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Abstract

The Bernstein mode instability plays a vital role in tokamak
and in space plasma regimes like Jovian planets and interstellar
spaces. In the present manuscript, we have introduced the contri-
bution of Ions along with electrons with the help of ring velocity
distribution function. We have concluded that the ions play a
signi�cant role in shifting the threshold frequency value towards
lower wavelength regime. On comparison with electron Bernstein
mode, it is concluded that the electron mode becomes unstable
for higher wavelength but on contrary ion Bernstein mode tries to
be more stable at low frequency. The growth rate has been calcu-
lated analytically as well as numerically. The graphical compar-
ison provide us a detailed view of unstable regions. The growth
rates demonstrate that the mode becomes more unstable, while
increasing the value of frequency ratio (!pi=
c)2:

1 Introduction

The subject of heating e¤ects of magnetized plasmas is a deep-rooted
topic, from early 1950s with the start of controlled fusion program. The
Bernstein mode can be completely absorbed on the wings of the cy-
clotron resonance [1], [2]. Ion Bernstein wave i.e., a hot plasma wave,
utilizes to carry the radio frequency power to heat the tokamak reactor
core. Electron Bernstein wave heating and current driven in spherical
tokamaks has been explored because the high density and low magnetic
�eld con�guration of these machines make the plasma inaccessible to the
Ordinary and Extraordinary modes which are used in standard tokamaks
[3].
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The problem of perpendicularly propagated electron oscillations with
external magnetic �eld has been discussed by Gross [4] and Sen [5]. Gross
alleged to �nd Landau damping whose wavelength is less than the stan-
dard Debye length. Later Bernstein [6] �nd some errors in Gross�s [4]
conclusion. He calculated the Bernstein mode with Maxwellian distrib-
ution function and observed its stability analysis. That work was also
treated with the fully ionized small amplitude oscillations in collisionless
plasma with the presence of external magnetic �eld.
Crawford et al. [7] formulated the dispersion relation of Bernstein

mode with delta function i.e., transverse electron velocity distribution.
This formulation shows that may be unstable wave lead the growing
wave phenomena in �nite plasmas due to the interaction with slow wave
circuits. Even in an in�nite plasma, modes couple with each other, lead-
ing to wave growth. Later Crawford [8] has predicted theoretically that
cyclotron harmonic waves should propagate in warm plasma con�ned
by a magnetic �eld, which show cuto¤ and resonance behavior associ-
ated with harmonics of the cyclotron frequency and the upper hybrid
resonance frequency.
Ram et al. [9] proved that the Bernstein mode can be excited by

mode conversion of either an Extraordinary mode or an Ordinary mode.
Ketson et al. [10], used weakly relativistic plasmas for producing disper-
sion relation for the electrostatic Bernstein mode with full momentum
dependence of cyclotron frequency. Later Laing et al. [11] showed that
these modes are not completely undamped but have a small negative
de�nite imaginary component closest to the rest cyclotron harmonic.
Cairns et al. [1] explained that the Bernstein wave possess high

perpendicular wave numbers which reduce trapping. Efthimion [12] ex-
plained that electron Bernstein waves have the potential to heat and
drive current for high-� plasmas. Deeba et al. [13] has also calcu-
lated electron Bernstein mode with (r,q) distribution function. Ali et
al. [14] investigated Bernstein mode in relativistic degenerate plasmas.
He discussed the cases in non-relativistic and ultra relativistic regime
and proved that Bernstein waves and Upper Hybrid oscillations can be
modi�ed by increasing the number density.
Crawford [7] and Leuterer [15] reported �rst time the presence of

electron Bernstein wave in a laboratory plasma in 1965 and 1969 respec-
tively. Such waves have also been observed by spacecraft emitted from
the magnetized plasma of Jupiter moon, Io. [16] Mace [17] studied the
electron Bernstein wave for isotropic kappa distribution function.
Bernstein waves which are electrostatic in nature observed in the elec-

tron cyclotron harmonic frequency range, propagate perpendicular to the
ambient magnetic �eld. These waves have been observed in Li neutral
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gas release in the solar wind. Meyer-Vernet et al. [18] discussed that the
weakly banded emission from the Jupiter magnetosphere and between
consecutive gyroharmonics frequency is quasithermal noise in Bernstein
wave. Recent observations have been observed by the Voyager spacecraft
of electrostatic waves in Jupiter magnetosphere [19]. The electrostatic
electron and ion cyclotron harmonic waves have been observed through
Voyager II in magnetosphere of Neptune. Electron Bernstein wave gen-
erated by a loss cone distribution is scrambled to Neptune parameters
and a comparison of theory with the observed electron �ux indicates
good agreement [20]. These results were based on Voyager data at the
outer planets. Bernhard et al. [21] observed the transmission of a high
power electromagnetic waves from the HAARP facility in Alaska.
It was assumed that Maxwellian plasma always supports the Bern-

stein wave, so that the real frequency can be given by the classical Bern-
stein wave solutions. But the growth rate can determined by very small
number of electrons so many types of perpendicular distribution func-
tions can be used [22]. For f0 we will use the ring distribution function
[23, 24, 27], in weakly collisional plasma the ring distribution may be
a source of free energy for instabilities, due to e¤ective temperature
anisotropies and streaming [25].

f0 =
1

2�v̂?
�(v? � v̂?)�(v̂k � vk) (1)

In literature the distribution function has been used for relativistic
calculations of Bernstein wave [22, 23, 24, 26]. But evidence of non
relativistic formulation is also available [22, 27]. As the parallel part of
distribution function is participating in relativistic version of bernstein
mode in cold plasma regime but it has no contribution for non relativistic
calculation [22].
The layout of paper is as follows: In section II, we use the kinetic

theory to calculate the general dispersion relation for magnetized plasma.
We derive the analytical expressions for dielectric constant by using ring
distribution functions. A brief summary of results and discussions is
given in section III.

2 Mathematical Formulation

We follow the general formalism of kinetic theory to evaluate the instabil-
ity of Bernstein wave in hot magnetized plasma. For Bernstein wave the
relevant component of generalized dielectric tensor is [26, 28, 29, 30, 31]
,

3



�xx = 1�
X
�

2�

s
m!2p�

Z 1

�1
dvk

Z 1

0

v?dv?�1

1X
n=�1

Mxx

(s+ ikkvk + in!c�)

(2)

WhereMxx =
n2

z2�
v? [Jn(z�)]

2 , z� =
k?v?
!c�

and �1 =
@ f0
@ v?
+
i kk
s

�
vk

@ f0
@ v?

� v? @ f0@ vk

�
, s=-i!
Since we are dealing with perpendicular propagation so kk = 0 so

�1 =
@ f0
@ v?
: Where !p� and !c� are plasma and gyro frequencies respec-

tively and � shows the species i.e., electron and ion as well.
By simplifying we get

1 +
X
�

4�!2p�m
2

k2?

1X
n=1

n2!2c�
(!2 � n2!2c�)

Z 1

�1
dvk

Z 1

0

dv?J
2
n(z�)

@f0
@v?

= 0 (3)

Where f0 is distribution function and in this case the ring distribution
function has been used

f0 =
1

2�v̂?
�(v? � v̂?)�(v̂k � vk)

As the parallel streaming has no e¤ect on nonrelativistic ion Bern-
stein mode so we obtain the dispersion relation for Bernstein wave after
performing simple integrations, as the
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At lower frequency range, the harmonics of the ion cyclotron fre-
quency, with similar properties exhibits as that of electron Bernstein
wave. The ion contribution in dispersion relation can be neglected at
high frequency range, but the electron contribution persist even at low
frequencies. So there is not a complete symmetry between the two types
of Bernstein waves [30]. Opening the sum over species
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0
n (ẑe)
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0
n (ẑi)
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Where !c represents the electron gyro frequency and 
c is ion gyro
frequency, !2pe and !

2
pi are plasma frequencies for electrons and ions

respectively. The value of J 0n (ẑi;e) as ẑi;e ! 0 is given as J 0n (ẑi;e) =
n

ẑi;e
Jn (ẑi;e) ; for electrons ẑe =

k?v̂?
!c

and for ions ẑi =
k?v̂?

c

, By applying

the small ẑ argument expansion as ẑ ! 0; and according to Chen [30]
we consider only n = 1 term

1 =
!2pe
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+
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!2

1X
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0
n (ẑi)

ẑi
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By applying these approximation, �rst part of eqn. 6 , reduces to
upper hybrid mode as explained by Bashir et al. [22]. By following Chen
[30] separate out the n = 1 term for Ion Bernstein mode, we obtain

1 =
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+
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!2 � 
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+
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!2

1X
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This result is in good agreement with Maxwellian results of Chen
[30].
.

3 Results and discussion

By numerically solving eqn. 7, we can separate the real and imaginary
parts of the wave as ! = !r + i!i. The imaginary part plays a signi�-
cant role in estimating the threshold value and determining the purely
growing mode i.e:, !r = 0 [32, 33, 34].
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Fig. 1: The relation of !r=
c and �z for !2pi=

2
c = 11:0:Where

�z=k?v̂?=
c;is function of wavelength and magnetic �eld.

The �g.1 shows the stability of the ion Bernstein mode for !r=
c vs
ẑi = k?v̂?=
c;showing that at !2pi=


2
c=11.0 the wave is stable but �g. 2

shows that the variation of frequency range in real part of wave, which
create intersection of branches. The �rst intersection point can easily
be observed at !2pi=


2
c=11.5, this is the threshold value for instability of

the ion Bernstein wave. During overlapping of wave branches in real fre-
quency, the wave becomes unstable and gaps are generated between the
harmonics which was discussed by Bashir et al.[22]. According to Bashir
et al [22] and Crawford [35], the threshold point for electron Bernstein
wave is !2pe=!

2
c =6.63 while for ion Bernstein wave the threshold value is

!2pi=

2
c = 11:5 where !

2
pi
=
2cand !

2
pe=!

2
c are plasma to gyro frequencies

ratio. The comparison of electron Bernstein mode with the ion Bern-
stein mode yields that ion try to shift threshold values at weak magnetic
�eld.
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Fig. 2: The relation of !r=
c and �z for !2pi=

2
c = 11:5:The harmonics

start overlap where �z=k?v̂?=
c

At !2pi=

2
c = 12; the wave is unstable and gaps generated between the

harmonics become more prominent as we can observe in �g. 3. Now for
revealing the fact of gaps between harmonics by plotting complex part of
frequency as we have already considered ! = !r + i!i; it tells about the
imaginary part !i of wave which is disappeared on real frequency scale.
The study of this complex part of frequency gives an important result
that the wave is growing in these speci�c regions. It means that the
instability like electron bernstein mode, the ion Bernstein mode is also
unstable for the !pi>
c however the numerical threshold value is greater
than electron Bernstein wave. In the �gures that follow, the solid lines
show the real part and the dashed lines represent the imaginary part of
the wave frequency !.
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Fig.3 : The relation of !r=
c and �z for !2pi=

2
c = 12:0:In �g. the dotted

red lines within the harmonics show the unstable regions.

Fig.4: The relation of !r=
c and �z for !2pi=

2
c = 15:0:In �g. the dotted

red lines within the harmonics show the unstable regions.
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The results obtained on increasing the value of ratio !2pi=

2
c from 12

to 15 are displayed in �g.4. These results can be directly compared with
Bashir et al.[22] and Crawford [32]. The comparison reveals that the real
frequency structure is similar, unstable regions can be observed between
the harmonics. The appearance of this inter branches instability becomes
more frequent as we increase the value of !2pi=


2
c : Fig. 5 shows a group

of inter branches instability. There are unstable regions between the
harmonics for shorter wavelength area. One of them is a nonresonating
or purely growing mode for which !r = 0 [32, 33, 34]. This mode
occurs due to augmentation of amplitude but not with overlapping. In
�g. 5, it has been noticed that unstable regions are less growing and
purely growing mode has small domain. Fig. 5 and 6 show harmonics
for !2pi=


2
c = 50 and !2pi=


2
c = 60 respectively. With higher values of

!2pi=

2
c ; the domain of purely growing mode is also increasing. One can

also observe that the instabilities are e¤ected by value of magnetic �eld.
With decreasing the value of magnetic �eld, anisotropy increases, which
agrees with high frequency Bernstein mode instability case [22].

Fig. 5: The relation of !r=
c and �z for !2pi=

2
c = 50: The red dotted

lines within the harmonics show the unstable regions and their
respective imaginary part is in red color. The green color shows the

purely growing part where !r = 0:
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Fig. 6: The relation of !r=
c and �z for !2pi=

2
c = 60: The trend is same

as in �g. 5, the purely growing mode where !r = 0 is in green color.

Above discussion draws a complete picture of instabilities at di¤erent
values of argument. On comparison with the electron Bernstein wave,
the ion Bernstein wave has high threshold value with low frequency.
A direct correlation between value of !2pi=


2
c and overlapping of wave

branches shows that the instability grows with the decreasing value of
magnetic �eld and the wave becomes unstable for high density. The
distribution function provides free energy which is cause of wave insta-
bility. Nsengiyumva et al. [25] discussed the ion Bernstein mode with
kappa distribution function and according to [25], the unstable regions
shifted to higher wavenumber or lower wavelength by decreasing kappa
(�i), this is in good agreement with the results of ring velocity distribu-
tion function. This comparison shows that the ring velocity distribution
reveals the instability of Bernstein mode earlier than kappa distribution
function. Bernstein mode is current driven mode and produces heating
e¤ect [36, 37, 38]. In pulsars, electrostatic waves are observed and there
are number of trapped modes present in pulsars. This discussion will be
useful in any future treatment of radiation data from pulsars.
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