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A B S T R A C T

The current research focused on extraction optimization of bioactive compounds from Strychnos potatorum seeds 
(SPs) using an eco-friendly glycerol-sodium acetate based deep eutectic solvent (DES). The optimization was 
accomplished using response surface methodology (RSM) and artificial neural networking (ANN). The inde
pendent variables included shaking time (A), temperature (B), and solvent-to-feed ratio (C), and the responses 
were the extraction yield, total phenolic content (TPC), total flavonoid content (TFC), antioxidant activity 
(DPPH), and antidiabetic activity (α-amylase inhibitory activity). The SPs extracts obtained under optimal 
conditions (29 min, 40 ◦C and 30 mL/g of A, B, and C parameters, respectively) had 30.43 mg gallic acid 
equivalents (GAE)/g of dry weight (DW) TPC, 10.99 mg rutin equivalents (RE)/g DW TFC, 26.16 % antioxidant 
activity and 46.95 % α-amylase inhibitory activity. For all the outputs, the ANN percentage error was less than 
the RSM percentage error for the predicted values against the experimentally measured values. The results were 
further supported by the %AAD (% absolute average deviation) and R2 values obtained from RSM and ANN 
methods. The %AAD for TPC, TFC, DPPH, and α-amylase inhibitory activity by RSM was 7.31, 4.80, 4.03, and 
4.36, while by ANN, it was 1.18, 3.90, 1.99, and 2.97, respectively. It is worth noting that despite no statistical 
difference between the two predictive models, ANN gave closer results to the experimental values. Correlation 
among various response types showed that TPC and TFC were strongly correlated. This research highlights the 
efficiency of glycerol-sodium acetate DES as an extractant.

1. Introduction

Strychnos potatorum L. (Loganiaceae family) is a medicinal plant 
highly regarded for its bioactive properties. It is often referred to as 
Nirmali or Clearing Nut due to its traditional use in water purification, 
where seeds are utilized for filtering impurities. The plant is primarily 
found in tropical regions, including India, Sri Lanka, Myanmar, and 
parts of Southeast Asia [1]. It thrives in dry forests, scrublands, and 
tropical woodland environments. Its occurrence is less widespread in 
other parts of the world, but its medicinal properties have gained 
attention internationally, leading to interest in its phytochemical con
stituents and therapeutic potential. In Ayurveda, Unani, and traditional 

medicine systems, S. potatorum has long been recognized for its healing 
potential [2]. It has been widely utilized in traditional medicine to treat 
various ailments. The seeds, mainly, are renowned for their antidiabetic, 
anti-inflammatory, and antioxidant activities. They have also been used 
to address arthritis [3] liver disorders and remedy for eye infections [4,
5].

The seeds of S. potatorum are rich in a diverse array of bioactive 
compounds, including flavonoids and other polyphenolics, which are 
responsible for many of its medicinal activities [6]. Polyphenols are 
known for their antioxidant potential and play a critical role in 
neutralizing free radicals and reducing oxidative stress, making them 
valuable in preventing diseases like diabetes, cancer, and cardiovascular 
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disorders [7].
Antioxidants play a crucial role in mitigating oxidative stress, which 

occurs when there is an imbalance between free radicals and the body’s 
ability to neutralize them. Free radicals, highly reactive molecules 
generated through normal metabolic processes or external factors such 
as pollution and UV radiation, can cause cellular damage, leading to 
various chronic conditions such as cardiovascular diseases, cancer, 
diabetes, and neurodegenerative disorders [8]. Phenolic compounds, 
known for their potent antioxidant activity, help scavenge these free 
radicals, preventing oxidative damage to cells. S. potatorum, rich in 
phenolic and antioxidant compounds. These bioactive compounds are 
believed to have potential for treating oxidative stress and related ail
ments [5]. By optimizing the extraction of these bioactives from 
S. potatorum seeds using an eco-friendly deep eutectic solvent (DES), this 
research may contribute to developing natural antioxidant therapies 
that can offer protection against free radical-induced diseases, high
lighting their importance in promoting health and combating oxidative 
damage.

Apart from oxidative stress, a closely associated disorder, Diabetes is 
a global health concern, affecting millions of people and posing serious 
health risks if left unmanaged. According to the World Health Organi
zation (WHO), the prevalence of Diabetes has been steadily increasing, 
with over 422 million people diagnosed worldwide, and the numbers 
continue to rise [9]. Diabetes, particularly type 2, is characterized by 
insulin resistance or inadequate insulin production, leading to high 
blood sugar levels and complications such as cardiovascular disease, 
kidney failure, and neuropathy [10]. While pharmaceutical treatments 
are widely used to manage blood sugar levels, there is growing interest 
in herb-based treatments and dietary supplements for their potential in 
controlling and preventing diabetes [11]. Medicinal plants, rich in 
bioactive compounds like polyphenols, have demonstrated significant 
antidiabetic properties, aiding in blood sugar regulation and insulin 
sensitivity. S. potatorum, with its abundant polyphenols and antioxidant 
activity, shows promise in complementing conventional treatments. 
Thus, optimizing the extraction of these compounds from S. potatorum 
could lead to effective, natural antidiabetic supplements that offer a 
safer and more holistic approach to managing diabetes.

With the growing awareness of environmental sustainability, 
extraction processes for recovering bioactive metabolites from plant 
sources are now expected to be efficient and environmentally friendly. 
In this regard, the selection of an appropriate solvent plays a critical 
role. In the early 21st century, a novel class of solvents emerged as a 
greener alternative to traditional organic solvents. These are known as 
deep eutectic solvents (DES). They are promising extractants for 
bioactive compounds due to their desirable properties such as biode
gradability [12], low toxicity [13], ease of synthesis [14], and low cost 
[15]. By selecting suitable precursors, customized deep eutectic solvents 
(DESs) can be formulated to meet specific requirements. A DES is usually 
prepared by heating a mixture of two (or sometimes more) compounds, 
where one acts as a hydrogen bond donor (HBD) and the other as a 
hydrogen bond acceptor (HBA). HBAs typically include alcohols, 
amines, or carboxylic acids, while HBDs are often quaternary ammo
nium salts or other salts capable of accepting hydrogen bonds. DESs 
have gained prominence as a sustainable alternative to conventional 
hazardous and volatile solvents, offering a greener solution for various 
extraction processes [16,17]. They have been found to be very efficient 
in extracting polyphenolic compounds. The DES used in the current 
study consisted of sodium acetate and glycerol (1:3), which has been 
ranked an efficient extractant in previous studies [18].

Apart from the nature of the solvent, an extraction process also de
pends on various experimental parameters, such as time, temperature, 
solvent-to-feed ratio, solvent viscosity, surface tension, and density. For 
an efficient extraction process, these parameters must be optimized and 
valiadated [19]. To this end, many researchers have studied the effec
tiveness of some hydrolytic enzymes [20], surfactants [21], acids [22], 
and alkali [23] in combination with organic solvents [24]. The 

techniques included ohmic heating [25], microwave-assisted extraction 
[26], and ultrasound-assisted extraction [27] have been foun effective to 
extract bioactive compounds from solid samples especially seeds.

With this approach in mind, we opted for an eco-friendly and easy-to- 
prepare glycerol and sodium acetate-based DES to extract phenolic 
bioactives from SPs. Key extraction parameters, such as extraction time, 
temperature, and liquid-to-solid ratio, were tested at various levels and 
optimized using response surface methodology (RSM), with results 
further validated through artificial neural networks (ANNs). The final 
extraction conditions were counter-validated to ensure reliability. RSM, 
a powerful tool for multi-response optimization, was instrumental in this 
research. Its strength lies in its ability to analyze variable interactions, 
providing a comprehensive understanding of the system [28]. On the 
other hand, artificial neural networks (ANN) are an emerging form of 
nonlinear computational modeling, inspired by biological neural net
works, such as those in the human brain. Leveraging principles of arti
ficial intelligence, ANNs are increasingly used to tackle complex 
optimization problems. In this model, raw data is introduced into the 
input layer and then processed through one or more hidden layers, 
where intricate relationships and patterns are identified. The final 
output layer delivers the ultimate prediction, derived from the compu
tations in the hidden layers, providing a robust and adaptive approach to 
problem-solving in various fields [29].

Thus, by using a green extraction medium and optimizing extraction 
parameters through advanced techniques like response surface meth
odology (RSM) and artificial neural networks (ANN), the current 
research not only improves extraction efficiency but also provides a 
green alternative for the recovery of valuable phenolic compounds from 
SPs. This approach addresses the demand for greener, safer, and more 
effective extraction processes in natural product chemistry.

2. Material and method

2.1. Chemicals

In all the experimental work, analytical-grade chemicals were used. 
Glycerol (>85 %) and sodium acetate anhydrous (>99.9 %) (Merck- 
Dramstadt, Germany), were used for the preparation of DES. Folin- 
Ciocalteu was received phenol (≥98 %) from Scharlau (Barcelona, 
Spain). Ascorbic acid (≥99.0 %) (Sigma-Aldrich), rutin (>80.0 %) 
(Sigma-Aldrich), sodium hydroxide (>98 %) (Sigma-Aldrich), ferrous 
sulfate heptahydrate (>99 %) (Sigma-Aldrich), anhydrous sodium car
bonate (99.9 %) (Sigma-Aldrich), aluminum chloride (99 %) (Sigma- 
Aldrich), and DPPH (≥95 %) (Steinheim, Germany) were used for TPC, 
TFC and for antioxidant activity assays. Porcine pancreatic α-amylase 
(≥90 %) (Sigma-Aldrich), disodium hydrogen phosphate (≥99 %) 
(Sigma-Aldrich), sodium chloride (≥99 %) (Sigma-Aldrich), 3,5-dinitro
salicylic acid (≥97 %) (Sigma-Aldrich), sodium potassium tartrate (≥99 
%) (Sigma-Aldrich), DMSO (≥99.9 %) (Fisher Chemicals), acarbose 
(≥95 %) (Sigma-Aldrich), potato starch (≥99 %) (Sigma-Aldrich) were 
used for anti-diabetic activity.

2.2. Sample preparation

Strychnos potatorum seeds (SPs) were purchased from the local 
market in Lahore, Pakistan, and were identified by a Botanist from the 
Department of Botany, Government College University Lahore by Dr. 
Tehreema Iftikhar (voucher # 3080). The SPs samples were washed, 
dried under shade, pierced into coarse powder, and then passed through 
an 80-mesh sieve to obtain uniform-sized particles.

2.3. Preparation of DES

Glycerol (Gly) and sodium acetate (NaOAc) were mixed in a 3:1 ratio 
at 60 ◦C. The mixture was stirred for 45–50 min and at 600–700 rpm on a 
hot plate under vacuum until a clear transparent light brown colour 
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solution was formed. Characterization of DES was done by monitoring 
its FTIR spectrum, density, and sound velocity using Density Sound 
Velocity (DSA) meter [30].

2.4. Extraction procedure

To extract phytochemicals from SPs, 1 g of sample is dissolved in 
different volumes (10, 20, and 30 mL) of Gly/NaOAc DES according to 
the treatment layout assembled in Table 1. The sample was subsequently 
subjected to a heating stirrer to extract phenolics. The heating shaker 
had a temperature range of 05–380 ◦C and an overheat protection of 
420 ◦C. Temperature delay accuracy is ±0.1 ◦C, whereas external tem
perature sensor accuracy is ±0.5 ◦C. Digital speed control is available 
with a 200–1500 rpm range and ±20 rpm sensor precision. Power is 
510 W, 100–120/200-240V, 50/60Hz. The acceptable ambient tem
perature is 05–40 ◦C, with 80 % RH humidity.

2.5. Extraction parameters

The factors tested for the extraction of phenolics from SPs are time, 
temperature and solvent to solid ratio. The experimental and coded 
levels given in Table 1, are generated following rotatable central com
posite design (CCD). To optimize TPC, TFC, % radical scavenging ac
tivity, and inhibition of alpha-amylase, a total of 17 random runs were 
conducted and outcomes were sent to Design-Expert version 13 (Stat- 
Ease Inc Minneapolis, USA) for analysis of variance and modulate the 
responses (Eq. (1)). 

y = βo +
∑k

i=1

βiXi +
∑k

i=1

βiiX2
i + Σk

i=1

∑k− 1

j=i+1

βij Xi Xj + ε (Eq. 1) 

Where y is the response, Xi and Xj are input factors, 
β represents regression coefficients and k shows the no of responses.

2.6. Artificial neural networking (ANN)

Artificial neural networking (ANN) was used to determine non-linear 
correlation between the input variables (time, temperature, and solvent 
to solid ratio) and the target responses (TPC, TFC, DPPH, and α-amylase 
inhibitory activity) [31]. The experimental data based on RSM was used 
for artificial neural networking (ANN) estimation. The base of neural 
network training is a feedforward backpropagation (FFBP) network 
[32]. The criteriafor the selection of neural networks is based on 
regression and root mean square error (RMSE) analysis. The number and 
function on the hidden layer was chosen through trial and error method 
[33]. The model mean square errors (MSE) in the three data sets—
training-70 % (11 samples), testing-15 % (3 samples), and validation-15 
% (3 samples), and the training function applied was LM (Lev
engerg-Marquadt)—formed the basis for the performance choice. The 
adjustment of weights and bias was done using the neural network tools 
gradient descent function. The trial and error-based approach was used 
to determine the total number of hidden neuron layers (3:20–10:1). 
Various algorithms were checked for the transfer functions of hidden 
layers to achieve optimal response, the best fit transfer functions (Logsig 
and Tansig) were applied on two hidden layers. The linear function 

(Purelin) was the output function. ANN was generated using Neural 
Network toolbox-TM in MATLAB R2019a.

2.6.1. Total phenolic content (TPC) assay
The assay reported by Waterhouse (2002) was followed to determine 

plant extract’s total phenolic content. 1 mL of the heating shaker’s 
extract was dissolved in 10 mL ethanol. Reagents were prepared using 
the reported method. 0.06 mL of DES extract, 4.5 mL of water, and 0.3 
mL of Folin-Ciocalteu reagent were mixed using a multi-mode micro
pipette. This solution was incubated for 8 min at room temperature. 
After incubation, 0.9 mL of 7.5 % sodium carbonate solution was added 
to the mixture, and the solution was again incubated for 30 min at 40 ◦C. 
A pure DES solution was used to prepare the blank. After incubation, 
absorbance was measured with a spectrophotometer at the wavelength 
of 765 nm. The gallic acid curve was used as a standard [34].

2.6.2. Total flavonoid content (TFC) assay
To find the overall flavonoid content, 0.5 M sodium nitrate and 0.3 M 

aluminum chloride were added to the 300 μL of each extract that had 
been extracted independently in their respective test tubes. This was 
done after 3.4 mL of 30 % aqueous methanol was added to the 300 μL of 
each extract. After that, 150 μL of each substance was added. 1 mL of 
sodium hydroxide with a concentration of one million was added to the 
mixture after waiting for 5 min. An ultraviolet–visible spectrophotom
eter was then used to take an absorbance reading at a wavelength of 506 
nm. An identical experiment was carried out, with the sole difference 
being that this time, the blank was generated by employing DES rather 
than extract as the method of production. The rutin was used as refer
ence standards (50–200 mg/mL) and results were expressed as Rutin 
Equivalent (RE)/g of extract [35].

2.7. Free radical scavenging capacity (FRSC) assay

Following is the procedure we used to determine the percentage of 
radical scavenging activity The SPs extract were treated with solution 
containing 0.015 g of DPPH dissolved in 100 mL of methanol. The stock 
solution of DPPH was left to cool before use and diluted with methanol 
to lower its absorbance to 0.98 at 517 nm. The 400 μL of different 
concentrations of SPs extracts were combined with 4 mL of DPPH 
working solution without light. The mixture was then baked for half an 
hour at 37 ◦C. The absorbance of every sample was measured at 517 nm 
[36].

2.8. α-Amylase inhibitory activity assay

The antidiabetic activity of SPs extracts was assessed in terms of their 
ability to inhibit α-amylase. Acarbose (Standard) dilutions were pre
pared between 20 and 100 ppm. 0.5 mL of enzyme solution and 0.5 mL 
plant sample were mixed in a test tube. The mixture was incubated for 
30 min at 25 ◦C in dark. 1 mL of starch is then added and again incubated 
for 3 min. After incubation, 1 mL of DNS was added and heated in a 
water bath for 15 min at 85 ◦C. After heating, 9 mL of distilled water was 
added, and the absorbance was measured at 540 nm. Acarbose is used as 
a standard drug in this experiment. For the preparation of control, all the 
procedures are the same except DMSO is added in place of the plant 
sample [37].

% Inhibition was calculated using the formula given below (Eq. (2)). 

% Inhibition=
Absorbance of control − Acsorbance of sample

Absorbance of control
x 100

(Eq. 2) 

2.9. Statistical analysis

The Design-Expert 13 and MATLAB R2019a were used for all sta
tistical analysis and modeling. Several statistical measures, including the 

Table 1 
Experimental factor (and their levels) applied for the Deep eutectic solvent 
Based Extraction of Phenolics from affecting the extraction of phenolics from 
Strychnos potatorum seeds.

Factors Levels

​ − 1 0 +1
Time of extraction (min) 10 25 40
Temperature (◦C) 40 45 50
Solvent to solid Ratio g/mL 10 20 30
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ANOVA, F-test, regression (R2), the percentage absolute average devi
ation (%AAD), and the root mean square error (RMSE), were utilized to 
investigate the prediction capabilities of both the RSM and the ANN. For 
the analysis of the significance of difference among the two statistical 
models (RSM and ANN) applied for the prediction, a paired sample t-test 
was applied [38]. 

AAD(%)=

⎡

⎢
⎢
⎣

∑n

1=1
|Yi − yi|

/

Yi

n

⎤

⎥
⎥
⎦× 100 (3) 

R2 =1 −

∑n

i=1
(yi − Yi)

2

∑n

i=1
(Yi − y)2

(4) 

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(yi − Yi)

2

√

(5) 

% Prediction error=
Predicted Value − Measured VAlue

Predicted value
*100 (Eq. 6) 

3. Results and discussion

3.1. DES formation and characterization

Formation of DES was achieved by heating a mixture of sodium ac
etate (NaOAc) and glycerol (Gly) in a 3:1 ratio as per a reported method 
[39]. The DES was characterized following the transitions within 
3250-3300 cm-1 of of FTIR spectral analysis. The physicochemical 
properties of DES were measured by DSA (Density and Sound Velocity 
meter). The density was 1.28 g/cm3, while the kinematic and dynamic 
(absolute) viscosities were 354.8 mm2/s and 454.2 mPa s, respectively. 
All the measurements were done at 25 ◦C.

3.2. Extraction optimization

Based on previous literature on the extraction of phenolics [40–42], 
the factors affecting the extraction of SPs phenolics were set within 
extraction time of 10–40 min, temperature 40–50 ◦C, and 
solvent-to-solid ratio of 10–30 mL/g. Central Composite Design (CCD) 
tested these factors and their ranges at different levels. The outcomes of 
the model are illustrated in Table 2. The data were fitted into 2nd degree 
polynomial equation to obtain suggestions for response extraction 

models. The significance of the model terms was determined by 
analyzing variance (ANOVA). The results of ANOVA are shown in 
Table 3.

From the R2 values, the impact of input variables on the output 
variables can be determined, and thus, it is considered a powerful tool 
for model fitness estimation. The predicted and adjusted R2 are in 
satisfactory agreement, indicating that the generated models fit the 
experimental observations (Table 3).

3.2.1. Effect of the parameters on the responses
According to the experimentally obtained values, the maximal TPC 

yield of 30.31 mg/mL and TFC yield of 15.09 mg/mL was obtained at 25 
min time (A) with 50 ◦C temperature (B) while the solvent-to-solid (SS) 
ratio (C) maintained was 30 mL/g. The minimum yield for TPC and TFC 
was 3.16 mg/mL and 4.02 mg/mL at A = 10, B = 45, and C = 10. It was 
observed that the maximum TPC and TFC did not align with higher 
DPPH radical scavenging and α-amylase activities at the same para
metric conditions; the values obtained were 43.08 % and 34.37 %, 
respectively. The maximum DPPH free radical scavenging activity was 
62.02 % at A = 25, B = 40, and C = 10, while the minimum percentage 
observed was 15.33 at A = 25, B = 50, and C = 10. A maximum 
α-amylase inhibition percentage of 63.57 % was observed at A = 25, B =
50, and C = 10, while minimum percentage values were determined to 
be 25.82 at A = 25, B = 45, and C = 20. 

YTPC (SHA) = 14.82 + 2.68B + 6.85C − 1.82BC − 9.01A2 + 2.13B2 +

5.67C2 (5)                                                                                          

YTFC (SHA) = 8.54 + 0.8169A + 2.77C–1.22A2 + 1.13B2 (6)                  

Equations (5) and (6) are the model equations for TPC and TFC, 
respectively. According to these equations, the total phenolic and 
flavonoid content of the SPs extracts increases with increase in tem
perature and liquid to solid ratio , which might be due increase in mass 
transfer rates at elevated temperature and solvent to solid ratio. Still, the 
yields substantially decrease as the temperature rises above the degra
dation points of phytochemicals or provides the temperatures for a 
prolonged time. The combined effect of B and C is impacting negatively 
because heating at high temperatures can also denature the phyto
chemicals, as mentioned earlier [43]. 

Y antioxidant (SHA) = 34.80–8.16B – 2.83C–7.83AC + 16.03BC + 4.11C2)  
(7)

Equation (7) is the model equation for antioxidant potential (DPPH 
inhibitory activity) of SPs extracts. According to this equation, the 

Table 2 
Comparison of total phenolic and flavonoid content, antioxidant and α-amylase inhibitory activity by using experimental data further assisted with RSM and ANN 
approaches.

Run A:Time B: Temp C:Solvent-Sample Ratio’ Responses: TFC TPC Antioxidant Alpha-amylase

’min’ ’◦C’ ’mL/g’ ACTUAL ANN RSM Actual ANN RSM Actual ANN RSM Actual ANN RSM

1 40.00 50.00 20.00 9.54 9.55 10.11 10.32 10.32 10.95 19.87 19.80 21.87 45.85 45.80 45.28
2 40.00 45.00 30.00 11.16 12.97 11.17 19.40 19.40 18.73 26.64 26.04 26.05 42.97 43.54 41.51
3 10.00 45.00 10.00 4.02 4.02 4.00 3.16 3.16 3.83 32.61 32.60 33.18 40.89 40.80 42.15
4 40.00 40.00 20.00 8.39 8.40 8.41 4.95 4.95 6.12 38.16 38.04 38.53 35.97 36.01 37.28
5 25.00 45.00 20.00 9.35 8.20 8.54 14.61 14.84 14.82 32.69 35.10 34.80 30.53 30.86 30.87
6 25.00 45.00 20.00 7.25 8.20 8.54 13.70 14.84 14.82 37.13 35.10 34.80 31.07 30.86 30.87
7 10.00 40.00 20.00 8.78 8.77 8.21 5.02 4.95 4.39 41.84 41.80 39.66 29.73 29.70 30.21
8 10.00 45.00 30.00 10.30 10.29 10.90 16.80 16.80 17.93 41.25 41.20 43.17 27.04 26.92 26.51
9 25.00 45.00 20.00 9.50 8.20 8.54 15.59 14.84 14.82 35.68 35.10 34.80 29.51 30.86 30.87
10 10.00 50.00 20.00 7.05 7.06 7.04 11.46 11.46 10.29 24.19 24.10 23.68 33.03 33.07 31.55
11 40.00 45.00 10.00 7.59 7.60 6.99 6.56 6.56 5.42 49.39 49.08 47.37 47.47 47.40 47.95
12 25.00 40.00 10.00 8.12 8.12 8.70 11.30 11.30 11.27 62.04 62.00 63.55 44.69 44.60 42.66
13 25.00 50.00 10.00 6.97 6.41 7.00 19.77 19.72 20.28 15.39 15.30 15.16 63.64 63.40 63.58
14 25.00 45.00 20.00 8.39 8.20 8.54 15.14 14.84 14.82 31.87 35.10 34.80 37.56 30.86 30.87
15 25.00 40.00 30.00 12.30 12.30 12.27 29.12 29.12 28.61 25.74 25.70 25.82 47.96 47.90 47.88
16 25.00 45.00 20.00 8.20 8.20 8.54 15.07 14.84 14.82 36.86 35.10 34.80 25.87 30.86 30.87
17 25.00 50.00 30.00 15.09 15.10 14.51 30.31 30.31 30.34 43.11 42.39 41.56 34.44 32.91 36.3
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Table 3 
Regression coefficients, ANOVA, ANN, and % C.V. values for TPC, TFC, antioxidant, and α-amylase inhibitory activity using the heating shaker method.

Factors TFC TPC Antioxidant (DPPH) α-amylase inhibitory activity

Coefficients p-values Coefficients p-values Coefficients p-values Coefficients p-values

Intercept 8.54 ​ 14.82 ​ 34.80 ​ 30.87 ​
Linear Terms
A 0.8169* 0.0343 0.5984 0.1912 − 0.7337 0.4448 5.20* 0.0044
B 0.1337 0.6808 2.68** 0.0003 − 8.16** <0.0001 2.34 0.1058
C 2.77** <0.0001 6.85** <0.0001 − 2.83* 0.0167 − 5.52* 0.0032
Linear Combined Terms
AB 0.7169 0.1478 − 0.2652 0.664 − 0.1700 0.8982 1.67 0.3801
AC − 0.678 0.1678 − 0.1986 0.7442 − 7.83** 0.0005 2.30 0.2371
BC 0.9843 0.0606 − 1.82* 0.017 16.03** <0.0001 − 8.12* 0.0026
Quadratic Terms
A2 − 1.22* 0.0246 − 9.01** <0.0001 − 1.47 0.2768 − 1.43 0.4358
B2 1.13* 0.034 2.13* 0.0073 − 2.39 0.0967 6.64* 0.0065
C2 0.9543 0.0617 5.67** <0.0001 4.11* 0.0133 10.09** 0.0007
p-value Model ​ 0.0014 ​ <0.0001 ​ <0.0001 ​ 0.0015
p-value Lack of Fit ​ 0.55 ​ 0.0801 ​ 0.3988 ​ 0.8215
RSM R2 ​ 0.9427 ​ 0.9897 ​ 0.9423 ​ 0.9423

adjusted R2 ​ 0.8691 ​ 0.9765 ​ 9.35 ​ 0.8680
Predicted R2 ​ 0.5974 ​ 0.8674 ​ 0.8044 ​ 0.7545

C⋅V. % ​ 9.86 ​ 8.21 ​ 7.34 ​ 9.35

Significance: *The variables having p < 0.05 are significantly affecting the model equation.
**The variables having p < 0.001 are highly significant in determining the output equation.

Fig. 1. Response surface graphs showing the combined effects of time, temperature and solvent-to-solid ratio for total phenolic and flavonoid contents, antioxidant 
and α-amylase inhibitory activity.

H. Iftikhar et al.                                                                                                                                                                                                                                 Talanta 286 (2025) 127443 

5 



quadratic term C2 and interaction term BC positively affected the 
extraction of antioxidant phytochemicals as more solvent helps in better 
diffusion of plant phytochemicals (Fick’s diffusion law) [44], while the 
combined effect of temperature and solvent-to-solid ratio gives better 
antioxidants. Temperature, in this case, is helpful in extraction, but 
when time (A) is increased for extraction, the DPPH activity decreases 
because of the degradation of the free radical scavengers, which may be 
decomposed during extraction [45]. 

Yα-amylase (SHA) = 30.87 + 5.20A - 5.52C - 8.12BC + 6.64B2 + 10.09C2(8)

Equation (8) shows the model equation for α-amylase inhibitory 
activity. The quadratic terms B2 and C2 and linear term A are impacting 
positively on overall % inhibitory activity because the reason that good 
extraction of phytochemicals is observed at high temperatures and more 
SS ratio [46] but the combined effect of BC is adverse as the increasing 
temperature may cause degradation of phytochemicals regardless of the 
increase in extraction efficiency due to more solvent [47].

In Fig. 1(a–f), the extraction yield increases initially by increasing 
time, but after a specific time, both the TPC and TFC start decreasing, 
which may be due to the degradation of plant material for prolonged 
heating [27,48]. By increasing the solvent, the TPC and TFC are 
increased, which can be explained based on the contact surface area of 
the seeds; with more solvent, it is more excellent, which also influences 
the mass transfer phenomenon [30]. It can also be explained based on 
the dielectric constant of the highly polar DES used. Both temperature 
and solvent-to-solid ratio affect the extraction of TPC due to more 
effective collisions, which ultimately lead to increased surface area and 
washing efficacy [48]. On the other hand, little effect of temperature is 
observed on the extraction yield of TFC. The contradictory effects of 
temperature on the two activities may be routed to the fact that the 
poly-phenols or phenols are reactive at high temperatures and may lead 
to the change in functionalization of the –OH groups, on the other hand, 
flavonoids are comparatively stable at high temperatures.

In Fig. 1(g–i), the DPPH activities were prominent (40 %) for the 
extracts which were run on lower temperature values of 40 ◦C for the 
time of 10 min (10–40 min; least amount of time given for extraction) at 
constant SS of 25 mL. This might be be due to the fact that more time at 
elevated temperatures may decrease the phytochemicals’ radical scav
enging activities. Less solvent 10 mL and more time 40 min favors the 
DPPH radical scavenging activity (42.6 %) at a constant temperature of 
45 ◦C because less solvent with more time would yield more concen
trated phytochemicals. Contrarily, more solvents can cause a micellar 
effect around phytochemicals, depriving their availability as free radical 
scavengers. On the other hand, this effect is compensated at lower 
temperature (40 ◦C) for the extract preparation with a lesser quantity of 
solvent (10 mL) which causes a concentrated amount of phytochemicals. 
It is consistent with the fact that DPPH is a concentration-dependent 
activity [48].

In Fig. 1(j–l), it was observed that the greater extraction time (40 
min), along with the combined effect of elevated temperature (50 ◦C) 
and lower solvent-to-solid (SS) ratio (10 mL), effectively increased the 
overall yields of the phytochemicals which are thus inhibiting the 
α-amylase (62.794 %), because increased time and less solvent helps in 
better diffusion of phytochemicals [49], while less temperature with less 
time (AB) and increased temperature with increased solvent (BC), both 
negatively affected the activities, 30.21 %, and 36.13 %, respectively, 
for % inhibition of alpha-amylase. This is due to the increase in tem
perature by also increasing the solvent may degrade phytochemicals; in 
this case, the deciding factor would shift towards the temperature 
parameter rather than the solvent parameter [50].

3.3. Artificial neural networking (ANN)

For prediction and optimization, RSM and ANN were used to 
generate a model based on the target/output variable. The ANN model 

optimal values of weights and bias of the layers were based upon the 
MSE of the Lavenberg-Marquardt (LM) algorithm [51]. The training 
results were selected on the basis of MSE values and Correlation co
efficients (R) generated by the ANN. ANN, when compared with RSM, is 
considered a powerful tool for modeling and optimization because it can 
process the input variables to conclude nonlinear complex modeling 
relationship [52,53]. Besides ANN can adapt and learn patterns directly 
from data without needing fixed models. It is more accurate, handles 
noise well, and works effectively with unseen data, making it great for 
dynamic and data-heavy tasks.

The current study compares the efficiency of the statistical tools (in 
the present study, RSM and ANN) to generate reality-based models for 
yield predictions and optimizations and analyzes the correlation among 
the response variables.

TPC based on ANN gave the training, testing, and validation corre
lation coefficient greater than 0.9901. The best validation performance 
was achieved at epoch 0, and the MSE obtained was equal to 4.619e-7. 
The validation checks were performed at epoch 2, where the maximum 
gradient obtained was 1.1699e-09. For TFC, the correlation coefficient 
(R2) obtained was greater than 0.9912 for all three sets of training, 
testing, and validation, and the value of R2 for all the data sets was 
0.9815. The best validation performance was obtained at epoch 0, which 
was 0.7394 for mean square error. A Max gradient of 2.8373e-10 was 
achieved at epoch 3. Similar observations based on correlation co
efficients were made on the data set of antioxidants (DPPH radical 
scavenging activity). The correlation coefficient (R) obtained was 
greater than 0.9804 for all three sets of training, testing, and validation, 
while the value of R for all the data sets was 0.9937. The best validation 
performance was obtained at epoch 0, which came out to be 1.0621 for 
mean square error. A Max gradient of 1.3619e-12 was achieved at epoch 
3. The values for the correlation coefficient were greater than 0.98 for 
the α-amylase activities performed on the extracts. The correlation co
efficient (R2) obtained was greater than 0.98 for all three sets of training, 
testing, and validation, while the value of R2 for all the data sets was 
0.9875. The best validation performance was obtained at epoch 0, which 
was 0.0065333 for mean square error. A max gradient of 3.2067e-11 
was achieved at epoch 3. The correlational charts for training, testing, 
and validation of the model biases and weights compared with the actual 
(target data) experimental results can be visualized in Fig. 2.

3.4. Comparison between RSM and ANN predicted results

The predicted and actual results are depicted in the following graphs 
which reveal that for both RSM and ANN prediction, the points are close 
to the straight line which gives an insight about the significance of the 
regression models (Fig. 3).

The RSM-based experimental data was used to estimate ANN (see 
Fig. 4). The training of the neural network was based on a feedforward 
backpropagation (FFB) network. The selection of the neural network 
was based on regression and root mean square error (RMSE) analysis. 
The training function selected was LM (Levengerg-Marquadt), and the 
performance selection was based on the mean square errors (MSE) in the 
three data sets (training-70 %, testing-15 %, and validation-15 %). The 
weights and bias were adjusted by the gradient descent function in 
nntools. An approach based on trial and error was utilized in order to 
determine the total number of hidden layers and neurons (3-20-10-1). 
Log-Sigmoid (Logsig) and Tan-sigmoid (Tansig) transfer functions were 
applied to the two consecutive hidden layers, while linear (Purelin) 
transfer functions were the output Neural network toolbox-TM in 
MATLAB R2019a was used for the construction of ANN [32].

3.5. Comparison of RSM and ANN using SPSS

Comparison between the two statistical methods used as a tool for 
prediction was analyzed based upon different parameters, including R2, 
AAD, and RMSE. For TPC, the R2 value obtained by ANN was 0.9978, 
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which was greater than the RSM predicted model’s R2 value, which 
came out to be 0.9897. The absolute average deviation (AAD) of ANN is 
1.18, and the RSM is 7.31, which shows that the ANN value is less than 
the RSM. For TFC, the R2 value obtained by ANN was 0.9634, which was 
greater than the RSM predicted model’s R2 value, which came out to be 
0.9427. The opposite observation was made in the AAD, where ANN 

gave the value of 3.90, which is less than the RSM value observed to be 
4.80. For DPPH radical scavenging activity, the R2 value obtained by 
ANN was 0.9875, which was greater than the RSM predicted model’s R2 

value of 0.9772. The absolute average deviation of ANN is 1.99, and 
RSM is 4.03, which shows that the ANN value is less than RSM. For 
α-amylase, the R2 value obtained by ANN was 0.9516, which was greater 

Fig. 2. Artificial neural networking (ANN- based regression graphs for total phenolic and flavonoid contents, antioxidant and α-amylase inhibitory activity.
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Fig. 3. Predicted RSM and ANN value graphs compared with the experimental values of total phenolic and flavonoid contents, antioxidant (DPPH), and α-amylase 
inhibitory activity.

Fig. 4. Representation of artificial neural network representing an input layer, two hidden layers, and an output layer.
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than the RSM predicted model’s R2 value, which came out to be 0.9423. 
The absolute average deviation of ANN is 2.97 and RSM is 4.36, which 
shows that the ANN value is less than RSM’s. Greater R2 and less AAD 
suggest a good approximation of predicted values with the actual ones. 
The RMSE was calculated to analyze the efficiency of two methods. 
RMSE for TPC obtained from ANN-generated outputs was 0.35 while 
that obtained from RSM was 0.75; for TFC RMSE for ANN-generated 
outputs was calculated to be 0.66 while that obtained from RSM was 
0.56; for DPPH the RMSE obtained was 1.21 and 1.64 for ANN generated 
output and RSM predicted outputs respectively; for α-amylase, RMSE 
from ANN was 2.10 and from RSM was 2.28. It was observed that 
overall, ANN gave better results (lower RMSE) than RSM for all of the 
outputs ( Table 5).

The optimization values also gave similar results as the overall model 
results where ANN gave lesser percentage prediction errors as compared 
to RSM (Table 4)

Upon further analysis to test whether the difference between the 
absolute errors was significant or not, a paired sample t-test was applied 
on the absolute errors obtained for ANN and RSM. It was found that the 
ANN generated output was statistically significantly better for TPC (p <
0.001), and for both DPPH and α-amylase (p = 0.003) than the RSM 
predicted outputs. While for all other pairs, the results were not signif
icantly different.

3.6. Optimization and validation

The optimization solution provided by RSM was validated experi
mentally, and simulations using ANN were performed with the same 
parametric inputs. The percentage prediction errors (PPE) of the values 
predicted by RSM and ANN were calculated using Equation (4). At the 
optimized parameters of A = 29, B = 40, and C = 30 (as suggested by 
RSM), the predicted total phenolic content (TPC) from RSM was 28.23 
mg/mL (PPE = 7.33 %), while ANN predicted 29.14 mg/mL (PPE =
4.26 %). The actual experimental yield, however, was 30.43 mg/mL 
(Table 6).

For TFC, the actual yield was 10.99 mg/mL, compared to the RSM 
prediction of 12.05 mg/mL (PPE = 9.69 %) and the ANN prediction of 
11.64 mg/mL (PPE = 5.92 %). Similarly, the actual percentage inhibi
tion of α-amylase activity was 46.95 %, while RSM predicted 49.23 % 
(PPE = 4.86 %) and ANN predicted 48.78 % (PPE = 3.91 %).

Regarding the radical scavenging activity (measured as DPPH inhi
bition), the actual experimental value was 26.16 %, while RSM pre
dicted 23.65 % (PPE = 9.95 %) and ANN predicted 25.21 % (PPE = 3.65 
%).

All predictions from both RSM and ANN fell within acceptable limits 
of percentage prediction error, demonstrating that both tools were in 
reasonable agreement with the experimental results.

3.7. Correlation among activities using SPSS

In this study, correlations between the experimental responses were 
also assessed (Table 7). The values of TPC, TFC, DPPH antioxidant ac
tivity, and α-amylase inhibitory activity were analyzed using SPSS sta
tistical software. The correlation analysis of activities derived from the 
same extraction method provided valuable insights into the efficiency of 
phytochemical extraction and its relation to α-amylase inhibition and 

DPPH radical scavenging activities. Pearson’s correlation analysis 
revealed a moderately positive correlation (r = 0.775) between TPC and 
TFC, which was highly significant (p < 0.001). However, weak and mild 
correlations were observed among the other variables, and these cor
relations were statistically insignificant (p > 0.05).

4. Conclusions

The study described in this article successfully demonstrated that 
glycerol-sodium acetate deep eutectic solvent (DES) is an effective, and 

Table 4 
Predictive capacity comparison of RSM and ANN models.

Parameters TFC TPC Antioxidant (DPPH) α-Amylase

RSM ANN RSM ANN RSM ANN RSM ANN

R2 0.9897 0.9978 0.9427 0.9634 0.9423 0.9875 0.9423 0.9516
AAD (%) 4.80 3.90 7.31 1.18 4.03 1.99 4.36 2.97
PPE (%) 9.69 5.91 7.24 4.26 9.59 3.64 4.86 3.91
RMSE 0.42 0.35 0.64 0.16 1.40 0.69 1.48 0.96

Table 5 
Paired sample correlations among RSM and ANN-based absolute errors.

Pair Correlation Variables N Correlation Sig.

Pair 1 TPC (ANN) 
TPC(RSM)

17 0.169 0.516

Pair 2 TFC (ANN) & TFC (RSM) 17 0.264 0.305
Pair 3 DPPH (ANN) & DPPH (RSM) 17 0.636 0.006
Pair 4 α-amylase (ANN) & α-amylase (RSM) 17 0.948 0.000

Table 6 
Predicted and Experimental values of Response variables under optimal condi
tions suggested by RSM.

Responses Experimental Predicted

RSM ANN

TPC 30.43 ± 0.21 28.23 29.13
TFC 10.99 ± 0.14 12.05 11.64
Antioxidant 26.16 ± 0.36 25.65 25.21
α-Amylase 46.95 ± 0.11 49.23 48.78

Table 7 
Correlation among the total phenolic content (TPC), total flavonoid content 
(TFC), DPPH, and alpha-amylase activities.

TPC TFC DPPH 
SHA

Alpha- 
amylase

TPC Pearson 
Correlation

– 0.775** − 0.227 0.137

Sig. (2- 
tailed)

​ 0.000 0.380 0.599

N 17 17 17 17
TFC Pearson 

Correlation
0.775** – 0.050 − 0.118

Sig. (2- 
tailed)

0.000 ​ 0.848 0.652

N 17 17 17 17
Antioxidant Pearson 

Correlation
− 0.227 0.050 – − 0.328

Sig. (2- 
tailed)

0.380 0.848 ​ 0.199

N 17 17 17 17
Alpha- 

amylase
Pearson 
Correlation

0.137 − 0.118 − 0.328 –

Sig. (2- 
tailed)

0.599 0.652 0.199 ​

N 17 17 17 17

** Correlation is significant at 0.01 level (2- tailed).
* Correlation is significant at 0.05 level (2-tailed).
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eco-friendly medium for extracting bioactive compounds from Strychnos 
potatorum seeds (SPs). Optimization of extraction conditions using 
response surface methodology (RSM) and artificial neural networking 
(ANN) revealed that ANN provided superior predictive accuracy in 
modeling key extraction outcomes, including total phenolic content 
(TPC), total flavonoid content (TFC), antioxidant activity (DPPH), and 
antidiabetic (α-amylase inhibitory) activity. Under optimal extraction 
conditions (29 min, 40 ◦C, and a solvent-to-feed ratio of 30 mL/g), the 
SPs extract yielded high concentrations of phenolics and flavonoids, 
with significant antioxidant and antidiabetic effects. The comparative 
analysis of ANN and RSM further highlighted ANN’s lower percentage 
error and greater alignment with experimental data, making it a more 
reliable tool for predicting extraction outcomes. This research un
derscores the potential of glycerol-sodium acetate DES as a sustainable 
and efficient alternative to conventional solvents. These findings pro
vide a valuable framework for future studies aiming to scale up eco- 
friendly extraction processes for natural products with pharmaceutical 
and nutraceutical applications.
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