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Abstract This study has been prepared to investigate the changes in the dynamics of blood
flow through a stenosed tapered artery owing to a change in structural parameter λ of thixotropic
model. Following the time-evolution range of this parameter as [0,1] for transient shear flows,
the effects of λ on axial velocity, shear stress, flow rate and resistance to flow have been probed.
Analytical expressions of axial velocity and shear stress have been obtained along with numerical
computation of pressure gradient by means of continuity equation. The evolution of system with
respect to time, t has been investigated in order to study the changes in dynamics of flow at certain
times. A comparison of axial velocity profiles for some values of λ has been made to obtain profiles
for Power-law fluid and Newtonian fluid model. The inclination of velocity profiles for 0.5 ≤ λ ≤ 1
towards experimental velocity profiles has been suggested by means of comparison with available
results in history. This analysis has also been prepared as a foundational step of construction of an
artificial channel with constriction and of adaptation of most suitable modelling of blood flow such
that the findings of the parameter λ and its influence on flow can be incorporated experimentally
for induction of decreased wall stress.
Key Words: Thixotropy, Blood Flow, Time-dependence, Constricted Channel, Axial
Velocity, Yield Stress

I. INTRODUCTION

It has been established that one of the numerous
causes to alter and influence the arterial blood rheology
is development of stenosis. The progression of stenosis
not only advances the vascular malfunction but it also
adds to the additional complexity while diseased blood
through this vessel is considered. A good number of
experimental, theoretical and computational investiga-
tions of flow modelling through stenosed arteries has
profoundly strengthened the understanding of various
models’ parameters and conditions affecting flow in
substantial ways. Young [1, 2] and Young & Tsai [3]
investigated the effects of time-dependent stenosis on
flow through a tube and steady blood flow charac-
teristics through stenosed arteries. Pulsatile flow of
blood through various stenosed mediums taking into
account body acceleration and magnetic field effects
using Newtonian modelling has been probed by [4–13].
An analytical demonstration of flow pattern dependence
on geometry of stenosed channel and Reynolds number
was made by Smith [14]. A computational scheme was
introduced by Deshpande et al. [15] to study steady
Newtonian flow through an axisymmetric vascular
stenosis.

Due to structural limitation exhibited by stenosis
and low shear-rate blood flow in critical region, an
analysis of non-Newtonian blood flow modelling was
imperative. Many aspects of non-Newtonian behaviour
along with various geometrical description of stenosis

have been discussed in detail by considering blood as
Casson fluid, Power-law fluid and Herschel-Bulkley fluid
[16–28]. In addition to being non-Newtonian, blood
is also characterised by viscoplasticity and thixotropy.
These characteristics have been manifested in dense
suspension of red blood cells, plasma, leucocytes and
platelets, etc. The properties of aggregation of red blood
cells at low shear-rates and their disintegration during
flow refers to shear-thinning characteristics of blood and
yield stress. Aggregation of red blood cells in rouleaux
structure at low shear-rate and then breakdown of this
state during flow or at high shear-rates explains the
dependence of flow on varying time scales, thus referring
to time-dependent viscosity (thixotropy) of blood. To
include the characteristics of thixotropy in blood flow
rheology, some experimental investigations were carried
out by Bureau, Dintenfass, Cokelet et al., Chien et
al., Merril & Pelletier and Thurston [29–38]. These
were mostly focused on simple shear steady-state flow,
demonstrating the existence of blood yield stress and
transition of non-Newtonian flow into Newtonian flow at
higher shear rates. Though steady-state low shear rate
study gave good insight into non-Newtonian, viscoplastic
thixotropic characteristics of blood but its limitation to
describe complex thixotropic and viscoelastic properties
was a major drawback.

Development of some non-Newtonian models
such as Casson and Herschel-Bulkley models were
preferred to Power-law fluid model (without yield stress)
to incorporate the characteristics of viscoelasticity and
viscoplasticity of blood along with thixotropy [39–41].
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But due to viscoelastic origin of exact equations, they
were not able to interpret the characteristics of blood
such as yield stress. Some significant results regarding
the demonstration of all above properties of blood were
presented by Anand & Rajagopal and Ananad et al.
[42, 43] using Oldroyd-B model accounting for only zero
shear-rate viscosity or smooth transitions of viscosity
at low shear-rates. Regarding the study of blood flow
through stenosed arteries, some profound results were
obtained. A multiple-stenosis study presenting one-
dimensional analysis of non-Newtonian blood flow using
Casson model was developed by Pincombe et al. [44].
Similarity of Herschel-Bulkley and Casson modelling
of non-Newtonian blood flow over the validity range
of Casson model was discussed by Blair and Spanner
[45]. Priyadharshini and Ponalagusamy [46] investigated
many physiological properties of blood flow through
stenosed and dilated arteries using Herschel-Bulkley
model. Considering the bifurcating nature of blood
vessels at frequent intervals and varying diameters of
channel, Whitemore [47], Manton [48] and Mandal [49]
have presented analysis of tapering effects on flow and
structural time dependence of stenosis.

To explicitly account for the characteristics of
yield stress in a viscoplastic system, some thixotropic
models were generated. Mujumdar et al. [50] and
Dullaert [51] have expressed characteristics of thixotropy
using some structural models at phenomenological level.
But Mewis and Wagner [52] have explicitly described a
thixotropic model linking a structural parameter to yield
stress and time-dependent viscosity. In this description
of model, thixotropy is accounted for by time evolu-
tion of the structural parameter that further satisfied
the relaxation equation. This relaxation equation is
composed of structure recovery part (yield stress) and
shear induced structure part referring to thixotropy. An
experimental insight regarding blood rheology by Apos-
tolidis and Beris [53] validated that Casson viscoplastic
model was the most suitable one for steady state shear
flow but its limitation was already acknowledged in
terms of missing out on transient and time-dependent
nature of colloidal blood suspension by Mewis [54]. Also
due to the limitation of Herschel-Bulkley and Bingham
models [55] to fully capitalize on elasticity, they were
not considered among the most suitable for blood flow
description.

Most recently, considering the lack of attempts
to describe the transient blood rheology and systemat-
ically approach the concept of higher shear-rate flow,
Apostolidis et al. [56] have modified the Delaware model,
developed by Mujumdar el al. [50] for a thixotropic
concentrated ceramic suspension. In this model, a
single-structural parameter λ in constitutive equation
is considered to be linking yield stress and thixotropy.

In a subsequent development of thixotropic model, the
elastic contribution to shear stress was substituted by
a moduls function of this parameter times an elastic
strain, where the evolution of elastic strain was de-
scribed in terms of imposed shear-rate. Apostolidis and
Anthony [53] further modified this thixotropic model
by employing a relation between λ, zero shear-rate and
infinite shear-rate limiting value for maximum elastic
strain supported within the material. This proposed
relation led to a remarkable result relating the factors
of plastic strain and shear rate. The validation of this
model was reached by reducing this models’ results to
Casson fluid steady-state results for low shear-rates. It
was also observed that in the limit of higher shear-rates,
thixotropic model was reduced to Newtonian fluid. Thus,
an approach of linking a parameter (λ), characterizing
the material, with yield stress and thixotropy, such that
evolution of this parameter is decomposed into recovery
and structure breakdown parts, reflecting on transient
flow properties of blood at both higher and lower
shear-rates. Modification of thixotropic model done by
Apostolidis et al. [56] employing structural parameter λ
signalled to obtain transient shear flow mechanism and
deduction of steady-state shear flow results for limiting
values of λ. However, validation of this approach using
phenomenological equations by obtaining exact results
matching the experimental data was yet to be done.
To the best of our knowledge, investigation of transient
blood flow dynamics using thixotropic model has not
been carried out before. .

In the present article, the dynamics of non-
Newtonian blood flow through stenosed artery have
been discussed in conjunction with single structural
parameter ‘λ’ of thixotropic model. To what extent, flow
properties are influenced by this parameter has been
thoroughly investigated. Following [56], this parameter’s
range as it evolves in time has been chosen as [0, 1] for
which limiting cases have been derived on both ends.
An analytical expression of axial velocity has been
obtained. However, pressure gradient has been obtained
numerically using Matlab. The unsteady nature of
blood flow has been probed and discussed by means
of analytical expressions as well as by using numerical
data. This analysis has also been motivated to observe
dynamical differences caused by the parameter λ here as
compared to the Herschel-Bulkley fluid modelling [46].
Physical characteristics of blood flow in conjunction with
the effects of λ on them have been discussed through
graphical illustration.

II. GEOMETRY OF FLOW

We consider a cylindrical coordinate system (r, θ, z) to
depict blood flow through an elastic tapered vessel with
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Fig. 1A 2-dimensional stenosed, tapered channel

mild stenosis such that r is taken along the radial direc-
tion of the vessel, θ to be the circumferential direction
and z-axis is considered to be along the axis of channel,
perpendicular to the radial axis. The unsteady, incom-
pressible and non-Newtonian blood through this tapered
vessel is characterised by Thixotropic modelling . A 2D-
geometric depiction of elastic arterial segment has been
included where tapering of vessel is denoted by an angle,
different from circumferential direction. The geometry of
stenosed artery is described as [49]

R̄(z, t) =
{ ((m′z +R0)− γ

m
′ secφ(z−d)

l02
4 −γ

2
m
′ sin

2φ
(l0 − (z − d))

)
η̄(t),

for d ≤ z ≤ d+ l0

(m′z +R0)η̄(t), Otherwise

(1)

where R̄(z, t) represents the radius of tapered artery
in the stenotic region, l0 length of stenosis, d position
of stenosis, R0 constant radius of non-tapered artery
in non-stenotic region, φ angle of tapering (φ < 0
for converging tapering, φ > 0 for diverging tapering
and φ = 0 for no-tapering), γm′ height of stenosis at
z = d + l0

2 (with no tapering) and m
′ = tanφ denotes

the slope of tapering.

Also, η̄(t) is described as

η̄(t) = 1− g{cos(ωt)− 1}e−gωt

where ω = 2πf defines angular frequency such that f
represents pulse frequency and g is a constant defining
amplitude of small oscillations.

III. MATHEMATICAL MODELLING

The governing equations of momentum for r-
component and z-component and the continuity equa-
tion corresponding to 2-dimensional, unsteady, non-
Newtonian and axisymmetric flow through tapered
artery with stenosis have been described as

ρ

(
∂u

∂t
+ u

∂u

∂r
+ w

∂u

∂z

)
= −

(
1
r

∂(rτrr)
∂r

+ ∂(τzr)
∂z

)
− ∂p

∂r
,

(2)

ρ

(
∂w

∂t
+ u

∂w

∂r
+ w

∂w

∂z

)
= −

(
1
r

∂(rτrz)
∂r

+ ∂(τzz)
∂z

)
− ∂p

∂z
,

(3)

∂u

∂r
+ u

r
+ ∂w

∂z
= 0, (4)

where u = u(r, z, t) and w = w(r, z, t) are radial and
axial components of velocity. And ρ describes density of
flow.
The constitutive equations is [52, 53, 56]

τ = λτy + (1− λ)k̄(−γ̇)n, τ > τy (5)

where τ = |τrz| = −τrz and 0 < λ < 1. And

γ̇ = 0, τ ≤ τy (6)

Also, τ ,γ̇, τy, k̄ and n are shear stress, rate of deforma-
tion, yield stress, consistency index and flow behaviour
index, respectively.

The corresponding boundary conditions are

w(r, z, t) = 0 at r = R̄(z, t); τrz(r, z, t) = 0 at r = 0
(7)

Following non-dimensional variables are considered

t∗ = w0t
l , z

∗ = z
l , w

∗ = w
w0
, u∗ = u

u0
, p∗ = p

p0
, (8)

w0 = u0l
R0
, t0 = l

w0
, τ∗rz = R0τrz

µw0
, τ∗zz = lτzz

µw0
,

p0 = µlw0
R2

0
, R∗ = R̄

R0
, d∗ = d

l , l
∗
0 = l0

l , ω
∗ = t0ω

2π ,

γ∗
m′

= γ
m
′

R0
, m = m

′
l

R0
, Q∗ = Q̄

w0R2
0
, Re = ρR0w0

µ ,

τ∗y = R0τy

µw0
, K = k̄

µ

(
w0
R0

)n−1
,

where ′l′ is the length of artery. Using non-dimensional
quantities (8), very small Reynolds number, Re, and

R0 � l
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we obtain (ignoring ∗)

−∂p
∂z

= 1
r

∂(rτrz)
∂r

, (9)

∂p

∂r
= 0, (10)

τ = λτy + (1− λ)K
(
− ∂w

∂r

)n
, (11)

∂u

∂r
+ u

r
+ ∂w

∂z
= 0, (12)

with boundary conditions

w(r, z, t) = 0 at r = R(z, t); τrz(r, z, t) = 0 at r = 0.
(13)

Also, the wall geometry is

R(z, t) =
{

(mz + 1)− 4γmsecφ(z − d)(l0 − (z − d))
l20

}
η(t),

(14)

for d ≤ z ≤ d+ l0, where

η(t) = 1− g{cos(2πωt)− 1}e−2πgωt (15)

IV. ANALYTICAL EXPRESSIONS OF
VELOCITY AND WALL SHEAR STRESS

Integrating Eq. (12) with respect to r from r = 0 to
r = R(z, t), we obtain

R(z, t)∂R(z, t)
∂t

+ ∂

∂z

∫ R

0
rw(r, z, t)dr = 0 (16)

We make a coordinate transformation [49] using r
R(z,t) =

x and obtain from Eqs. (9), (10), (11) and (16) the fol-
lowing

−∂p
∂z

= 1
xR(z, t)

∂(xτxz)
∂x

, (17)

∂p

∂x
= 0, (18)

τ = λτy + (1− λ)K
Rn(z, t)

(
− ∂w

∂x

)n
(19)

R(z, t)∂R(z, t)
∂t

+ ∂

∂z

(
R2(z, t)

∫ 1

0
xw(x, z, t)dx

)
= 0

(20)

with boundary conditions

w(x, z, t) = 0 at x = 1; τxz(x, z, t) = 0 at x = 0 (21)

Also, we have

∂w

∂x
= 0, 0 ≤ x ≤ Rpc (22)

Rpc, being the radius of plug core region.

Solving Eq. (17) with (21)2, we obtain an expression
of shear stress

τxz = xR(z, t)
2

(
− ∂p

∂z

)
(23)

And the expression for wall shear stress (x = 1) is

τws = R(z, t)
2

(
− ∂p

∂z

)
(24)

Solving Eq. (19) with (21)1 and (23), we get an expres-
sion for axial velocity

w(x, z, t) = nR(z, t)
(n+ 1)(M + 2λτy)(2K(1− λ)) 1

n )
×

{
M

n+1
n −

(
Mx+ 2λτy(x− 1)

)n+1
n
}

(25)

where M = R(z, t)(−∂p∂z )− 2λτy and Rpc ≤ x ≤ R(z, t).
And the velocity in plug core region is

wpc(x, z, t) = nR(z, t)
(n+ 1)(M + 2λτy)(2K(1− λ)) 1

n

{
M

n+1
n

}
(26)

for 0 < x ≤ Rpc and Rpc = 2λτy

R(z,t)−∂p
∂z

.

These expressions of axial velocity have been writ-
ten in the form to obtain approximations for pressure
gradient easily.

We write Eq. (20) in the form

1
2
∂A(z, t)
∂t

+ ∂

∂z

(
A(z, t)

∫ 1

0
xw(x, z, t)dx

)
= 0 (27)

where A(z, t) = R2(z, t).

Volume flow-rate is defined as

Q̄ = 2π
∫ r=R̄(z,t)

r=0
rw(r, z, t)dr (28)
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which in non-dimensional form (ignoring ∗) can be writ-
ten as

Q(z, t) = 2π
∫ r=R(z,t)

r=0
rw(r, z, t)dr (29)

Eq. (29) in terms of x coordinate is

Q(z, t) = 2π A(z, t)
∫ 1

0
xw(x, z, t)dx (30)

V. NUMERICAL ANALYSIS OF
PRESSURE-GRADIENT

We use Eq. (27) to obtain an equation of pressure-
gradient. Integrating Eq. (27) with respect to z, we get

Q(z, t) = −π
∫
∂A(z, t)
∂t

dz + C(t) (31)

To get an expression of C(t), the starting pressure-
gradient at z = 0 has been set to ’1’. This pressure-
gradient at the start of channel is set randomly but it
is also very well in consistency with required pressure-
gradient for flow propagation in the artery. Using initial
pressure-gradient and Eqs. (30) and (31), we obtain

C(t) = 2πn
2(n+ 1)(2n+ 1)(3n+ 1)(2K(1− λ)) 1

n

×

{
2n2(T (t)− 2λτy)

3n+1
n − 2n(3n+ 1)T (t)(T (t)− 2λτy)

2n+1
n

+(2n+ 1)(3n+ 1)T 2(t)(T (t)− 2λτy)
n+1

n

}
(32)

where

T (t) = R(z, t)|z=0 =
{

1 + 4γmsecφ(d)(l0 + d)
l20

}
η(t),

(33)

for d ≤ z ≤ d+ l0 and η(t) is given by Eq. (15).

Simplifying Eq. (31) with Eqs. (14), (30), (32)
and (33), we obtain an expression

(n+ 1)(2n+ 1)M
3n+1

n + 4λτy(n+ 1)(3n+ 1)M
2n+1

n +

+4λ2τ2
y (2n+ 1)(3n+ 1)M

n+1
n = ζ(n, λ,K)(M + 2λτy)3

2πR3(z) ×

{
C(t)− 2π

l40

(
a2z5

5 + 2abz4

4 + (2ac+ b2)z3

3 + bcz2 + c2z

)
×

×η(t)η̇(t)
}

(34)

where

ζ(n, λ,K) = 2(n+ 1)(2n+ 1)(3n+ 1)(2K(1− λ)) 1
n

n
,

M = R(z, t)(−∂p
∂z

)− 2λτy,

a = 4γm secφ,

b = ml20 − 4γm secφ(l0 + 2d),

c = 4γm secφ(l0d+ d2) + l20

Eq. (34) has been numerically solved using MATLAB
for values of −∂p∂z with the help of Eq. (32). We have
used Matlab solver ’fzero’ to calculate non-zero root M
of non-linear Eq. (34) using given values of time, posi-
tion, characteristic parameter, yield stress, consistency
index, flow behaviour index, amplitude of small oscil-
lation, oscillating frequency, tapering angle and length
of stenosis. Determination of M leads to numerical
computation of pressure-gradient, imposed at the given
position of stenosis. Numerical values of M can also be
obtained through individual computation of indexing
parametric function ζ(n, λ,K) and time-induced arterial
variations (a, b, c). The structure of our solutions for
pressure-gradient was defined within the region bounded
by Rpc (plug-core region radius) and R(z, t). For better
projection of solutions in graphs, we made use of Matlab
optimest (optimplotx, optimplotfval). To track the
response and progress of varying physical quantities
through graphs, we have also used optimization Matlab
solver (fminsearch). Finally, numerically computed
values of pressure-gradient were incorporated in Eqs.
(23-26, 30, 35) to obtain shear stress, axial velocity, flow
rate and flow resistance.

Resistance to flow can be obtained using

f =
∫ z

0

(
− ∂p

∂z

)
Q

dz (35)

with the help of Eqs. (30) and (34).

The Table 1. has been constructed to display
the effects of varying yield stress on pressure gradient
at a given time and position of stenosis for the case
of converging tapering. In general, pressure-gradient is
decreasing with increase in yield stress. However, it is
observed that pressure-gradient decreases for smaller
λ-values in the range 0 ≤ λ ≤ 1. Thus, larger values of λ
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in Thixotropic modelling tend to play a role in increasing
the velocity of fluid through constriction. Though com-
patibility of this pressure-gradient data corresponding to
changing yield stress with experimental data has yet to
be studied but continuous decline in pressure-gradient
with increasing yield stress is consistent with the fact
that the stronger yielding factors hinder the course of
flow.

VI. DISCUSSION

The following numerical values of constants have been
considered for graphical analysis

l = 50, l0 = 16, d = 20, γm = 0.32, ω = 6, g = 0.1,
R0 = 0.8, n = 0.639

Also, some of the above numerical values have been
chosen [49] in order to verify the results for Power-law
model through our model’s approximation.

Shear stress has been profiled against radial
distances in Figs. 2-7 for varying λ at a position of
stenosis, z = 28. These graphs have been obtained for
converging tapering and varying time. It is observed that
shear stress increases steadily corresponding to increase
in radial distances, reaching to its maximum value near
the boundary wall of stenosed artery. However, a keen
observation of these graphs shows that the shear stress
in the beginning decreases with increasing time and
then it starts increasing, thus generating an oscillating
pattern with respect to time. The phenomenon of
decrease and increase of stress in time owes to the
variation of pressure gradient accordingly. The gradual
rise in pressure gradient after some time is required by
fluid to flow in constricting part of the channel. Along
with change in time, λ-values have also been observed
to cause a phenomenal change in shear stress. For
increasing values of λ, the shear stress increases and vice
versa. Interestingly, it can be observed in these graphs
that with increasing time, the difference in magnitude
of shear stress for different values of λ begin to reduce
causing the curves to coincide for all values of λ (Fig.
7).

Figs. 8-10 describe the variation of magnitude
of shear stress at a given time and position of stenosis
for converging, diverging and no-tapering of channel. It
has been noted that shear stress for converging tapering
exceeds the shear stress for diverging and no tapering.
The fact that higher pressure gradient is required for
fluid to pass through constricting part of the channel
contributes to higher stress imposed on boundary wall.
A direct relation of shear stress and the parameter λ has
also been displayed in these images.

Figs. 11-13 express how axial velocity is vary-
ing with change in radial distance at a stenosis position
z = 28 and a given time. The change in velocity of
fluid near the boundary wall has also been expressed for
changing λ-values. Owing to higher pressure gradient,
required for blood to pass through constriction, the
velocity for converging tapering is higher than for the
cases of diverging and no tapering. In addition, these
graphs show that no-slip boundary condition is met for
all three cases of converging, diverging and no-tapering.
A distinct change in the magnitude of axial velocity has
been observed corresponding to the changes in paramet-
ric value λ. The axial velocity decreases considerably for
smaller values of λ.

In Figs. 14-16, a comparison of axial velocity
has been made against radial distance for Power-law
fluid, Newtonian fluid models with Thixotropic fluid
model for the cases of converging, diverging and no-
tapering at the position z = 28 and time t = 0.45. It is
noted that the magnitude of axial velocity for Power-law
fluid is smallest and magnitude of axial velocity for
Newtonian fluid is almost coinciding with Thixotropic
fluid for λ = 0.1. Observing the substantial increase in
axial velocity for higher λ-values and the comparison
with Herschel-Bulkley model study [46], it can be stated
that our Thixotropic fluid model velocity can match
experimental axial velocity for higher values of λ. In
these images, the flatness of bottom curves correspond-
ing to Newtonian, Power-law and Thixotropic model
for λ = 0.1 has been merely due to higher magnitude
differences of axial velocity in comparison to magnitude
of axial velocity for Thixotropic model for higher values
of λ (= 0.5, 0.7).

Figs. 17-19 show the changes in flow resis-
tance against time for converging tapering at a position
of stenosis. The flow resistance increases sharply at
earlier times and then it begins to decrease slowly,
approaching a certain magnitude after a while. The
earlier rise in flow resistance can be associated with
higher pressure-gradient, required initially for fluid to
propagate through compounding constriction and the
later decline in flow resistance is contributed by lesser
pressure-gradient and slow movement of channel wall
with increasing time. It is noted that the magnitude of
resistance to flow increases for smaller values of λ and
vice versa.

Figs. 20-22 illustrate the variation of flow rate
corresponding to changes in pressure gradient for
different values of λ . A slight non-linear increase in
flow rate with increase in pressure gradient has been
observed. The highest flow rate curve for the case of
diverging tapering is reflective of wider channel, giving
way to substantial fluid to propagate, in comparison to
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the straight or narrowing channel (converging tapering)
that hinders the flow. It is also noted that flow rate
decreases considerably for small values of λ and increases
for higher values of λ. This phenomenal finding also sits
well with lesser flow resistance for bigger λ-values.

Figs. 23-25 reflect on effects of varying yield
stress on axial velocity of fluid for corresponding changes
in radial distance. These figures demonstrate the
increase in magnitude of axial velocity with decrease
in yield stress for the case of converging tapering. It
is interesting to note that for small values of λ, the
difference in magnitude of axial velocity at various radial
distances for different values of yield stress is smaller as
compared to magnitude of velocity for higher values of
λ. This fact is manifested in the curves (for different
yield stress values) being farther apart for the cases of
λ = 0.5, 0.7 than for λ = 0.1. These images also show
the verification of no-slip boundary condition for axial
velocity.

VII. CONCLUSIONS

The current analysis has been prepared to study the
variation of dynamics of blood flow through a stenosed
tapered artery due to a structural parameter λ of
Thixotropic model. The inclusion of time parameter has
allowed to analyse the model’s suitability in a broader
scheme. Following points of understanding have been
observed through analytical and numerical computations
in the simulated region Rpc ≤ x ≤ R(z, t):

1. The analytical expression of shear stress depends on
time t, radial distance x and numerically obtained values
of pressure gradient. The shear stress at a stenosed
position of artery continues to increase with respect to
radial distance, reaching higher magnitude near the wall
of vessel. However, an observation of data points of shear
stress with respect to time demonstrates an increasing
and decreasing pattern, hinting at oscillating variation
of shear stress. The dependence of shear stress on model
parameter λ has also been studied to show that shear
stress increases for increasing values of λ in the range
0 < λ < 1 and vice versa. An analysis of classification
of shear stress on basis of diverging, converging and
no-tapering artery shows that higher magnitude of shear
stress is attained for converging tapering as compared
to the other two cases.

2. An expression of axial velocity has been ob-
tained by means of analytical computations. The
observation of changes in axial velocity against radial
distance, more specifically near the wall of vessel, was
made. Due to constriction of channel, the axial velocity

continues to decrease, approaching zero magnitude at the
boundary wall of vessel. However, higher axial velocity
for converging tapering as compared to other cases is
explained by increased pressure-gradient, required for
flow propagation through narrow passage. A direct
dependence of axial velocity on parameter λ has been
observed. The magnitude of velocity increases with
increase in λ and vice versa.

3. The approximation of velocity for Power-law
fluid model and Newtonian-fluid model was obtained
by considering λ → 0 and λ → 0 with µ = 0.035,
respectively for converging, diverging and no-tapering
of artery. Confirming the fact of declining magnitude
of velocity for decreasing values of λ, the profile of
axial velocity for Newtonian fluid was observed to
be below the profiles for λ = 0.7 and λ = 0.5 and,
almost coinciding with the profile for λ = 0.1. Through
graphical illustration, it is shown that, in comparison to
Herschel-Bulkley fluid model, Thixotropic fluid model
can help to compare experimental conclusions with
theoretical results by choosing right λ-value such that
its influence on pressure-gradient, velocity, shear stress
and flow resistance can be studied to define better blood
flow mechanism.

4. A comparison with axial velocity profiles in figure
3 [46] shows that our velocity profile for 0.1 ≤ λ ≤ 0.5
(say) can be considered more closer to to the experimen-
tal observations as compared to Herschel-Bulkley model.

5. For the case of converging tapering of artery,
resistance to flow increases sharply at the face of stenosis
and then decreases due to combination of lesser pressure-
gradient and slower movement of vessel wall with time..
Also resistance to flow decreases for increasing values of
λ and vice versa.

6. The existence of a direct relation between pressure-
gradient and flow rate has been verified in accordance
with available results [46, 49]. For the case of fixed yield
stress, unlike the case of flow resistance, the flow rate is
directly affected by parameter λ that is it decreases for
decreasing values of λ and vice versa.

7. The study of effects of rising yield stress con-
firms the decreased magnitude of axial velocity for
converging tapering. The effects of parameter λ on these
graphs are more evident because of higher magnitude of
velocity in the range 0.5 ≤ λ < 1.
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Table 1. Values of pressure-gradient −∂p
∂z

for varying yield stress τy, time t=0.45, position
z=28 and chracteristic parameter λ

λ = 0.1 λ = 0.5 λ = 0.7
τy −∂p

∂z
−∂p

∂z
−∂p

∂z

0.05 2.3210 3.9613 4.4618
0.1 2.3072 3.9110 4.3962
0.4 2.2239 3.6068 4.0016
0.8 2.1109 3.1955 3.4737
1.2 1.2602 2.7756 2.9437
1.6 1.8769 2.3437 2.4104
2.0 1.7552 1.8935 1.8704
2.4 1.6297 1.4111 1.3124
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Fig. 10Wall shear stress vs radial distances for φ = 0.1, 0, -0.1
at z=28, τy = 1.2, t=0.45, K=1.2, λ = 0.1
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Fig. 12Axial velocity vs radial distances for φ = 0.1, 0, -0.1
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λ = 0.7, 0.5, Power Law model (λ→ 0) and Newtonian fluid
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Fig. 19Flow resistance vs time for φ = −0.1 at z=28, τy = 1.2,
K=1.2, λ = 0.1
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Fig. 20Flow rate vs pressure gradient for φ = −0.1, 0, 0.1
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Fig. 24Axial velocity vs radial distances (near wall) for varying shear
stress at z=28, t=0.45, K=1.2, φ = −0.1, λ = 0.5
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