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FLOW OF AN OLDROYD-B FLUID OVER AN INFINITE

PLATE SUBJECT TO A TIME-DEPENDENT SHEAR

STRESS
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Abstract. The velocity field and the shear stress corresponding to the
unsteady flow of an Oldroyd-B fluid due to an infinite flat plate, subject
to a time-dependent shear stress, are established in integral form using the
Fourier cosine transform. Similar solutions for Maxwell, Second grade and
Newtonian fluids are recovered as limiting cases of general solutions. These
solutions satisfy both the governing equations and all imposed initial and
boundary conditions. Finally, a comparison between the four models as
well as the influence of the pertinent parameters on the fluid motion is
underlined by graphical illustrations.
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1. Introduction

The study of the motion of a fluid over an infinite plate is of interest both
for academic research and due to its practical importance. Stokes [1] solved
the problem for a viscous fluid flow and Soundalgekar [2] extended it to a
fluid of second grade using a perturbation method. Teipel [3] showed that for
such a fluid, a similarity solution does not exist and provided a series solution.
Puri [4] studied the problem using the Laplace transform and found a solution
which does not satisfy the initial condition. Later, Bandelli et al [5] and Ban-
delli and Rajagopal [6] showed that the soluations obtained using the Laplace
transform do not satisfy the intial conditions. Moreover, the corresponding
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Navier- Stokes solutions cannot be retrieved from those for fluids of second
grade. In the last time, there have been several papers devoted to the study
of such flows of non-Newtonian fluids [7-21]. However, it is worth pointing out
that the most of them dealt with problems for which the velocity is given on
the boundary. To the best of our knowledge, the first exact solutions for such
flows of non-Newtonian fluids in which the shear stress is given on the plate are
those obtained by Bandelli et al [5]. The first exact solutions for the motion
of a non-Newtonian fluid due to an infinite circular cylinder subject to a con-
stant longitudinal/rotational shear stress are those of Bandelli and Rajagopal
[6]. Other exact solutions for motions of second grade or Oldroyd-B fluids,
induced by an infinite plate subject to a shear stress, have been obtained by
Erdogan [10], Fetecau and Kannan [13] and Vieru et al [21].

The aim of this note is to provide exact solutions for the velocity field and
the shear stress corresponding to the unsteady motion of an Oldroyd-B fluid
past an infinite flat plate subject to a time-dependent shear stress. These
solutions, obtained by means of the Fourier cosine transform and presented
in terms of some definite integrals, satisfy the governing equations and all im-
posed initial and boundary conditions. They can be easy specialized to give the
similar solutions for Maxwell, Second grade and Newtonian fluids performing
the same motion. Since all solutions obtained here are mathematically exact,
it is expected that they may offer help for further analytical and experimental
research on non-Newtonian fluids. Such solutions can be also used as tests to
verify numerical schemes that are developed to study more complex unsteady
flow problems. Just as in the case of Newtonian fluids, it is necessary to de-
velop a large class of exact and approximate solutions for Oldroyd-B fluids as
they have been found to approximate the response of many dilute polymeric
liquids. However, it is worth pointing out that the equations of motion of
Oldroyd-B fluids are in general of higher order than the Navier-Stokes equa-
tions. Thus, in order to obtain exact solutions to these equations, in general,
we must require boundary/initial conditions in addition to the usual no slip
conditions. Further the nonlinearities which occur in the equations of motion
of such fluids are also of higher order. In this context we refer the reader to
[22, 23] for further discussion.

Finally, some characteristics of the behavior of Newtonian, Second grade,
Maxwell and Oldroyd-B fluids as well as the influence of pertinent parameters
on the fluid motion are underlined by graphical illustrations.

2. Formulation of the Problem and Governing Equations

The Cauchy stress T corresponding to an incompressible Oldroyd-B fluid
is given by the constitutive equations [13, 15, 18, 19, 20, 24]

T = −pI+ S, S+ λ(Ṡ− LS− SLT ) = µ[A+ λr(Ȧ− LA−ALT )], (1)
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where −pI denotes the indeterminate spherical stress due to the constraint of
incompressibility, S is the extra-stress tensor, L is the velocity gradient, A =
L+LT is the first Rivlin-Ericksen tensor, µ is the dynamic viscosity, λ and λr

are relaxation and retardation times, the superscript T indicates the transpose
operation and the superposed dot denotes the material time derivative. The
model characterized by the constitutive equations (1) contains as special cases
the upper-convected Maxwell model for λr = 0 and the Newtonian fluid model
for λ = λr = 0 . In some special cases, like that to be here considered, the
governing equations for Oldroyd fluids reseamble those for second grade fluids.
Consequently, for such flows, the solutions for second grade fluids as well as
those for Maxwell and Newtonian fluids can be obtained as limiting cases of
general solutions corresponding to Oldroyd-B fluids. For the problem under
consideration we assume a velocity field v and an extrastress S of the form
[11, 13, 18]

v = v(y, t) = v(y, t)i, S = S(y, t), (2)

where i is the unit vector in the x - direction of the Cartesian coordinate system
x, y and z. For such flows the constraint of incompressibility is automatically
satisfied while the governing equations, in the absence of body forces and a
pressure gradient in the flow direction, are given by [11, 13, 18]

λ
∂2v(y, t)

∂t2
+

∂v(y, t)

∂t
= ν

(
1 + λr

∂

∂t

)
∂2v(y, t)

∂y2
, (3)

(
1 + λ

∂

∂t

)
τ(y, t) = µ

(
1 + λr

∂

∂t

)
∂v(y, t)

∂y
, (4)

where ν = µ/ρ is the kinematic viscosity, ρ is the constant density of the fluid
and τ(y, t) = Sxy(y, t) is the non-trivial shear stress.

The partial differential equations (3) and (4), with adequate initial and
boundary conditions, can be solved in principle by different methods, their
effectiveness strictly depending of the domain of definition. In our case, the
integral transforms technique represents a systematic, efficient and powerful
tool. The Fourier cosine transform, for instance, can be used to eliminate the
spatial variable into Eq. (3).

Let us now consider an incompressible Oldroyd-B fluid at rest over an infin-
itely extended plate which is situated in the plane y = 0 . After the moment
t = 0+, the plate is suddenly pulled with a time-dependent shear in its plane

τ(0, t) = f

[
t− λ

[
1− exp

(
− t

λ

)]]
; t ≥ 0, (5)

where f is a negative constant [10]. Due to the shear the fluid above the
plate is gradually moved its velocity being of the form (2)1. The governing
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equations are given by Eqs. (3) and (4) while the appropriate initial and
boundary conditions are

v(y, 0) =
∂v(y, 0)

∂t
= 0; τ(y, 0) = 0 for y > 0, (6)

[
τ(y, t) + λ

∂τ(y, t)

∂t

]
y=0

=
[
µ
(
1 + λr

∂

∂t

)∂v(y, t)
∂t

]
y=0

= ft; t ≥ 0, (7)

Furthermore, the natural condition at infinity [22, 23]

v(y, t) → 0 for y → ∞ and t > 0, (8)

has to be also satisfied. Of course, the boundary condition (5) is just the
solution of the ordinary differential equation (7) in τ(y, t) . For λ → 0, Eq.
(5) reduces to the simple form

τ(0, t) = ft; t ≥ 0, (9)

corresponding to Newtonian and second grade fluids. Special case correspond-
ing to f instead of ft in Eqs. (7) or (9), has been considered by Bandelli et
al [5], Erdogan [10] for second grade fluids and Fetecau and Kannan [13] for
Oldroyd-B fluids.

3. Exact Solutions

3.1. Calculation of the velocity field. Multiplying both sides of Eq. (3)

by
√

2
π cos(yξ) , integrating with respect to y from 0 to ∞ and taking into

account the initial and boundary conditions (6)-(8), we find that

λ
∂2vc(ξ, t)

∂t2
+ (1 + αξ2)

∂vc(ξ, t)

∂t
+ νξ2vc(ξ, t) = −

√
2

π

f

ρ
t; ξ, t > 0, (10)

where α = νλr and the Fourier cosine transform vc(ξ, t) of v(y, t) has to satisfy
the initial conditions

vc(ξ, 0) =
∂vc(ξ, 0)

∂t
= 0; ξ > 0. (11)

When ξ is regarded as a constant parameter, Eq. (10) may be treated as an
ordinary differential equation. Its solution subject to the initial conditions
(11) is

vc(ξ, t) = −
√

2

π

f

µ

1

ξ2

[
t− 1 + αξ2

νξ2

(
1− r2 exp(r1t)− r1 exp(r2t)

r2 − r1

)
− (12)

− exp(r2t)− exp(r1t)

r2 − r1

]
,
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where r1, r2 =
−(1+αξ2)±

√
(1+αξ2)2−4νλξ2

2λ .
Inverting Eq. (12) by means of Fourier’s cosine formula [26] and using the
known
result

∫∞
0

sin2 y
y2

dy = π
2 , we find the velocity field v(y, t) in the form

v(y, t) =

fy

µ
(t− λr)−

2f

µπ

∫ ∞

0

[
(t− λr)−

(
1− (1 + αξ2)

r2 exp(r1t)− r1 exp(r2t)

r2 − r1
+

(13)

+ νξ2
exp(r2t)− exp(r1t)

r2 − r1

)
cos(yξ)

νξ2

]
1

ξ2
dξ.

Of course, Eq. (13) can further be processed to give the simpler form
v(y, t) =

fy

µ
(t−λr)−

2f

µπ

∫ ∞

0

[
(t−λr)−

(
1−λ

(r21 exp(r2t)− r22 exp(r1t))

r2 − r1

)
cos(yξ)

νξ2

]
1

ξ2
dξ.

(14)

3.2. Calculation of the shear stress. Solving Eq. (4) with respect to τ(y, t)
and having in mind the initial condition (6)3 , we find that

τ(y, t) =
µ

λ
exp

(
− t

λ

)∫ t

0
exp

(
τ

λ

)(
1 + λr

∂

∂t

)
∂v(y, τ)

∂y
dτ. (15)

Substituting Eq. (14) into Eq. (15) we obtain after lengthy but straightfor-
ward computations, the next simple form τ(y, t) =

f

[
t−λ

(
1−exp

(
− t

λ

))]
− 2f

νπ

∫ ∞

0

[
1− r2 exp(r1t)− r1 exp(r2t)

r2 − r1

]
sin(yξ)

ξ3
dξ

(16)
for the shear stress.

4. Limiting Cases

1. Making λr → 0 into Eqs. (14) and (16), we obtain the solutions (cf. [27,
Eqs. (25) and (28)])

vM (y, t) =
fy

µ
t− 2f

µπ

∫ ∞

0

[
(t−

(
1−λ

r23 exp(r4t)− r24 exp(r3t)

r4 − r3

)cos(yξ)
νξ2

] 1
ξ2

dξ,

(17)
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τM (y, t) =

f

[
t−λ

(
1−exp

(
− t

λ

))]
− 2f

νπ

∫ ∞

0

[
1− r4 exp(r3t)− r3 exp(r4t)

r4 − r3

]
sin(yξ)

ξ3
dξ,

(18)
corresponding to a Maxwell fluid performing the same motion. Into above
relations

r3, r4 =
−1±

√
1− 4νλξ2

2λ
.

2. By now letting λ → 0 into Eqs. (14) and (16), the solutions (cf. [27, Eqs.
(13) and (14)])
vSG(y, t) =

fy

µ
(t−λr)−

2f

µπ

∫ ∞

0

[
(t−λr)−

(
1− (1+αξ2) exp(− νξ2t

1 + αξ2
)
)cos(yξ)

νξ2

] 1
ξ2

dξ,

(19)

τSG(y, t) = ft− 2f

νπ

∫ ∞

0

[
1− exp(− νξ2t

1 + αξ2
)

]
sin(yξ)

ξ3
dξ, (20)

corresponding to second grade fluids are recovered.
3. Finally, making λ → 0 into Eqs. (17) and (18) or α → 0 into Eqs. (19) and
(20), the solutions

vN (y, t) =
fy

µ
t− 2f

µπ

∫ ∞

0

[
t−

(
1− exp(−νξ2t)

)cos(yξ)
νξ2

] 1
ξ2

dξ, (21)

τN (y, t) = ft− 2f

νπ

∫ ∞

0

[
1− exp(−νξ2t)

]
sin(yξ)

ξ3
dξ, (22)

corresponding to a Newtonian fluid are recovered. Eq.(22), as it was shown
into [27], is equivalent to the simple form

τN (y, t) = f

∫ t

0
erfc

(
y

2
√
νs

)
ds, (23)

where erfc(.) is the complementary error function of Gauss. Of course, the
last solutions given by Eqs. (19)-(23) correspond to the boundary condition
(9).

5. Numerical Results and Conclusions

In this note, the velocity field and the adequate shear stress correspond-
ing to the unsteady motion of an Oldroyd-B fluid over an infinite flat plate
subject to a time-dependent shear stress are determined using the Fourier co-
sine transform. Direct computations show that v(y, t) and τ(y, t), given by
Eqs. (14) and (16), satisfy both the governing equations and all imposed ini-
tial and boundary conditions. Furthermore, for λ → 0, λr → 0 or both λr and
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λ → 0 the solutions that have been obtained reduce to the similar solutions
corresponding to Maxwell, Second grade or Newtonian fluids, respectively.

Finally, in order to reveal some relevant physical aspects of the obtained
results, the diagrams of the velocity field v(y, t) and the shear stress τ(y, t)
are depicted against y for different values of t and of the material constants.
For comparison, in Fig. 1 are presented the diagrams of the velocity and the
shear stress corresponding to the four models at two different times. For ve-
locity, roughly speaking, there are two distinct intervals in which the behavior
of the four fluids is completely different. Near the plate the Newtonian fluid is
the swiftest while the fluid of Oldroyd type is the slowest. In the second part
of the flow domain, as usual, the second grade fluid is the swiftest and the
Maxwell one is the slowest. As regards the shear stress, into absolute value,
it is the biggest for second grade fluids and smallest for Maxwell fluids on the
whole domain. Figs. 2, 3 and 4 show the effect of the kinematic viscosity ν
and of the relaxation and retardation times λ and λr on the velocity and the
shear stress of the Oldroyd-B fluid. Near the plate, as it result from Figs. 2a
and 4a, the velocity of the fluid decreases for increasing ν or λr . On the other
part of the flow domain the velocity is an increasing function with resppect to
ν and λr . The shear stress is an increasing function with regard to ν and λr

on the whole domain. Figs. 3a and 3b, clearly show, that both the velocity
and the shear stress are decreasing functions of λ .
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a.

b.

Fig.1. Profiles of the velocity v(y,t) and shear stress (y,t) corresponding
to Oldroyd-B, Maxwell, Newtonian fluids,

for = 0.001188, =1.045, = 2 and = 1.

t

n m l l

second grade and

r

0 0.1 0.2 0.3 0.4 0.5

0

0.5

1

1.5

vO1 y( )

vM1 y( )

vSG1 y( )

vN1 y( )

vO2 y( )

vM2 y( )

vSG2 y( )

vN2 y( )

y

vM(y) for t = 5s

vO(y) for t = 5s

vN(y) for t = 5s

vSG(y) for t = 5s

vM(y) for t = 2s

vO(y) for t = 2s

vN(y) for t = 2s

vSG(y) for t = 2s

0 0.1 0.2 0.3 0.4 0.5
30-

20-

10-

0
tO1 y( )

tM1 y( )

tSG1 y( )

tN1 y( )

tO2 y( )

tM2 y( )

tSG2 y( )

tN2 y( )

y

tSG(y) for t = 2s

tN(y) for t = 2s

tO(y) for t = 2s

tM(y) for t = 2s

tSG(y) for t = 5s

tN(y) for t = 5s

tO(y) for t = 5s

tM(y) for t = 5s



Flow of an Oldroyd-B fluid over an Infinite Plate subject to a T. D. Shear Stress 61

Fig. 2. Profiles of the velocity v(y,t) given by Eq. (14) and shear stress (y,t)

given by Eq. (16), for = 1, = 0.5 and different values of .

t

l lr n

b.a.

Fig. 3. Profiles of the velocity v(y,t) given by Eq. (14) and shear stress (y,t)

given by Eq. (16), for = 0.001188, = 1.045, = 0.5 and different values of .
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Fig. 4. Profiles of the velocity v(y,t) given by Eq. (14) and shear stress (y,t)

given by Eq. (16), for = 0.001188, = 1.045, = 4 and different values of .
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