Axial-Couette Flow Of An Oldroyd-B Fluid In An Annulus Due To A Time-Dependent Shear Stress
Corina Fetecau
[image: image1.wmf]1

, A. U. Awan
[image: image2.wmf]2,


and NAzish Shahid
[image: image3.wmf]2


 
[image: image4.wmf]1

 Technical University, Iasi 700050, Romania,
Department of Theoretical Mechanics

[image: image5.wmf]2

 G.C. University Lahore, Pakistan,

Abdus Salam School of Mathematical Sciences 

2010 MSC or/and PACS: 76A05, 76A10
Received: 

Accepted for publication: 
Abstract

          The velocity and the shear stress, corresponding to the unsteady flow of an Oldroyd-B fluid between two infinite circular cylinders, are established using the finite Hankel transform. The motion is produced by the inner cylinder, which after time 
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 is pulled with a time-dependent shear stress along its axis. The solutions for Maxwell, Second grade and Newtonian fluids, performing the same motion, are obtained as limiting cases of general solutions. Finally, the influence of the material parameters on the fluid motion is underlined by graphical illustrations. 
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1. Introduction
            There  are  many  fluids  with  complex  microstructure,  such  as  biological  fluids,   polymeric   liquids, suspensions, liquid crystals in industrial processes whose behavior cannot be described by the Navier-Stokes equations. Recently, the interest into motion problems of such fluids, also called non-Newtonian fluids, has considerably grown due to their multiple applications. Among the many models that have been used to describe their behavior, the rate type models have received much attention. The first systematic thermodynamic study of such models is that of Rajagopal and Srinivasa [1], within which models for a variety of rate type viscoelastic fluids can be obtained. They showed that the Oldroyd-B fluid is one which stores energy like a linearized elastic solid, its dissipation however being due to two dissipative mechanisms that implies that they arise from a mixture of two viscous fluids. The Oldroyd-B model, that is amenable to analysis, has been found to approximate the response of many dilute polymeric liquids. The first exact solutions corresponding to some motions of Oldroyd-B fluids seem to be those of Waters and King [2]. In the meantime a lot of papers regarding these fluids have been published. The interested readers can see for instance the papers [3-10] and their related references.

         However, it is worth pointing out that almost all above mentioned papers dealt with motion problems in which the velocity is given on the boundary. To the best of our knowledge, the first exact solutions for motions of non-Newtonian fluids in which the shear stress is given on the boundary are those of Bandelli et al [11] and Bandelli and Rajagopal [12] for second grade fluids and Waters and King [2] for Oldroyd-B fluids. The solutions from [12] have been recently extended to a large class of fluids, namely to generalized Oldroyd-B fluids [13, 14]. Unfortunately, in these papers the corresponding shear stresses have not been determined and the obtained solutions cannot be particularized to give the similar solutions for Oldroyd-B and Maxwell fluids. Similar solutions for the motion of non-Newtonian fluids in an infinite circular cylinder, subject to time-dependent shear stresses, have been recently obtained in [15-17].

 The aim of this note is to extend the results of Bandelli and Rajagopal [12, Sect. 4] to a larger class of non-Newtonian fluids. More exactly, we determine the velocity and the shear stress corresponding to the motion of an Oldroyd-B fluid between two infinite coaxial cylinders. The motion of the fluid is due to the inner cylinder which after time 
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 applies a longitudinal time-dependent shear to the fluid. The exact solutions, obtained by means of the finite Hankel transforms, are presented under series form in terms of Bessel functions 
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. They satisfy all imposed initial and boundary conditions and can be easily specialized to give the similar solutions for Maxwell, second grade and Newtonian fluids. Finally, the influence of pertinent parameters on the fluid motion, as well as a comparison between the four models, is shown by graphical illustrations. 

2. Governing equations
            The incompressible Oldroyd-B fluids are characterized by the constitutive equations [1-9] 
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where 
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 is the Cauchy stress tensor, 
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 denotes the indeterminate spherical stress, 
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 is the extra-stress tensor, 
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 is the velocity gradient, 
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 is the first Rivlin-Ericksen tensor, 
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 is the dynamic viscosity, 
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 are relaxation and retardation times and the superposed dot indicates the material time derivative. This model includes as special cases the Maxwell model and the linearly viscous fluid model. In some special flows, like those to be considered here, the governing equations for Oldroyd-B fluids resemble those for second grade fluids.

 For the problem under consideration we assume a velocity field 
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 and an extra-stress tensor 
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 of the form 
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where 
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 is the unit vector in the 
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-direction of a cylindrical coordinate system 
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. For these flows the constraint of incompressibility is automatically satisfied. If the fluid is at rest up to the moment 
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and Eqs. (1) and (2) imply that 
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. In the absence of a pressure gradient in the axial direction and neglecting body forces, the balance of linear momentum and the constitutive equation 
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 lead to the relevant partial differential equations [3, 6]
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where 
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 is the shear stress that is different of zero and 
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 is the constant density of the fluid.

Eliminating 
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 between Eqs. (4) we obtain the governing equation 
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where 
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 is the kinematic viscosity of the fluid. The partial differential equation (5) with adequate initial and boundary conditions, can be solved in principle by several methods, the integral transforms technique representing a systematic, efficient and powerful tool. The Laplace transform can be used to eliminate the time variable, while the finite Hankel transform can be employed to eliminate the spatial variable. In the next we shall use the finite Hankel transform.

3. Flow through an infinite annular region
   Consider an Oldroyd-B fluid at rest in the annular region between two infinite coaxial circular cylinders of radii 
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 the inner cylinder is pulled with a longitudinal time dependent shear-stress, 
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Due to the shear, the fluid is gradually moved its velocity being of the form (2). The governing equations are given by Eqs. 
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 and (5), while the appropriate initial and boundary conditions are 
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 In order to solve the linear partial differential equation (5), with the initial and boundary conditions (7) and (8), we shall use the finite Hankel transform [18]
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of the function 
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 are the positive roots of the transcendental equation 
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 are Bessel functions of first and second kind of order 
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, it is not difficult to show that [18, Eq. (13.4.31)] 
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The inverse Hankel transform formula, corresponding to Eq. (9), is 
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By now multiplying Eq. (5) by 
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Equalities (7) also imply 
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The solution of the ordinary differential equation (12) with the initial conditions (13) is 
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where 
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Finally, applying the inverse Hankel transform formula 
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 to Eq. (14) and using the identity 
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we find the velocity field 
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 under the simple form 
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In order to determine the shear stress, we use Eqs. 
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 and 
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, and get 
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Substituting (15) into (16) and using the identities 
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, we obtain, after lengthy but straightforward computations, the next suitable form for the shear stress 
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where 
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Of course, Eq. (17) can be further processed to give the simple form 
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4. Limiting cases
1. By taking the limit of Eqs. (15) and (18) as 
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, we obtain the solutions 
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corresponding to a Maxwell fluid performing the same motion. Into above relations 
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2. By now letting 
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 into Eqs. (15) and (18), the similar solutions 
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corresponding to a second grade fluid are obtained.

3. Finally, taking the limit of Eqs. (19), (20) or (21), (22) when 
[image: image83.wmf]0

l

®

, respectively 
[image: image84.wmf]0

r

l

®

, the simple solutions [17, Eqs. (29) and (37)] 
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for a Newtonian fluid are recovered. Of course, the boundary condition corresponding to these last solutions 
[image: image87.wmf]((21),(22)(23),(24))

and

, as it results from Eq. (6) for 
[image: image88.wmf]0

l

®

, is (cf. [12, Eq. (4.3)]) 



[image: image89.wmf]1

(,)=.

Rtf

t


(25)
Furthermore, Eq. (21) is identical to that obtained in [12, Eq. (4.35)] by a different technique.

5. Numerical Results and Conclusions
The purpose of this paper is to provide exact solutions for the velocity field 
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 corresponding to the axial flow of an Oldroyd-B fluid in an annular region. After time 
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 the inner cylinder is pulled with a time-dependent shear along its axis and the outer one is held fixed. The solutions that have been obtained satisfy both the governing equations and all imposed initial and boundary conditions. They are presented under series form in terms of Bessel functions 
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 and can be easy particularized to give similar solutions for Maxwell, second grade and Newtonian fluids. Making 
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which are the same for all kinds of fluids. Consequently, the unsteady motion due to an infinite circular cylinder that applies a time-dependent shear to the fluid, ultimately becomes steady. This is not a surprise because for 
[image: image99.wmf]t

®¥

, the boundary condition (6) corresponding to Maxwell and Oldroyd-B fluids also reduces to that for second grade and Newtonian fluids, namely to (25). The required time to reach the steady-state, as it results from Figs. 1 is the lowest for Newtonian fluids and the highest for Maxwell fluids.

 Now, in order to reveal some relevant physical aspects of the obtained results, the diagrams of the velocity 
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, as expected, it is clearly seen that the shear stress on the inner cylinder does not depend of the values of 
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, it is the same for all its values. The influence of the kinematic viscosity 
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 on the fluid motion is underlined by Figs. 
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 Finally, for comparison, the profiles of the velocity corresponding to the four models (Oldroyd-B, Maxwell, second grade and Newtonian) are presented in Fig. 6 for the same values of 
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CURGEREA COUETTE A UNUI FLUID OLDROYD-B INTR-UN DOMENIU INELAR DATORITA UNEI TENSIUNI DE FORFECARE DEPENDENTA DE TIMP
 (Rezumat)


          In acest articol se determina viteza si tensiunea de forfecare corespunzatoare curgerii nestationare a unui fluid Oldroyd-B intr-un  domeniu inelar determinat de doi cilindri circulari coaxiali. Miscarea se datoreaza tensiunii longitudinale de pe suprafata cilindrului interior. Solutiile problemei  au fost determinate cu ajutorul transformatei Hankel. Expresiile vitezelor si tensiunilor corespunzatoare fluidelor de tip Maxwell, de gradul doi sau Newtonian, avind aceeasi miscare, sint obtinute prin particularizarea solutiilor corespunzatoare fluidului Oldroyd-B. 

          Unele proprietati ale curgerii sint evidentiate cu ajutorul ilustratiilor grafice.
� Corresponding author. E-mail address: auawan2003@yahoo.com, Permanent address: 68-B, New Muslim town Lahore, Pakistan.
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