0

∫ s1

0

∫ s2

0

...

∫ sn−1

0

τ0(y, sn)dsndsn−1...ds1. (38)

4 Limiting cases

4.1 The case λr → 0 (fractional Maxwell fluids)

Making λr → 0 into Eqs. (19) and (26) we get the solutions

vFM(y, t) = vN(y, t) +
2f

ρπ

∫ ∞

0

cos(yξ)hFM(ξ, t)dξ, (39)

τFM(y, t) = τN(y, t) +
2fν

π

∫ ∞

0

ξ sin(yξ)(f1 ∗ g1 ∗ g2FM)(t)dξ, (40)

corresponding to a Maxwell fluid with fractional derivatives performing the same motion. Here

f1(.) and g1(ξ, .) are the same as before and

hFM(ξ, t) =
∞∑
k=0

(
−νξ2

λα

)k ∫ t

0

f(ξ, t− s)Gα,α−k−1,k+1

(
− 1

λα
, s

)
ds,

g2FM(ξ, t) = −
∞∑
k=0

(
−νξ2

λα

)k {
2Gα,α−k−1

(
− 1

λα
, t

)
+ λαGα,2α−k−1(−

1

λα
, t) + νξ2Gα,α−k−2,k+1

(
− 1

λα
, t

)}
.

Of course, in view of Eq. (A4), vFM(y, t) → vN(y, t) and τFM(y, t) → τN(y, t) if λ → 0.

4.2 The case λ → 0 (fractional second grade fluids)

The solutions corresponding to second grade fluids with fractional derivatives can also be ob-

tained as limiting cases of general solutions using Eq. (A4). However, simpler but equivalent

forms of these solutions, namely

vFSG(y, t) = vN(y, t) +
2f

ρπ
γ

∫ ∞

0

ξ2 cos(yξ)hFSG(ξ, t)dξ, (41)

τFSG(y, t) = τN(y, t) +
2f

π
γ

∫ ∞

0

ξ sin(yξ)gFSG(ξ, t)dξ, (42)

are obtained making λ → 0 into Eqs. (14) and (25) and using the identity

1

q + νξ2 + γξ2qβ
=

∞∑
k=0

(−γξ2)k
qβk

(q + νξ2)k+1
.
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The two functions from Eqs. (41) and (42) are given by

hFSG(ξ, t) =
∞∑
k=0

(−γξ2)k
∫ t

0

f(ξ, t− s)G1,βk+β−1,k+1(−νξ2, s)ds,

gFSG(ξ, t) = Γ(a+ 1)
∞∑
k=0

(−γξ2)k
∫ t

0

e−νξ2(t−s)G1,β(k+1)−a,k+1(−νξ2, s)ds.

4.3 The case α = β = 1 (Oldroyd-B fluids)

By making α = β = 1 into Eqs. (19) and (26) we obtain the similar solutions for Oldroyd-B

fluids. The velocity field v0(y, t), for instance, has the form

v0(y, t) = vN(y, t) +
2f

ρπ

∞∑
k=0

k∑
m=0

k!λm
r

m!(k −m)!

∫ ∞

0

(
−νξ2

λ

)k

cos(yξ)

×
∫ t

0

f(ξ, t− s)

{
G1,m−k,k+1

(
−1

λ
, s

)
+ νξ2

λr

λ
G1,m−k−1,k+1

(
−1

λ
, s

)}
dsdξ, (43)

where f(ξ, t) is given by Eq. (18). For a = 0, the corresponding solution

v00(y, t) = vN(y, t) +
2f

ρπ

∞∑
k=0

k∑
m=0

k!λm
r

m!(k −m)!

∫ ∞

0

(
−νξ2

λ

)k

cos(yξ)

×
∫ t

0

e−νξ2(t−s)

{
G1,m−k,k+1

(
−1

λ
, s

)
+ νξ2

λr

λ
G1,m−k−1,k+1

(
−1

λ
, s

)}
dsdξ, (44)

as it results from Fig. 1, is equivalent to the known solution

v00(y, t) =
fy

µ
− 2f

µπ

∫ ∞

0

{
1− q2exp(q1t)− q1exp(q2t)

q2 − q1
cos(yξ)

}
1

ξ2
dξ, (45)

obtained in [3] by a different technique. In the last relation q1 and q2 are the roots of the

algebraic equation of second grade λq2 + (1 + γξ2)q + νξ2 = 0.

Equivalent but simpler expressions for v0(y, t) and τ0(y, t) can be obtained using new

suitable decompositions for the corresponding functions G(ξ, .), G1(ξ, .) and G2(ξ, .). Using the

identity

λq + γξ2

λq2 + (1 + γξ2)q + νξ2
=

q + α
2λ

(q + α
2λ
)2 − ( β

2λ
)2

− 1− γξ2

β

β
2λ

(q + α
2λ
)2 − ( β

2λ
)2
,

11



for instance, we find that

v0(y, t) = vN(y, t)+
2f

ρπ

∫ ∞

0

cos(yξ)

∫ t

0

f(ξ, t− s)

[
ch

(
βs

2λ

)
− 1− γξ2

β
sh

(
βs

2λ

)]
exp

(
−αs

2λ

)
dsdξ,

(46)

where α = 1 + γξ2 and β =
√

(1 + γξ2)2 − 4νλξ2. The equivalence of the solutions given by

Eqs. (45) and (46) (with a = 0) is shown by Fig.2. It can also be proved by direct computations.

4.4 The case λr → 0 and α = 1 (Maxwell fluids)

The solutions corresponding to Maxwell fluids performing the same motion are immediately

obtained from Eqs. (19) and (26) by making λr → 0 and α = 1. However, they can also be

obtained from Eqs. (39) and (40) for α = 1 or from the solutions corresponding to Oldroyd-B

fluids for λr → 0.

4.5 The case λ → 0 and β = 1 (Second grade fluids)

By letting now β = 1 into Eqs. (41) and (42) we get the similar solutions for second grade

fluids. They can also be obtained from general solutions (for λ → 0 and β = 1) or from the

solutions of the Oldroyd-B fluids (for λ → 0). The solutions corresponding to a = 0 and 1, for

instance,

v0SG(y, t) = v0N(y, t)+
2f

ρπ
γ

∞∑
k=0

∫ ∞

0

ξ2(−γξ2)k cos(yξ)

∫ t

0

e−νξ2(t−s)G1,k,k+1(−νξ2, s)dsdξ, (47)

τ0SG(y, t) = τ0N(y, t) +
2f

π
γ

∞∑
k=0

∫ ∞

0

ξ(−γξ2)k sin(yξ)

∫ t

0

e−νξ2(t−s)G1,k+1,k+1(−νξ2, s)dsdξ,

(48)

v1SG(y, t) = v1N(y, t) +
2f

ρπ
γ

∞∑
k=0

∫ ∞

0

ξ2(−γξ2)k cos(yξ)

∫ t

0

e−νξ2(t−s)G1,k−1,k+1(−νξ2, s)dsdξ,

(49)

τ1SG(y, t) = τ1N(y, t) +
2f

π
γ

∞∑
k=0

∫ ∞

0

ξ(−γξ2)k sin(yξ)

∫ t

0

e−νξ2(t−s)G1,k,k+1(−νξ2, s)dsdξ, (50)

are immediately obtained from Eqs. (41) and (42) for a = 0 or 1 and β = 1. Finally, it is

worth pointing out that in view of Eqs. (B1), (B2), (B3) and (B4) from the Appendix B, these

solutions take the simplified forms

v0SG(y, t) =
f

µ
yt− 2f

µπ

∫ ∞

0

[
1− cos(yξ)exp

(
− νξ2t

1 + γξ2

)]
1

ξ2
dξ, (51)
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τ0SG(y, t) = fH(t)

[
1− 2

π

∫ ∞

0

sin(yξ)

ξ(1 + γξ2)
exp

(
− νξ2t

1 + γξ2

)
dξ

]
, (52)

and

v1SG(y, t) =
f

µ
yt− 2f

µπ

∫ ∞

0

{
t− 1 + γξ2

νξ2

[
1− exp

(
− νξ2t

1 + γξ2

)]
cos(yξ)

}
1

ξ2
dξ, (53)

τ1SG(y, t) = ft− 2f

νπ

∫ ∞

0

[
1− exp

(
− νξ2t

1 + γξ2

)]
sin(yξ)

ξ3
dξ, (54)

obtained in [3, Eq. (4.1)], respectively [36, Eqs. (19) and (20)] by a different technique.

5 Conclusions and numerical results

The main purpose of this paper is to provide exact solutions for velocity and shear stress

corresponding to the unsteady motion of an Oldroyd-B fluid due to an infinite plate that applies

a shear stress fta to the fluid. However, for generality, these solutions have been established for a

larger class of fluids, namely Oldroyd-B fluids with fractional derivatives. They are presented as

a sum of Newtonian solutions and non-Newtonian contributions and satisfy all imposed initial

and boundary conditions. The non-Newtonian contributions, as expected, tend to zero for λ

and λr → 0. Furthermore, the similar solutions for fractional Maxwell and second grade fluids

as well as those for ordinary Oldroyd-B , Maxwell and second grade fluids are also obtained as

limiting cases of general solutions for λr → 0 or λ → 0 , respectively α = β = 1, λr → 0 and

α = 1 or λ → 0 and β = 1.

Finally, in order to establish a relation with the motion over a moving plate, let us

remember the velocity fields (see [37, Eq. (3)] and [6, Eq. (23)])

v0(y, t) = V H(t)

[
1− 2

π

∫ ∞

0

sin(yξ)

ξ(1 + γξ2)
exp

(
− νξ2t

1 + γξ2

)
dξ

]
, (55)

v1(y, t) = At− 2A

νπ

∫ ∞

0

{
1− exp

(
− νξ2t

1 + γξ2

)}
sin(yξ)

ξ3
dξ, (56)

corresponding to the unsteady motion of a second grade fluid due to a suddenly moved plate

or a constantly accelerating plate (a plate that slides in its plane with a velocity V or At). As

form, these expressions are identical to those of the shear stresses τ0SG(y, t) and τ1SG(y, t) given

by Eqs. (52) and (54) (corresponding to the motion induced by a plate that applies a shear

stress f or ft to the fluid). This is not a surprise because a simple analysis of the equations (2)

and (3) with λ = 0 shows that the shear stress τ(y, t) in such motions of second grade fluids

13



satisfies the same governing equation as velocity, i.e.

∂τ(y, t)

∂t
= (ν + γ

∂

∂t
)
∂2τ(y, t)

∂y2
like

∂v(y, t)

∂t
= (ν + γ

∂

∂t
)
∂2v(y, t)

∂y2
.

Consequently, the present results regarding second grade fluids bring about exact solutions for

the velocity v(y, t) corresponding to the unsteady motion due to an infinite plate that slides in

its plane with a velocity Ata.

Furthermore, eliminating v(y, t) between Eqs. (2) and (3), we obtain for the shear stress

τ(y, t) a governing equation

(1 + λ
∂

∂t
)
∂τ(y, t)

∂t
= ν(1 + λr

∂

∂t
)
∂2τ(y, t)

∂y2
; t > 0,

of the same form as Eq. (4) for velocity. Consequently, the present results also allow us to

present close form solutions for the velocity of Maxwell and Oldroyd-B fluids over an infinite

plate that is moving in its plane according to the boundary condition.

v(0, t) =
A

λ

∫ t

0

(t− s)aG1,0,1(−
1

λ
, s)ds; a ≥ 0.

Now, in order to bring to light some relevant physical aspects of the obtained results, the

influence of fractional parameters on the fluid velocity is underlined by graphical illustrations.

A series of calculations were performed for different solutions with typical values. The velocity

of the fluid, as it results from Fig. 3 is an increasing function with respect to α. Consequently,

a fractional Maxwell fluid flows slower in comparison with an ordinary Maxwell fluid. The

influence of fractional parameter β on velocity is shown in Fig. 4. The velocity of the fluid is

an increasing function of β in a relative small neighborhood of the plate only. Therefore, in

the vicinity of the plate the fractional second grade fluid also flows slower in comparison with

an ordinary second grade fluid. A comparison between Oldroyd-B and fractional Oldroyd-B

models is realized in Fig. 5. As it was to be expected, for α and β → 1 the diagrams of velocity

tend to that corresponding to the Oldroyd-B fluid. The units of all material constants in Figs.

1-5 are ISI units.

Appendix A

L−1

{
Γ(a+ 1)

qa

}
=

{
δ(t), a = 0

ata−1, a > 0
; L

{
1

q + νξ2

}
= e−νξ2t, (A1)
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where δ(.) is the Dirac delta function and (δ ∗ f)(t) = f(t).

∫ ∞

0

1− cos(yξ)

ξ2
dξ =

π

2
y;

1

z + a
=

∞∑
k=0

(−1)k
zk

ak+1
; (b+1)k =

k∑
m=0

k!bm

m!(k −m)!
. (A2)

Ga,b,c(d, t) = L−1

{
qb

(qa − d)c

}
;Re(ac−b) > 0, Re(q) > 0 and | p

qa
| < 1. (A3)

lim
λ→0

1

λαk
Ga,b,k

(
− 1

λα
, t

)
=

t−b−1

Γ(−b)
if b < 0. (A4)

2

π

∫ ∞

0

[
1− e−νξ2t cos(yξ)

] dξ
ξ2

= 2

√
νt

π
exp

(
− y2

4νt

)
+yerf

(
y

2
√
νt

)
. (A5)

∫ t

0

Ga,b,c(d, s)ds = Ga,b−1,c(d, t). (A6)

Appendix B

γξ2
∞∑
k=0

(−γξ2)k
∫ t

0

e−νξ2(t−s)G1,k,k+1(−νξ2, s)ds =
1

νξ2

[
exp

(
− νξ2t

1 + γξ2

)
− e−νξ2t

]
. (B1)

λr

∞∑
k=0

(−γξ2)k
∫ t

0

e−νξ2(t−s)G1,k+1,k+1(−νξ2, s)ds =
1

νξ2

[
e−νξ2t − 1

1 + γξ2
exp

(
− νξ2t

1 + γξ2

)]
. (B2)

γξ2
∞∑
k=0

(−γξ2)k
∫ t

0

e−νξ2(t−s)G1,k−1,k+1(−νξ2, s)ds =
1

ν2ξ4

[
γξ2 + e−νξ2t − (1 + γξ2)exp

(
− νξ2t

1 + γξ2

)]
. (B3)

λr

∞∑
k=0

(−γξ2)k
∫ t

0

e−νξ2(t−s)G1,k,k+1(−νξ2, s)ds =
1

ν2ξ4

[
exp(− νξ2t

1 + γξ2
)− e−νξ2t

]
. (B4)

In order to prove the last two relations, we use the next identities

γξ2

q + νξ2

∞∑
k=0

(−γξ2)k
qk−1

(q + νξ2)k+1
=

1

q + νξ2
γξ2

q[(q + νξ2) + γξ2q]
=

1

q + νξ2
γξ2

1 + γξ2
1

q
(
q + νξ2

1+γξ2

) ,
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λr

q + νξ2

∞∑
k=0

(−γξ2)k
qk

(q + νξ2)k+1
=

1

q + νξ2
λr

q + νξ2 + γξ2q
=

1

ν2ξ4

[
1

q + νξ2

1+γξ2

− 1

q + νξ2

]
.

Applying the inverse Laplace transform to the last identity, for instance, and using (A1)2 and

the property (f1 ∗f2)(t) =
∫ t

0
f1(t− s)f2(s)ds = L−1{F1(q)F2(q)}, we immediately obtain (B4).
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Fig. 1. Profiles of the velocity v(y,t) given by Eq. (44) - curves , v12 , v13

and Eq. (45) - curves

v11(y)

= 0.003974, = 3,902,n m

l

(y) (y)

v21(y), v22(y), v23(y), for

f = -2, = 2, = 1 and different values of t.lr

Fig. 2. Profiles of the velocity v(y,t) given by Eq. (45) - curves , v12 , v13

and Eq. (46) - curves

v11(y)

= 0.003974, = 3,902,n m

l

(y) (y)

v21(y), v22(y), v23(y), for

f = -2, = 2, = 1 and different values of t.lr
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Fig. 3. Profiles of the velocity v(y,t) given by Eq. (19) - curves , v2 , v3v1(y)

= 0.003974, = 3,902,n m l

(y) (y)

for a = 1, f = -2, = 2, = 1, = 0.2, t = 10s

and different values of .

l b

a
r

Fig. 4. Profiles of the velocity v(y,t) given by Eq. (19) - curves , v2 , v3v1(y)

= 0.003974, = 3,902,n m l

(y) (y)

for f = -2, = 2, = 1, = 0.95, t = 10s

and different values of .
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Fig. 5. Profiles of the velocity v(y,t) for fractional  Oldroyd-B fluid - curves v1FOF(y),

v2FOF(y) and Oldroyd-B fluid - curve , for a = 1,  withvOF(y) = 0.003974,

= 3,902,

n

m lf = -2, = 2, = 1, t = 10s  and different values of and .l a br

a b= 0.70, = 0.60

a b= 0.85, = 0.85
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