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Abstract: Rational schemes for shape preservation of monotone data both in 2D and 3D setups have been developed.
C1 rational cubic and partially blended bicubic functions are employed for this purpose. Monotonicity is achieved by
extracting constraints on parameters involved in the description of these rational functions. Monotone curves and surfaces
have been obtained, which provide evidence that the algorithm used fits most types of monotone data and produces
visually pleasing results.
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1. Introduction
Construction of curves and surfaces in the digital age is at the heart of many scientific fields such as computer-
aided geometric design (CAGD), computer graphics (CG), and computer-aided design (CAD). These applied
fields integrate concepts from linear algebra, differential geometry, visualization, and numerical methods, all
implemented in software. Curve and surface drawing techniques have given architects a cutting edge over the
conventional drafting equipment and optimized the probability of turning their visions into practice, displaying
them on computer screens in incredibly short spans of time. Three categories of data, i.e. monotonicity,
positivity, and convexity, are often dominant in the majority of these applications. Rise in cholesterol level
in the blood due to consuming food high in saturated fat, chlorofluorocarbon amounts in the depletion of the
ozone layer, and uric acid levels in gout patients are some variables that always show monotonic pattern. Height
and age of a person, number of computers in a computer laboratory, and population in a specific area are some
real-life examples of positive data. Exponential and power functions, negative entropy, and area enclosed by a
semicircle in the lower half plane are a few examples of curves that show convex behavior.

Mathematical models of the datasets exhibiting one of these three properties have ensured their signifi-
cance in the fields of engineering, natural sciences, and social sciences. Construction of these models can assist
in the study of effects of various constituents and in estimating the behavior of the system as a whole. For
this purpose, the intrinsic shape of the data must be retained to avoid misinterpretation of the information.
Standard methods of spline functions do not retain inherited characteristics of the data. Hence, by introducing
some parameters into the spline structure, various characteristics of the data, including convexity, monotonicity,
and positivity, can be conserved. Moreover, the number of parameters can be increased to pull the curve or
surface towards the intrinsic shape of the data, keeping the smoothness of the results intact.
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Spline interpolating rational functions are very helpful in the envisioning of shaped data because they
furnish smooth and captivating views of the data under consideration. Much notable work has been done
previously to overcome this difficulty [1–10]. Kvasov [3] created an algorithm for interpolation by means of
weighted cubic spline functions that keep the monotone and convex shape of discrete sets of data. Ibraheem
et al. [4] evolved rational cubic and bicubic trigonometric methodologies to maintain the monotonicity of
data in two and three dimensions. Constraints were attained on parameters of rational cubic and bicubic
trigonometric functions. In [5], the authors did work on conservation of shaped data by evolving a C1 rational
cubic spline that formed a convex interpolant for given convex data. Sarfraz et al. [1] developed a piecewise
rational cubic function of order O(h3) to visualize monotone data. Hussain et al. [9] designed a control point
state of quadratic trigonometric functions that fulfill each of the properties of Bezier functions. Floater and
Pena [7] considered and explained the types of monotonicity preservation of systems of bivariate function on
a triangle. Sarfraz et al. [2] illustrated a rational cubic function having two parameters for the envisioning of
positive-shaped data. The focus of the work was to present a smooth view of data. Sarfraz et al. [10] created
a novel technique of curve interpolation. A piecewise rational cubic function encompassing two parameters
was considered and their influence on the shape of the curve was scrutinized. Hussain et al. [6] extended
the GC1 quadratic trigonometric functions in [9] to GC1 biquadratic trigonometric functions that confined
four free parameters. Smooth and eye-catching monotone and positive surfaces were attained by developing
limits on free parameters. The prime objective of this research is to acquire data-dependent constraints on
parameters to retain monotonicity. For this purpose, rational cubic and bicubic functions by the authors in
[2] are utilized. Monotonicity-preserving constraints for curve and surface data are developed in Section 3 and
Section 4, respectively. Section 5 provides the implementation of a rational scheme developed on 2D and 3D
datasets. The corresponding numerical results of values of derivatives and parameters are calculated using
MATLAB and are shown in Section 6, followed by conclusions in Section 7.

2. Rational cubic and bicubic partially blended functions

Let us presume that (εi, fi) , 0 ≤ i ≤ n , is the dataset supposed to be delineated on the interval [a, b] in such
a way that a = ε0 < ε1 < ε3 < · · · < εn = b. A rational cubic piecewise defined function possessing two free
parameters defined in all the subintervals Ii = [εi, εi+1], 0 ≤ i ≤ n− 1 , is provided below:

Si(ε) =
pi(Φ)

qi(Φ)
, (1)

where

pi(Φ) = δifi(1− Φ)3 + {δifi + hiδiḋi + 2fi}Φ(1− Φ)2

+ {ξifi+1 − hiξiḋi+1 + 2fi+1}Φ2(1− Φ) + ξifi+1Φ
3,

qi(Φ) = δi(1− Φ)2 + 2Φ(1− Φ) + ξiΦ
2,

and Φ = ε−εi
hi

, hi = εi+1 − εi. The function provided in Eq. (1) holds C1 continuity if the following attributes
are satisfied:

Si(εi) = fi, Si(εi+1) = fi+1,

S
(1)
i (εi) = ḋi, S

(1)
i (εi+1) = ḋi+1.

(2)
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In Eq. (2), S(1) expresses the derivation with respect to ε whereas ḋi symbolizes the estimated values of
derivatives at knots εi . The estimated derivative values may be already provided or estimated using some
appropriate strategy. In this paper, derivatives are calculated using the geometric mean method detailed below:

ḋi =

{
0 ∆̈i−1 = 0, ∆̈i = 0,

∆̈
hi

hi−1+hi

i−1 ∆̈

hi−1
hi−1+hi

i i = 1, 2, . . . , n− 1.

ḋ1 =

 0 ∆̈1 = 0, ∆̈3,1 = 0,

∆̈1[
∆̈1

∆̈3,1
]
h1
h2 otherwise.

ḋn =

 0 ∆̈n−1 = 0, ∆̈n,n−2 = 0,

∆̈n−1[
∆̈n−1

∆̈n,n−2
]

hn−1
hn−2 otherwise.

Here, ∆̈i =
fi+1−fi

hi
, i = 0, 1, 2, . . . , n− 1 and ∆̈3,1 = f3−f1

ε3−ε1
, ∆̈n,n−2 = fn−fn−2

εn−εn−2
.

Similarly, for 3D data these are defined as follows:

F̆ ε
i,j =

 0 ∆̈i−1,j = 0, ∆̈i,j = 0,

∆̈
hi

hi−1+hi

i−1,j ∆̈

hi−1
hi−1+hi

i,j otherwise.

F̆ ε
1,j =

 0 ∆̈1,j = 0, ∆̈31,j = 0,

∆̈1,j [
∆̈1,j

∆̈31,j
]

h1
h2

otherwise.

F̆ ε
n,j =

 0 ∆̈n−1,j = 0, ∆̈n(n−2),j = 0,

∆̈n−1,j [
∆̈n−1,j

∆̈n(n−2),j
]

hn−1
hn−2

otherwise.

F̆ f
i,j =

 0 if∆̆i,j−1 = 0, ∆̆i,j = 0,

∆̆

h̆j

h̆j−1+h̆j

i,j−1 ∆̆

h̆j−1

h̆j−1+h̆j

i,j otherwise

F̆ f
i,1 =

 0 ∆̆i,1 = 0, ∆̆i,31 = 0,

∆̆i,1[
∆̆i,1

∆̆i,31
]

h̆1
h̆2 otherwise.

F̆ f
i,m =


0 ∆̆i,m = 0, ∆̆i,m(m−2) = 0,

∆̆i,m[
∆̆i,m

∆̆i,m(m−2)
]

h̆m−1

h̆m−2 otherwise.

Here, ∆̈31,j =
F̆3,j−F̆1,j

ε3−ε1
, ∆̈n(n−2),j =

F̆n,j−F̆n−2,j

εn−εn−2
, ∆̆i,31 =

F̆i,3−F̆i,1

f3−f1
, ∆̆i,m(m−2) =

F̆i,m−F̆i,m−2

fm−fm−2
,

∆̈i,j =
F̆i+1,j−F̆i,j

hi
, ∆̆i,j =

F̆i,j+1−F̆i,j

h̆j
. ∀i, j .
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Here, a fact worth mentioning is that for δi = ξi = 1 in the interval [εi, εi+1] , the rational cubic function
in Eq. (1) alters to the basic cubic Hermite spline. The rational cubic piecewise function supplied in Eq. (1) is
advanced to a rational bicubic function delineated over a given set of 3D data points (εi, fj , F̆i,j) where 0 ≤ i ≤ n

and 0 ≤ j ≤ m on rectangular mesh D̆ = [ε0, εn] × [f0, fm] . Let ρ̂ : ȧ = ε0 < ε1 < ε2 < ε3 < . . . < εn = ḃ ̇
be the partitioning of [ȧ, ḃ] and ρ̆ : ċ = f0 < f1 < f2 < f3 < . . . < fm = ḋ be the partitioning of [ċ, ḋ] . We
elucidate a bicubic partially blended rational function defined over rectangular patch [εi, εi+1]× [fj , fj+1] as:

S(ε, f) = −ABCT . (3)

Here,

B =

 0 S(ε, fj) S(ε, fj+1)
S(εi, f) S(εi, fj) S(εi, fj+1)

S(εi+1, f) S(εi+1, fj) S(εi+1, fj+1)


and A and C are row matrices given as:

A =
[
−1 a0(Φ) a1(Φ)

]
,

C =
[
−1 c0(Ψ) c1(Ψ)

]
,

where a0(Φ) = (1− Φ)2(1 + 2Φ) ,a1(Φ) = Φ2(3− 2Φ) , c0(Ψ) = (1−Ψ)2(1 + 2Ψ) ,c1(Ψ) = Ψ2(3− 2Ψ) .

Furthermore, Φ = (ε−εi)
hi

and Ψ =
(f−fj)

h̆j
and 0 ≤ Φ ≤ 1 and 0 ≤ Ψ ≤ 1 , hi = εi+1 − εi, h̆j = fj+1 − fj .

Four rational cubic functions S(ε, fj), S(ε, fj+1), S(εi, f), S(εi+1, f) are acquired just like the one in Eq. (1)
delineated on the boundary of rectangular patch [εi, εi+1]× [fj , fj+1] as:

S(ε, fj) =
J0(1− Φ)3 + J1Φ(1− Φ)2 + J2Φ

2(1− Φ) + J3Φ
3)

q1(Φ)
, (4)

and values corresponding to Ji, i = 0, 1, 2, 3 are:
J0 = δi,jF̆i,j , J1 = δi,jF̆i,j + hiδi,jF̆

ε
i,j + 2F̆i,j , J2 = ξi,jF̆i+1,j − ξi,jF̆

ε
i+1,jhi + 2F̆ ε

i+1,j , J3 = ξi,jF̆i+1,j .
q1(Φ) = δi,j(1− Φ)2 +Φ(1− Φ) + ξi,jΦ

2 .
In similar fashion,

S(ε, fj+1) =
K0(1− Φ)3 +K1Φ(1− Φ)2 +K2Φ

2(1− Φ) +K3Φ
3

q2(Φ)
, (5)

where the values of Ki, i = 0, 1, 2, 3 are:
K0 = δi,j+1F̆i,j+1,K1 = δi,j+1F̆i,j+1 + hiδi,j+1F̆

ε
i,j+1 + 2F̆i,j+1 ,

K2 = ξi,j+1F̆i+1,j+1 − ξi,j+1F̆
ε
i,j+1hi + 2F̆i+1,j+1,K3 = ξi,j+1F̆i+1,j+1,

q2(Φ) = δi,j+1(1− Φ)2 +Φ(1− Φ) + ξi,j+1Φ
2 .

Likewise,

S(εi, f) =
L0(1−Ψ)3 + L1Ψ(1−Ψ)2 + L2Ψ

2(1−Ψ) + L3Ψ
3)

q3(Ψ)
, (6)

and values corresponding to Li, i = 0, 1, 2, 3 are:
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L0 = δ̄i,jF̆i,j , L1 = δ̄i,jF̆i,j + h̆j δ̄i,j+1F̆
f
i,j + 2F̆i,j , L2 = ξ̄i,jF̆i,j+1 − ξ̄i,jF̆

f
i,j+1h̆j + 2F̆i,j+1, L3 = ξ̄i,jF̆i,j+1 ,

q3(Ψ) = δ̄i,j+1(1−Ψ)2 +Ψ(1−Ψ) + ξ̄i,j+1Ψ
2 .

In like manner,

S(εi+1, f) =
M0(1−Ψ)3 +M1Ψ(1−Ψ)2 +M2Ψ

2(1−Ψ) +M3Ψ
3

q4(Ψ)
, (7)

where the values corresponding to Mi, i = 0, 1, 2, 3 are:
M0 = δ̄i+1,jF̆i+1,j ,M1 = δ̄i+1,jF̆i+1,j + h̆j δ̄i+1,jF̆

f
i+1,j + 2F̆i+1,j ,

M2 = ξ̄i+1,jF̆i+1,j+1 − ξ̄i+1,jF̆
f
i+1,j+1h̆j + 2F̆i+1,j+1,M3 = ξ̄i+1,jF̆i+1,j+1,

q4(Ψ) = δ̄i+1,j(1−Ψ)2 +Ψ(1−Ψ) + ξ̄i+1,jΨ
2 .

3. Monotone curve model

Assume (εi, fi) to be the provided dataset where 0 ≤ i ≤ n . Suppose fi, i = 0, 1, 2, . . . , n is a monotonic
dataset, i.e. fi ≤ fi+1 . Also,
hi = εi+1 − εi , ∆̈i =

fi+1−fi
hi

≥ 0 .

Further, let us assume that ḋi, 0 ≤ i ≤ n , symbolizes the estimated derivative values at the points εi, 0 ≤ i ≤ n .
Also, the vital monotonicity condition ḋi ≥ 0, 1 ≤ i ≤ n is satisfied. The free parameters within the interval
[εi, εi+1] are δi and ξi . The piecewise rational cubic function [2] is monotonically increasing if and only if

S
(1)
i (ε) ≥ 0∀ε ∈ [εi, εi+1] .

S
(1)
i (ε) =

ä1(1− Φ)4 + ä2Φ(1− Φ)3 + ä3Φ
2(1− Φ)2 + ä4Φ

3(1− Φ) + ä5Φ
4

[qi(Φ)]2
, (8)

where äi, 1 ≤ i ≤ 5 are given as:
ä1 = δ2i ḋi, ä2 = 2δiξi∆̈i+4δi∆̈i−2δiξiḋi+1 , ä3 = 4δiξi∆̈i+2δi∆̈i+2ξi∆̈i+4∆̈i−δiξiḋi+1−2ξiḋi+1−2δiḋi−δiξiḋi ,
ä4 = 2δiξi∆̈i + 4ξi∆̈i − 2δiξiḋi, ä5 = ξ2i ḋi+1 .

Now S
(1)
i (ε) ≥ 0, iff äj > 0, 1 ≤ j ≤ 5 in all of the subintervals [εi, εi+1] . Consequently, the following

constraints have been derived on free parameters:

ξi >
2∆̈i

ḋi+1−∆̈i
, δi >

2∆̈i

ḋi−∆̈i
, ξi >

2(ḋi−∆̈i)

4∆̈i−ḋi−ḋi+1
.

The above discussion can be summarized as follows:

Theorem 1 The rational cubic piecewise function in [2] retains monotonicity if in each subinterval [εi, εi+1], 0 ≤
i ≤ n− 1, δi and ξi fulfill:

δi = λ̃i +
2∆̈i

ḋi − ∆̈i

, λ̃i > 0,

ξi = σ̃i + max{0, 2∆̈i

ḋi+1 − ∆̈i

,
2(ḋi − ∆̈i)

4∆̈i − ḋi − ḋi+1

}, σ̃i > 0.
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4. Monotone surface model

Assume the given set of 3D data points (εi, fj , F̆i,j) where 0 ≤ i ≤ n and 0 ≤ j ≤ m on rectangular mesh

D̆ = [ε0, εn]× [f0, fm] such that the following conditions are met:
� F̆i,j < F̆i+1,j , F̆i,j < F̆i,j+1 , F̆ ε

i,j > 0 , F̆ f
i,j > 0, and ∆̈i,j > 0 , ∆̆i,j > 0,

where ∆̈i,j =
F̆i+1,j−F̆i,j

hi
, ∆̆i,j =

F̆i,j+1−F̆i,j

h̆j
.

For the surface patch in [2] to be monotone, we only need to establish that the boundary curves
S(ε, fj), S(ε, fj+1), S(εi, f), andS(εi+1, f) are all monotone. First consider S(ε, fj) . It is known that S(ε, fj)

is surely monotone if S
(1)
i (ε, fj) > 0 .

S
(1)
i (ε, fj) =

A0(1− Φ)4 +A1Φ(1− Φ)3 +A2Φ
2(1− Φ)2 +A3Φ

3(1− Φ) +A4Φ
4)

[q1(Φ)]2
. (9)

The values corresponding to Ai, i = 0, 1, 2, 3, 4 are:
A0 = δ2i,jF̆

ε
i,j , A1 = 2δi,jξi,j∆̈i,j + 4δi,j∆̈i,j − 2δi,jξi,jF̆i+1,j ,

A2 = 4δi,jξi,j∆̈i,j + 2δi,j∆̈i,j + 2ξi,j∆̈i,j + 4∆̈i,j − δi,jξi,jF̆
ε
i+1,j − 2ξi,jF̆

ε
i+1,j − 2δi,jF̆

ε
i,j − δi,jξi,jF̆

ε
i,j ,

A3 = 2δi,jξi,j∆̈i,j + 4ξi,j∆̈i,j − 2δi,jξi,jF̆
ε
i,j A4 = ξ2i,jF̆

ε
i+1,j .

When S
(1)
i (ε, fj) > 0 , all Ai, i = 1, 2, 3 , are necessarily positive. Thus, A1 > 0, A2 > 0 , and A3 > 0 yield the

following constraints on δi,j and ξi,j :

δi,j > max{0, 2∆̈i,j

F̆ ε
i+1,j−∆̈i,j

,
2(F̆ ε

i,j−∆̈i,j)

4∆̈i,j−F̆ ε
i,j−F̆ ε

i+1,j

}, ξi,j > max{0, 2∆̈i,j

F̆ ε
i,j−∆̈i,j

}. Continuing in a similar fashion, S(ε, fj+1)

is said to be monotone if S
(1)
i (ε, fj+1) > 0.

S
(1)
i (ε, fj+1) =

B0(1− Φ)4 +B1Φ(1− Φ)3 +B2Φ
2(1− Φ)2 +B3Φ

3(1− Φ) +B4Φ
4)

[q2(Φ)]2
. (10)

Here,
B0 = δ2i,j+1F̆

ε
i,j+1, B1 = 2δi,j+1ξi,j+1∆̈i,j+1 + 4δi,j+1∆̈i,j+1 − 2δi,j+1ξi,j+1F̆

ε
i+1,j+1,

B2 = 4δi,j+1ξi,j+1∆̈i,j+1 + 2δi,j+1∆̈i,j+1 + 2ξi,j+1∆̈i,j+1 + 4∆̈i,j+1 − δi,j+1ξi,j+1F̆
ε
i+1,j+1 − 2ξi,j+1F̆

ε
i+1,j+1 −

2δi,j+1F̆
ε
i,j+1 − δi,j+1ξi,j+1F̆

ε
i,j+1 ,

B3 = 2δi,j+1ξi,j+1∆̈i,j+1 + 4ξi,j+1∆̈i,j+1 − 2δi,j+1ξi,j+1F̆
ε
i,j+1, B4 = ξ2i,j+1F̆

ε
i+1,j+1 .

S
(1)
i (ε, fj+1) > 0 where Bi, i = 0, 1, 2, 3, 4 are essentially positive. Thus, B1 > 0, B2 > 0 , and B3 > 0 yield the

following constraints on δi,j+1 and ξi,j+1 :

ξi,j+1 > max{0, 2∆̈i,j+1

F̆ ε
i+1,j+1−∆̈i,j+1

, 2
(F̆ ε

i,j+1−∆̈i,j+1)

4∆̈i,j+1−F̆ ε
i,j+1−F̆ ε

i+1,j+1

} , δi,j+1 > max{0, 2∆̈i,j+1

F̆ ε
i,j+1−∆̈i,j+1

} .

Likewise, S(εi, f) is monotone if S
(1)
i (εi, f) > 0 .

S
(1)
i (εi, f) =

C0(1−Ψ)4 + C1Ψ(1−Ψ)3 + C2Ψ
2(1−Ψ)2 + C3Ψ

3(1−Ψ) + C4Ψ
4)

[q3(Ψ)]2
, (11)

where
C0 = δ̄2i,jF̆

f
i,j , C1 = 2δ̄i,j ξ̄i,j∆̆i,j + 4δ̄i,j∆̆i,j − 2δ̄i,j ξ̄i,jF̆

f
i,j+1 ,

6
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C2 = 4δ̄i,j ξ̄i,j∆̆i,j + 2δ̄i,j∆̆i,j + 2δ̄i,j∆̆i,j + 4∆̆i,j − δ̄i,j ξ̄i,jF̆
f
i,j+1 − 2δ̄i,jF̆

f
i,j+1 − 2δ̄i,jF̆

f
i,j − δ̄i,j ξ̄i,jF̆

f
i,j ,

C3 = 2δ̄i,j ξ̄i,j∆̆i,j + 4ξ̄i,j∆̆i,j − 2δ̄i,j ξ̄i,jF̆
f
i,j , C4 = ξ̄2i,jF̆

f
i,j+1 .

Similarly, for S
(1)
i (εi�, �f) > 0 , Ci�, i� = 0, 1, 2, 3, 4 should necessarily be positive. Here, C1 > 0, C2 > 0 , and

C3 > 0 yield the following constraints on δ̄i,j and ξ̄i,j �:

δ̄i,j > max{0, 2∆̆i,j

F̆ f
i,j+1∆̆i,j

,
2(F̆ f

i,j−∆̆i,j)

4∆̆i,j−F̆ f
i,j−F̆ f

i,j+1

}, ξ̄i,j > max{0, (2∆̆i,j)

F̆ f
i,j−∆̆i,j

} . Lastly, S(εi+1, f) is considered to be

monotone if S
(1)
i (εi+1, f) > 0 .

S
(1)
i (εi+1, f) =

D0(1−Ψ)4 +D1Ψ(1−Ψ)3 +D2Ψ
2(1−Ψ)2 +D3Ψ

3(1−Ψ) +D4Ψ
4

[q4(Ψ)]2
. (12)

Here we have:
D0 = δ̄2i+1,jF̆

f
i+1,j , D1 = 2δ̄i+1,j ξ̄i+1,j∆̆i+1,j + 4δ̄i+1,j∆̆i+1,j − 2δ̄i+1,j ξ̄i+1,jF̆

f
i+1,j+1 ,

D2 = 4δ̄i+1,j ξ̄i+1,j∆̆i+1,j + 2δ̄i+1,j∆̆i+1,j + 2ξ̄i+1,j∆̆i+1,j + 4∆̆i+1,j − δ̄i+1,j ξ̄i+1,jF̆
f
i+1,j+1 − 2ξ̄i+1,jF̆

f
i+1,j+1 −

2δ̄i+1,jF̆
f
i+1,j − δ̄i+1,j ξ̄i+1,jF̆

f
i+1,j ,

D3 = 2δ̄i+1,j ξ̄i+1,j∆̆i+1,j + 4ξ̄i+1,j∆̆i+1,j − 2δ̄i+1,j ξ̄i+1,jF̆
f
i+1,j , D4 = ξ̄2i+1,jF̆

f
i+1,j .

Furthermore, forS(1)
i (εi+1, f) > 0 , Di, i = 0, 1, 2, 3, 4 essentially is positive. From D1 > 0, D2 > 0 , and D3 > 0 ,

we procure the following constraints on free parameters:

δ̄i+1,j > max{0, 2∆̆i+1,j

F̆ f
i+1,j+1−∆̆i+1,j

,
2(F̆ f

i+1,j−∆̆i+1,j)

4∆̆i+1,j−F̆ f
i+1,j−F̆ f

i+1,j+1

} , ξ̄i+1,j > max{0, 2∆̆i+1,j

F̆ f
i+1,j−∆̆i+1,j

}. The following theorem

summarize the whole of the above argument:

Theorem 2 The bicubic partially blended rational function supplied in [2] provides the envisaging of monotone
data in the form of a monotone surface if in rectangular mesh Iij = [εi, εi+1]×[fj , fj+1] , the constraints provided
as follows are satisfied by the free parameters:

δi,j = ´ci,j + max{0, 2∆̈i,j

F̆ ε
i+1,j−∆̈i,j

,
2(F̆ ε

i,j−∆̈i,j)

4∆̈i,j−F̆ ε
i,j−F̆ ε

i+1,j

}, ´ci,j > 0;

ξi,j = ´di,j + max{0, 2∆̈i,j

F̆ ε
i,j−∆̈i,j

}, ´di,j > 0;

δi,j+1 = ´ei,j + max{0, 2∆̈i,j+1

F̆ ε
i,j+1−∆̈i,j+1

} , ´ei,j > 0;

ξi,j+1 = ´gi,j + max{0, 2∆̈i,j+1

F̆ ε
i+1,j+1−∆̈i,j+1

, 2
(F̆ ε

i,j+1−∆̈i,j+1)

4∆̈i,j+1−F̆ ε
i,j+1−F̆ ε

i+1,j+1

} , ´gi,j > 0;

δ̄i,j = ´ji,j + max{0, 2∆̆i,j

F̆ f
i,j+1∆̆i,j

,
2(F̆ f

i,j−∆̆i,j)

4∆̆i,j−F̆ f
i,j−F̆ f

i,j+1

} , ´ji,j > 0;

ξ̄i,j = ´ki,j + max{0, (2∆̆i,j)

F̆ f
i,j−∆̆i,j

} , ´ki,j > 0;

δ̄i+1,j = ´li,j + max{0, 2∆̆i+1,j

F̆ f
i+1,j+1−∆̆i+1,j

,
2(F̆ f

i+1,j−∆̆i+1,j)

4∆̆i+1,j−F̆ f
i+1,j−F̆ f

i+1,j+1

} , ´li,j > 0;

ξ̄i+1,j = ḿi,j + max{0, 2∆̆i+1,j

F̆ f
i+1,j−∆̆i+1,j

} , ḿi,j > 0.
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5. Numerical examples
Monotonicity-conserving rational schemes developed in Section 3 and Section 4 have been applied on 2D
monotone datasets (Table 1 and Table 2) and 3D monotone datasets (Table 3 and Table 4), corresponding
to which monotone curves and surfaces are obtained as shown in Figure 1, Figure 2, Figure 3, and Figure 4.
The tz and fz views of the monotone surface generated from the dataset in Table 3 are demonstrated in Figure
5 and Figure 6, respectively. Similarly, Figure 7 and Figure 8 represent tz and fz views of the monotone surface
produced from the dataset in Table4.

Table 1. A 2D monotone dataset, I.

ti 1 2 3 4 5 6 7
fi 0 5 9 13 17 20 21

Table 2. A 2D monotone dataset, II.

ti 2 3 6.5 7 7.5
fi 2 3 17 23 29

Table 3. A 3D monotonic dataset generated by the function F̆ (ε, f) =
√
ε+ f + 0.005 .

f/ε 0.1 1.49 2.52 3.49 3.5
0.1 0.4528 1.2629 1.6202 1.8960 1.8987

1.49 1.2629 1.7277 2.0037 2.2327 2.2349

2.52 1.6202 2.0037 2.2461 2.4525 2.4546

3.49 1.8960 2.2327 2.4525 2.6429 2.6448

3.5 1.8987 2.2349 2.4546 2.6448 2.6467

Table 4. A 3D monotonic dataset generated by the function F̆ (ε, f) = exp(ε0.05 + f0.07) .

f/ε 2.5 11.10 25.65
2.5 0.4528 1.2629 1.6202

11.10 1.2629 1.7277 2.0037

25.65 1.6202 2.0037 2.2461

6. Numerical values
The values of the parameters and the derivatives involved in the proposed algorithm have been calculated using
MATLAB software and are presented in Table 5, Table 6, Table 7, and Table 8.

7. Conclusion
A C1 rational cubic interpolating scheme put forward by the authors in [2] encompassing two parameters has
been used for the modeling of monotone two- and three-dimensional data evolving as an outcome of certain

8
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Figure 1. Monotonicity-conserving curve for dataset pro-
vided in Table 1.

Figure 2. Monotonicity-conserving curve for dataset pro-
vided in Table 2.
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Figure 3. Monotone surface generated from dataset in
Table 3.

Figure 4. Monotone surface generated from dataset in
Table 4.

Table 5. Numerical outcomes for Table 1.

i 1 2 3 4 5 6 7
ḋi 4.0000 4.0000 4.0000 4.0000 3.4641 1.7321 0.5000

δi 3.2321 3.2321 3.2321 3.2321 3.2321 3.2321 −
ξi 1.3281 1.3281 1.3281 1.3281 1.3281 1.3281 −

Table 6. Numerical outcomes for Table 2.

i 1 2 3 4 5
ḋi 0.70893 1.3608 10.46 12 12

δi 0.5 0.5 0.5 0.5 −
ξi 0.5 0.5 0.5 0.5 −

9
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Table 7. Numerical outcomes for Table 3.
(ξi, fi) 0.1 1.49 2.52 3.49 3.5

Numerical outcomes for F̆ ε
i,j

0.1 0.2813 0.0762 0.0486 0.0357 0.0356
1.49 0.4326 0.2945 0.2518 0.2252 0.2250
2.52 0.3131 0.2510 0.2234 0.2044 0.2042
3.49 0.2637 0.2240 0.2039 0.1892 0.1891
3.5 0.2599 0.2204 0.2005 0.1859 0.1858

Numerical outcomes for F̆ f
i,j

0.1 0.2813 0.4326 0.3131 0.2637 0.2599
1.49 0.0762 0.2945 0.2510 0.2240 0.2204
2.52 0.0486 0.2518 0.2234 0.2039 0.2005
3.49 0.0357 0.2252 0.2044 0.1892 0.1859
3.5 0.0356 0.2250 0.2042 0.1891 0.1858
Numerical outcomes for δi,j
0.1 0.001 0.001 0.001 0.001 −
1.49 0.001 0.001 0.001 0.001 −
2.52 0.001 0.001 0.001 0.001 −
3.49 0.001 0.001 0.001 0.001 −
Numerical outcomes for ξi,j
0.1 0.001 0.001 0.001 0.001 −
1.49 8.0909 20.25 28.506 36.173 −
2.52 19.79 31.5 40.085 48.141 −
3.49 2570.4 3687.5 4513.7 5291.1 −
3.5 − − − − −
Numerical outcomes for δi,j+1

0.1 0.001 0.001 0.001 0.001
1.49 0.001 0.001 0.001 0.001 −
2.52 0.001 0.001 0.001 0.001 −
3.49 0.001 0.001 0.001 0.001 −
3.5 − − − − −
Numerical outcomes for ξi,j+1

0.1 0.001 0.001 0.001 0.001 −
1.49 20.25 28.506 36.173 36.251 −
2.52 31.5 40.085 48.141 48.224 −
3.49 3687.5 4513.7 5291.1 5299.1 −
3.5 − − − − −
Numerical outcomes for δ̄i,j
0.1 0.001 0.001 0.001 0.001 −
1.49 0.001 0.001 0.001 0.001 −
2.52 0.001 0.001 0.001 0.001 −
3.49 0.001 0.001 0.001 0.001 −
3.5 − − − − −

Numerical outcomes for ξ̄i,j
0.1 0.001 8.0909 19.79 2570.4 −
1.49 0.001 20.25 31.5 3687.5 −
2.52 0.001 28.506 40.085 4513.7 −
3.49 0.001 36.173 48.141 5291.1 −
3.5 − − − − −
Numerical outcomes for δ̄i+1,j

0.1 0.001 0.001 0.001 0.001
1.49 0.001 0.001 0.001 0.001
2.52 0.001 0.001 0.001 0.001
3.49 0.001 0.001 0.001 0.001
3.5
Numerical outcomes for ξ̄i+1,j

0.1 0.001 8.0909 19.79 2570.4 −
1.49 0.001 20.25 31.5 3687.5 −
2.52 0.001 28.506 40.085 4513.7 −
3.49 0.001 36.173 48.141 5291.1 −
3.5 − − − − −
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Table 8. Numerical outcomes for Table 4.

(ξi, fi) 2.5 1.10 25.65

Numerical outcomes for F̆ xi
i,j

2.5 0.018402 0.022177 0.024848

11.10 0.056414 0.063433 0.068132

25.65 0.0000829 0.00011379 0.00013793

Numerical outcomes for Ḟ f
i,j

2.5 0.034137 0.08483 0.00027203

11.10 0.038833 0.091988 0.00033832

25.65 0.041931 0.096534 0.00038523

Numerical outcomes for δi,j

2.5 0.001 0.001 −
11.10 0.001 0.001 −
25.65 − − −
Numerical outcomes for ξi,j

2.5 0.001 0.001 −
11.10 2.3508 2.3508 −
25.65 − − −
Numerical outcomes for δi,j+1

2.5 0.001 0.001 −
11.10 0.001 −
25.65 0.001 − −
Numerical outcomes for ξi,j+1

2.5 0.001 0.001 −
11.10 2.3508 2.3508 −
25.65 − − −
Numerical outcomes for δ̄i,j

2.5 0.001 0.001 −
11.10 0.001 0.001 −
25.65 − − −
Numerical outcomes for ξ̄i,j

2.5 0.001 2.53 −
11.10 0.001 2.53 −
25.65 − −
Numerical outcomes for δ̄i+1,j

2.5 0.001 0.001 −
11.10 0.001 0.001 −
25.65 − − −
Numerical outcomes for ξ̄i+1,j

2.5 0.001 2.53 −
11.10 0.001 2.53 −
25.65 − − −
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Figure 5. tz view of monotone surface generated from
dataset in Table 3.

Figure 6. fz view of monotone surface generated from
dataset in Table 3.
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Figure 7. tz view of monotone surface generated from
dataset in Table 4.

Figure 8. fz view of monotone surface generated from
dataset in Table 4.

scientific phenomena. We then deduced certain constraints on both of these parameters to keep the shape
of monotonic 2D data. To estimate the derivative values, the geometric mean approach has been used. The
formulation of the monotonic C1 continuous rational cubic spline function is extended to a monotone rational
bicubic partially blended surface, where the data are guaranteed to be organized over a rectangular grid. Once
again the parameters in the elucidation of the bicubic partially blended functions have been constrained for
monotonicity. Eye-catching and appealing curves and surfaces are then acquired that can be used in systems
that require such models.
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