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Kinetic plasma instabilities are important for regulating the temperature anisotropies of electrons

and ions in solar wind. For the low beta regime, it is known that electromagnetic ion/electron

cyclotron instabilities are important, but in the literature these unstable modes are discussed under

the assumption of parallel propagation. The present paper extends the analysis to two (or with

cylindrical symmetry, three) dimensions. The analysis is further extended to include quasilinear

description with the assumption of the bi-Maxwellian velocity distribution function. Such an anal-

ysis lays the foundation for an eventual study in which cyclotron instabilities as well as obliquely

propagating unstable modes such as the mirror instability are simultaneously taken into account.

The present paper first lays down the basis for such future efforts in which the two- or three

dimensional linear and quasilinear theories of cyclotron instabilities in the low beta regime are

formulated. Published by AIP Publishing. https://doi.org/10.1063/1.4999339

I. INTRODUCTION

Electromagnetic cyclotron instabilities driven by exces-

sive perpendicular temperature associated with ions (protons)

and electrons are operative in various space plasma environ-

ments including the magnetosheath region of the Earth and

other magnetized planets, solar wind and interplanetary space,

and near the Sun’s coronal environment. Electromagnetic ion

cyclotron or EMIC instability is operative near the proton

cyclotron frequency, while Electromagnetic electron cyclotron

or EMEC instability is a high frequency mode operative in the

vicinity of the electron cyclotron frequency. For high beta

conditions, where beta is the ratio of thermal to magnetic

energy densities in plasma, the same free energy source also

excites the electron/ion mirror mode, which is an aperiodic (or

purely growing) instability. For low beta situations, it is well

known that the mirror mode has a much weaker growth rate

when compared with the cyclotron instabilities so that the

instabilities operative near the cyclotron frequency are the

dominant unstable modes.1

In the literature, these cyclotron instabilities are usually

discussed with the assumption of the wave vector parallel to

the ambient magnetic field, e.g., Ref. 2. Such an assumption

is valid if the beta value is moderate. However, for low beta

conditions the electron cyclotron instability (EMEC) can

have maximum growth occurring in wave propagation direc-

tions that are oblique to the ambient magnetic field.3,4 For

protons (EMIC), this behavior of shifting to the oblique

direction of maximum growth for low beta is not discussed

in the literature, but the generalization of both cyclotron

instabilities to include arbitrary angles of propagation is use-

ful and sometimes necessary. This is because, the aperiodic

mirror instabilities driven by either electron or proton tem-

perature anisotropy may compete for the same available free

energy so that in the nonlinear stage of the instability one

must treat the cyclotron and mirror instabilities in the same

footing. Such a coupled interaction of different unstable

modes in the nonlinear stage is demonstrated in a recent

paper by Ahmadi et al.,5 where the authors employed the

two-dimensional particle-in-cell simulation technique to

study the nonlinear evolution of combined proton and elec-

tron mirror as well as cyclotron instabilities. Similar results

were also obtained by Riquelme et al.6 as well.

The purpose of the present paper is to set the stage, as it

were, for an eventual analytical study of the competition

between different unstable modes in order to affect the plasma

dynamics. More precisely, the eventual goal is to undertake

the study of quasilinear analysis in which, cyclotron and ape-

riodic instabilities are treated simultaneously. In the present

paper, we first formulate the linear and quasilinear theory of

cyclotron instabilities separately, with an arbitrary wave prop-

agation direction. In the literature, the oblique EMEC instabil-

ity for the low electron beta situation has been studied by the

numerical Vlasov dispersion relation solver3 combined with

the particle-in-cell simulation approach.4 In the present paper,

we employ an analytical methodology, which closely resem-

bles the formalism developed for the magnetoionic theory.

The quasilinear theory of two-dimensional cyclotron instabil-

ities within the formalism to be discussed in the present paper

has not been discussed in the literature. To reiterate, we may

combine the formalism of the present paper and a recently

formulated analytical quasilinear theory of electron/proton

mirror instability7 in order to investigate the above-mentioned

competition between different unstable modes within the con-

text of the quasilinear theory.

The significance of the cyclotron and other temperature

anisotropy-driven instabilities in the context of solar wind and

heliospheric physics was already alluded to previously, but

more specifically, their relevance is in the context of under-

standing the origin of measured temperature anisotropiesa)Electronic mail: yoonp@umd.edu

1070-664X/2017/24(10)/102902/12/$30.00 Published by AIP Publishing.24, 102902-1

PHYSICS OF PLASMAS 24, 102902 (2017)

https://doi.org/10.1063/1.4999339
https://doi.org/10.1063/1.4999339
mailto:yoonp@umd.edu
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4999339&domain=pdf&date_stamp=2017-10-12


associated with various charged particles in the solar wind.

According to the simple macroscopic adiabatic theory, the

solar wind should exhibit large excessive parallel temperature

anisotropy as a result of expansion and conservation of the

first adiabatic invariant. However, observed solar wind

instead features quasi-isotropic thermal distribution with the

moderate anisotropic temperature ratio apparently limited

between the upper and lower bounds corresponding to vari-

ous marginal stability (or threshold) conditions for various

temperature anisotropy-driven instabilities. These instabilities

include the proton and electron cyclotron (EMIC/EMEC) as

well as the mirror and firehose instabilities.8–13 It is one of

the outstanding problems in the contemporary space and

astrophysics to incorporate the effects of plasma instabilities

in the global model of the solar wind.14–18 In any comprehen-

sive model of solar wind, it is imperative that one allows mul-

tiple unstable modes to simultaneously interact with each

other. For such a task, one must generally treat EMIC/EMEC

instabilities in two- or three-dimensional configurations.

Among theoretical approaches in the literature, Yoon and

Seough19 approached the combined effects of mirror and

EMIC (or proton cyclotron) instabilities, but in their work the

basic formalism is applicable to low frequency proton mirror

and EMIC only. The present paper aims to make a prelimi-

nary contribution toward the goal of formulating linear and

quasilinear theories of both EMIC and EMEC instabilities.

We pay particular attention to the situation for which analyti-

cal treatment is feasible.

The structure of the present paper is as follows: in Sec.

II, we formulate the analytical theory of two- or three-

dimensional cyclotron instabilities. In Sec. II A, we consider

the low frequency EMIC instability, while Sec. II B is

devoted to high frequency EMEC instability. Section II also

presents numerical examples, which include the marginal

instability threshold curves in the temperature ratio versus
parallel beta parameter space, and we compare the difference

between treating the cyclotron instabilities exactly versus the

approximate analytical method. Section III is devoted to the

quasilinear theoretical formulation of EMIC and EMEC

instabilities, and we also discuss sample numerical results

thereof. Finally, Sec. IV summarizes the findings.

II. WEAKLY UNSTABLE EMIC AND EMEC
INSTABILITIES

In the present analysis, we consider a magnetized

plasma with the ambient magnetic field directed along the z
axis. The wave vector is assumed to lie in the xz plane, with-

out the loss of generality, with h designating the angle

between the k vector and ambient magnetic field vector B0.

The plasma frequency defined with respect to ions (protons)

and electrons is given by xpi ¼ ð4pn0e2=miÞ1=2
and xpe

¼ ð4pn0e2=meÞ1=2
, respectively, where e is the unit electric

charge, n0 is the ambient density, and mi and me are proton

and electron rest masses, respectively. The cyclotron fre-

quency for protons and electrons is defined by Xi ¼ eB0=mic
and Xe ¼ eB0=mec, respectively, where c is the speed of

light in vacuo.

We are primarily interested in physical situations where

either of the temperature ratios T?i=Tki and T?e=Tke are only

slightly higher than unity while the parallel betas bki and bke
are arbitrary, or where beta values are low while the temper-

ature ratio may not necessarily be low. In other words, we

are interested in situations where the instabilities have weak

growth rates and the physical system is close to marginally

unstable states. Here, betas for each species, defined with

respect to the perpendicular and parallel temperatures,

are given by b?i ¼ 8pn0T?i=B2
0, bki ¼ 8pn0Tki=B2

0, b?e

¼ 8pn0T?e=B2
0, and be ¼ 8pn0Tke=B2

0, where n0 is the ambi-

ent plasma density and B0 is the ambient magnetic field

intensity. We assume that the growth rate for the cyclotron

instabilities is low so that the customary formulae for weakly

unstable or weakly damped modes are applicable. In such

cases, it is known that weak electromagnetic ion cyclotron

(EMIC) or weak electromagnetic electron cyclotron (EMEC

or whistler) instabilities are excited. In the literature, as

noted in the Introduction, these unstable modes are treated

with the assumption of parallel propagation (h¼ 0).

However, we are presently interested in extending the cus-

tomary theory to include the finite propagation angle, h 6¼ 0.

For the arbitrary angle, the general dispersion relation

becomes quite complex for either instabilities. This is why

we seek to formulate the analytical theories in the present

paper. Before we move on to the general formulation of

EMIC and EMEC instabilities for the arbitrary angle of

wave propagation within the framework of the analytical the-

ory, let us ascertain the validity of the analytical approach

within the assumption of parallel propagation for which,

exact formalism is rigorously applicable. Thus, the limit of

applicability of analytical formulae is first considered next

with the assumption of parallel propagation. After we ascer-

tain the conditions for the validity for parallel propagation,

we will extrapolate the result to the arbitrary propagation

angle.

A. Limits of applicability of the analytical approach:
Parallel propagation

Since EMIC and EMEC instabilities are driven sepa-

rately by either proton or electron temperature anisotropy,

and they are operative over vastly different frequency and

wave number domains, in what follows, we discuss the two

instabilities separately.

In the case of parallel propagation, the left-hand circu-

larly polarized EMIC mode dispersion relation under the

assumption of bi-Maxwellian proton distribution is given

by—see, e.g.,20–22

0 ¼
c2k2
k

x2
pi

þ x
Xi
� T?i

Tki
� 1

� �

� T?i

Tki
x� T?i

Tki
� 1

� �
Xi

� �
1

kkaki
Z

x� Xi

kkaki

 !
; (1)

where aki ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Tki=mi

p
is the parallel thermal speed of the

Maxwellian proton distribution. Of course, the above disper-

sion relation given in terms of the transcendental plasma
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dispersion function ZðfÞ ¼ p�1=2
Ð1
�1 dx e�x2ðx� fÞ; ImðfÞ

> 0, can be solved by numerical means. However, once we

allow finite k?, the above relatively simple form of the dis-

persion relation becomes rather complicated, which is why

we seek the analytical method. We hereby first seek to check

the validity and range of applicability of the approximate

analytical approach, according to which, the real frequency

xr ¼ ReðxÞ and the growth/damping rate c ¼ ImðxÞ are

given by

xr ¼
Xi

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j4 þ 4j2

p
� j2

� �
;

c ¼ �p1=2 ðXi � xrÞ
ð2Xi � xrÞxr

T?i

Tki

xr

Xi
� T?i

Tki
� 1

� �� �
f e�f2

;

j ¼
ckk
xpi

; f ¼ Xi � xr

kkaki
:

(2)

In Fig. 1, we demonstrate the validity of the approximate

approach by way of plotting maximum growth rates com-

puted on the basis of exact versus analytical formulae, (1)

and (2), respectively. The contours of the maximum growth

rate cmax=Xi are shown in the parameter space ðbki; T?i=TkiÞ.
The solid curves represent the exact solution, while the

dashed curves belong to the analytical calculation. As one

can see, for sufficiently low maximum growth rates, say for

cmax=Xi ¼ 10�3 or so, the two approaches yield qualitatively

similar results, as the two contours lie close to each other. For

cmax=Xi ¼ 10�2, the discrepancy already becomes apparent.

For even higher growth rates, it is apparent that the approxi-

mate analytical formula fails. We will thus make use of this

result for parallel propagation as a guide in the more general

case. The sample set of input parameters ðbki; T?i=TkiÞ
¼ ð0:1; 2:24Þ, (1,1.52), and (6.3,1.15) are shown with dots.

For such choices, the analytical approach is arguably applica-

ble, since the maximum growth rate contours nearly overlap.

These choices of parameters will be used in the subsequent

calculation for arbitrary angles of wave propagation.

For the right-hand circularly polarized EMEC mode

propagating parallel to the ambient magnetic field, the dis-

persion relation for the bi-Maxwellian electron distribution

is given by20

0 ¼
c2k2
k

x2
pe

� T?e

Tke
� 1

� �

� T?e

Tke
x� T?e

Tke
� 1

� �
Xe

� �
1

kkake
Z

x� Xe

kkake

 !
; (3)

where ake ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Tke=me

p
is the parallel thermal speed of the

Maxwellian electron distribution. Under the approximate

analytical approach, the real frequency xr ¼ ReðxÞ and the

growth/damping rate c ¼ ImðxÞ are given by

xr ¼
Xej2

1þ j2
;

c ¼ p1=2X2
e

ð1þ j2Þ3kkake

T?e

Tke
� 1� j2

� �
e�f2

;

j ¼
ckk
xpe

; f ¼ Xe

ð1þ j2Þkkake
:

(4)

Figure 2 plots the exact maximum growth rate (solid

contours) and approximate analytical formulae (dashed con-

tours). As with Fig. 1, for sufficiently low maximum growth

rates the two approaches yield qualitatively similar results.

As with the case of EMIC, sample input parameters of

ðbke; T?e=TkeÞ ¼ ð0:01; 4:5Þ, (1,1.4125), and (5.6,1.12) are

indicated. The subsequent calculation for arbitrary propaga-

tion angles will be based on these choices.

Figure 3 displays the exact growth rate computed on the

basis of Eq. (1) versus approximate growth rate formula (2)

for EMIC instability for the three cases indicated in Fig. 1.

FIG. 1. Maximum growth rate of EMIC instability, cmax=Xi versus bki and

T?i=Tki, computed on the basis of exact dispersion relation (1), the contours

of constant values of cmax=Xi plotted with solid curves, and computed on the

basis of approximate analytical formula (2), the corresponding contours of

which are shown with dashes. The dots represent sample sets of bki and

T?i=Tki for which the analytical theory is valid.

FIG. 2. Maximum growth rate of EMEC instability, cmax=Xe versus bke and

T?e=Tke, computed on the basis of exact dispersion relation (3), the contours

of constant values of cmax=Xe plotted with solid curves, and computed on

the basis of approximate analytical formula (4), the corresponding contours

of which are shown with dashes. The dots represent sample values of bke
and T?e=Tke for which the analytical theory is valid.
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Note how the two growth rates agree reasonably, albeit the

approximate growth rate is somewhat higher in magnitude.

The real frequencies computed either way also show excel-

lent agreement, which we do not show.

In Fig. 4, we repeat the same analysis for EMEC, com-

paring the exact growth rate numerically computed from

solving Eq. (3), versus the analytical approximation based

upon Eq. (4). Again, the approaches produce comparable

results. The real frequency associated with the whistler-

EMEC mode shows excellent convergence between the

exact versus analytical formulae, so we do not show the

rather trivial comparisons.

On the basis of these findings for parallel propagation,

we now extrapolate the analysis to include the finite perpen-

dicular wave number. The analysis of arbitrary propagation

angles will be formulated in Sec. II B, but the actual

numerical examples will be based on the three combinations

of parallel beta and temperature ratios for each EMIC and

EMEC instabilities, as indicated in Figs. 1 and 2, and ana-

lyzed specifically in Figs. 3 and 4.

B. Weakly growing low frequency EMIC instability

In order to proceed, we resort to the cold plasma theory

for the determination of real frequency, and make use of the

customary method to calculate the weak growth/damping

rate. For cold plasma and for low frequency, we may approx-

imate the dielectric tensor elements by

�xx ¼
x2

pi

X2
i � x2

¼ �yy;

�xy ¼
ix
Xi

x2
pi

X2
i � x2

¼ ��yx;

�zz ¼ �
x2

pe

x2
;

(5)

and �xz ¼ �zx ¼ �yz ¼ ��zy ¼ 0. Note that the leading compo-

nent is the �zz. The dispersion relation is thus given by

0 ¼ N4 �xx sin2 hþ �zz cos2 h
	 


�N2 2�xx�zz þ �2
xx þ �2

xy � �xx�zz

� �
sin2 h

h i
þ �2

xx þ �2
xy

� �
�zz; (6)

where N ¼ ck=x is the index of refraction and h represents

the angle between the wave vector and the ambient magnetic

field. Since �zz is the dominant term, we may approximate

the full dispersion relation (6) by retaining only those terms

associated with the leading term

0 ¼ N4 cos2 h� N2
x2

pi 2� sin2 hð Þ
X2

i � x2
þ

x4
pi

X2
i X2

i � x2
	 
 : (7)

This equation can be solved either for N2, in which case we

have

N2 ¼
x2

pi

Xi Xi � sxð Þ ;

s ¼ sþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ cos2 h

p
; s ¼ Xi sin2 h

2x
;

(8)

or in terms of x2. In the latter case, we obtain

x2

X2
i

¼ 1

2

c2k2

x2
pi

8<
:1þ 1þ c2k2

x2
pi

 !
cos2 h

�
"

1þ 1þ c2k2

x2
pi

 !2

cos4 h�2 1� c2k2

x2
pi

 !
cos2 h

#1=2
9=
;:
(9)

Note that the solution (8) is reminiscent of the magnetoionic

dispersion relation.23 In the customary magnetoionic theory,

FIG. 3. Exact (solid lines) versus approximate (dotted lines) growth rates of

EMIC instability, c=Xi versus ckk=xpi, for ðbki;T?i=TkiÞ ¼ ð0:1; 2:24Þ
(blue), ðbki; T?i=TkiÞ ¼ ð1; 1:52Þ (red), and ðbki;T?i=TkiÞ ¼ ð6:3; 1:15Þ
(black).

FIG. 4. Exact (solid lines) versus approximate (dotted lines) growth rates of

EMEC instability, c=Xi versus ckk=xpi, for ðbke; T?e=TkeÞ ¼ ð0:01; 4:5Þ
(blue), ðbke; T?e=TkeÞ ¼ ð1; 1:4125Þ (red), and ðbke;T?e=TkeÞ ¼ ð5:6; 1:12Þ
(black).
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the low frequency modes associated with the ion response

are ignored.

Following the customary practice exercised in the mag-

netoionic theory,23 it is useful to define the unit electric field

vector

êðkÞ ¼ dEðkÞ
jdEðkÞj ¼

Kĵ þ Tt̂ þ iâ

K2 þ T2 þ 1ð Þ1=2
;

ĵ ¼ sin h; 0; cos hð Þ;
â ¼ ð0; 1; 0Þ;
t̂ ¼ cos h; 0;�sin hð Þ:

(10)

Representing the unit electric field in the above form is useful

since the coefficients K and T define the polarization charac-

teristics of a given wave mode. In particular, if K ¼ 1 then

the mode is a purely longitudinal (electrostatic) mode. If, on

the other hand, K¼ 0 then the mode is a pure transverse elec-

tromagnetic mode. If K ¼ finite but T ¼ 1, then such a

mode is also a purely transverse mode. In order to determine

the specific expressions for K and T, we make use of the cold

plasma dispersion relation. For the present case of low fre-

quency, the cold plasma EMIC mode, it can be shown, after

some considerations, that K and T are given by

K ¼ � s sin h
cos2 h

; and T ¼ � s
cos h

; (11)

where s is defined in Eq. (8). These quantities will be useful

for the computation of the growth/damping rates of weakly

unstable modes.

The growth/damping rate can be determined on the basis

of the linear dielectric response tensor, which is given by

�ijðk;xÞ¼dijþ
X

a

x2
pa

x2

ð
dv

vk
v?

v?
@

@vk
�vk

@

@v?

 !
fa bi bj

"

þ
X1

n¼�1

Vi V
�
j

x�nXa�kkvk

x�kkvk
v?

@

@v?
þkk

@

@vk

 !
fa

#
;

Vi¼ v?
nJnðbÞ

b
;�iv?J0nðbÞ;vkJnðbÞ

� �
;

(12)

where b ¼ k?v?=Xa, kk ¼ k cos h; k? ¼ k sin h, the summa-

tion over a represents sum over charged particle species, fa
denotes the particle velocity distribution function, normal-

ized to unity (
Ð

dv fa ¼ 1), and JnðbÞ is the Bessel function of

the first kind of order n. The unit vector bi ¼ ðB0Þj=B0 is

simply ẑ, since we assumed that the ambient magnetic field

lies along the z axis. The generic form of the linear wave

equation is given by

�H
ij þ �A

ij � N2 dij �
ki kj

k2

� �� �
dEj ¼ 0; (13)

where the dielectric response tensor is written as a sum

of the hermitian and anti-hermitian parts, where these quanti-

ties are defined by �H
ij ðk;xÞ ¼ 1

2
½�ijðk;xÞ þ ��ijðk;xÞ�, and

�A
ijðk;xÞ ¼ 1

2
½�ijðk;xÞ � ��ijðk;xÞ�, or written explicitly,

�H
ij ¼ dijþ

X
a

x2
pa

x2

ð
dv

1

2
dij�bi bj

	 

v?

@

@v?
þbi bj vk

@

@vk

 !
fa

"

þ
X1

n¼�1
P

Vi V
�
j

x�nXa�kkvk

nXa

v?

@

@v?
þkk

@

@vk

 !
fa

#
;

�A
ij ¼�i

X
a

x2
pa

x2

ð
dv
X1

n¼�1
Vi V

�
j dðx�nXa�kkvkÞ

� nXa

v?

@

@v?
þkk

@

@vk

 !
fa: (14)

In the above, P denotes the principal value.

Writing the wave electric field in terms of the unit vector

êi introduced before, namely, dEj ¼ êj dE, we may express

the linear wave equation by multiplying x2 to both sides of

the equation and by taking an inner product with ê�i ,

ê�i x2 �H
ij � x2N2 dij �

ki kj

k2

� �� �
êj þ x2ê�i �

A
ij êj ¼ 0: (15)

If we write the complex frequency as x ¼ xr þ ic, and

make use of the fact that the plasma normal mode satisfies

the dispersion relation, which is the first term on the left-

hand side of (15), then upon expanding Eq. (15) as a Taylor

series we obtain

c
x
¼

iê�i �
A
ij êj

x�1 @ðx2�Þ=@x
� � ; � ¼ ê�i �

H
ij êj: (16)

where x is meant to be the real part of the complex fre-

quency, x ¼ xr, and the unit electric field vector êi is

defined in Eq. (10). Making explicit use of Eq. (12), we

obtain the expression for the growth rate

c ¼
X

a

x2
pa

@ x2�ðk;xÞ
� �

=@x

ð
dp
X1

n¼�1
jê�ðkÞ � Vj2

� dðx� nXa � kkvkÞ
nXa

cv?

@

@v?
þ kk

@

@vk

 !
fa: (17)

In the above, the quantity in the denominator, @ðx2�Þ= @x,

can be computed as follows:

@

@x
x2�ð Þ ¼ @

@x
x2ê�i �

H
ij êj

h i

¼ 1� jêðkÞ � kj
2

k2

� �
2x

@ x2N2ð Þ
@x2

¼ 1þ T2

1þ K2 þ T2
2x

@ x2N2ð Þ
@x2

; (18)

where we have made use of the dispersion relation and Eq.

(10). The remaining quantity of interest is @ðx2N2Þ=@x2,

which upon making use of N2 defined in Eq. (8), can be

shown to reduce to

R � @ x2N2ð Þ
@x2

¼
x2

pi

X2
i �x2

Xi

Xi � sx
þ x

Xi

1

sin2 h

s2 � cos2 h
s2 þ cos2 h

� �
:

(19)
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Upon making use of the definition for ê in (10), the final

explicit expression for the growth/damping rate emerges

c ¼ p
2x

X
a

x2
pa

ð1þ T2ÞR

ð
dv v2

?
X1

n¼�1

� x
Xa

K sin hþ T cos h�
kvk
x

� �� �
JnðbÞ

b
� J0nðbÞ

( )2

� d x� nXa � kkvk
	 
 nXa

v?

@

@v?
þ kk

@

@vk

 !
faðv2

?; vkÞ:

(20)

Let us assume the bi-Maxwellian velocity distribution

function

fi ¼
1

p3=2a2
?iaki

exp � v2
?

a2
?i

�
v2
k

a2
ki

 !
;

a2
?i ¼

2T?i

mi
; a2

ki ¼
2Tki
mi

:

(21)

Let us also make specific use of K and T for the EMIC

mode—see Eq. (11). Upon making use of the above assump-

tions and implementing various approximation procedures, it

is possible to carry out the velocity integrals in the closed

form by means of the well known Bessel function integral

formulae and by virtue of the delta function resonance condi-

tion. The result is as follows:

c ¼ p1=2

2 ~R

X2
i � x2

xjkkjaki

X1
n¼�1

s2 þ cos4 hð Þ n
2InðkÞe�k

k

�

þ 2 ns� k cos2 hð Þ cos2 h
d InðkÞe�k
� �

dk

�

� T?i

Tki
� 1

� �
nXi �

T?i

Tki
x

� �
e�f2

;

f ¼ nXi � x
kkaki

; k ¼ k2
?a

2
?i

2X2
i

;

~R ¼ Xi cos2 h
Xi � sx

ðs2 þ cos 2 hÞ þ x cos2 h

Xi sin2 h
ðs2 � cos 2 hÞ:

(22)

In the above, InðkÞ is the modified Bessel function of the first

kind of order 1. The real frequency x is given by Eq. (9).

The quantity s is defined in Eq. (8). This is the desired

growth rate for EMIC instability.

C. Weakly growing high frequency EMEC instability

For EMEC wave and instability, the customary magneto-

ionic theory is applicable. Since the whistler mode or the

EMEC mode is a slow mode, we may ignore the displacement

current. The non-vanishing components of the cold plasma

dielectric tensor ignoring the ion response are given by

�xx ¼
x2

pe

X2
e � x2

¼ �yy; �xy ¼
iXe

x

x2
pe

X2
e � x2

¼ ��yx;

�zz ¼ �
x2

pe

x2
:

(23)

The dispersion equation can be obtained exactly on the basis

of the above approximations either in terms N2

N2 ¼
x2

pe

x Xe cos h� xð Þ ; (24)

or conversely, in terms of x

x ¼ Xe cos h
c2k2=x2

pe

1þ c2k2=x2
pe

: (25)

For the whistler mode branch, the following coefficients

K and T for the unit polarization vector as well as the quan-

tity R can be derived

K ¼ � Xe sin h
Xe cos h� x

; T ¼ �1;

R ¼ @ x2N2ð Þ
@x2

¼ @ x2N2ð Þ
@x2

¼
x2

peXe cos h

2x Xe cos h� xð Þ2
:

(26)

From the general growth/damping rate expression (20), we

again consider bi-Maxwellian distribution of electrons and

ignore ions. Then, the EMEC instability growth rate is given by

c ¼ p1=2

2

cos h� x=Xe

cos3 h

X1
n¼�1

x2 sin2 h
XeðXe cos h� xÞ þ n

 !2
2
4

8<
:

þ n2 cos2 h

#
InðkÞe�k

k
þ2 cos h

x2 sin2 h
XeðXe cos h� xÞ

 

þ n� k cos h

!
d InðkÞe�k
� �

dk

)

� T?e

Tke

x
Xe
� T?e

Tke
� 1

� �
n

� �
Xee�f2

kkake
;

f ¼ x� nXe

kkake
; k ¼ k2

?a
2
?e

2X2
e

: (27)

This is the desired growth rate expression for EMEC insta-

bility, which is valid under the assumption of weak growth

and for the bi-Maxwellian electron distribution function. In

Sec. IV, we will discuss the numerical calculation of EMIC

and EMEC instability growth rates based upon Eqs. (22) and

(27), respectively, but it turns out that all other harmonic

terms except n¼ 0 and 1 terms are unimportant.

III. QUASILINEAR THEORY OF CYCLOTRON
INSTABILITIES IN THE LOW b REGIME

The convenient starting point for the present section is the

well-known quasilinear velocity space diffusion equation24

@fa
@t
¼ pe2

a

m2
a

X1
n¼�1

ð
dk 1�

kkvk
x

� �
@

v?@v?
þ

kk
x

@

@vk

" #

� hjVn� � dEkj2idðx� nXa � kkvkÞ

� 1�
kkvk
x

� �
@

v?@v?
þ

kk
x

@

@vk

" #
fa: (28)

In the present approach, we do not actually solve the above

kinetic directly for fa, but rather we take the simple
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and approximate approach. This is the method employed by

Ref. 19, and it is a reduced quasilinear theory. The method

involved taking the velocity moments, T?a ¼ ðma=2Þ
Ð

dvv2
?fa

and Tka ¼ ma

Ð
dvv2

kfa, of Eq. (28), under the assumption that

fa is given by the bi-Maxwellian form (21) for all time, except

that the temperatures evolve in time. Of course, this is an

approximation that must be employed judiciously depending

on the nature of the instability. For the present cyclotron insta-

bilities, it was already shown by direct comparison with the

particle-in-cell or Vlasov simulation that the present approach

is valid at least as a first-cut approach.25–27 The approximate

validity of the bi-Maxwellian assumption (or lack thereof) is

demonstrated by the particle-in-cell simulation of weakly

growing EMEC instability in the low beta regime by Gary

et al.4 In their simulation, the nonlinear development of the

electron distribution function along v? is presumably quasi

Maxwellian for all time, but along vk, it was shown that ener-

getic “shoulder” is formed for later times. However, the bulk

of the electron population is still represented by the

Maxwellian form. Note that Fig. 7 of Ref. 4 is plotted in the

vertical logarithmic scale such that the deviation from the

Maxwellian form is over-emphasized. Reference 27, on the

other hand, carried out particle-in-cell simulation of EMEC

instability for moderately low beta and showed that the quasi

bi-Maxwellian nature of the electron distribution is well main-

tained for all time – see Fig. 3 of their paper. These simulation

results provide some justifications for the present approach of

bi-Maxwellian assumption for all time, at least as a first cut

method. We thus take the velocity moments of Eq. (28) and

make use of the unit electric field vector (10). This leads to

dT?a

dt
¼ �pe2

a

ma

X1
n¼�1

ð
dkhdE2

ki
ð

dv 1�
kkvk
x

� �
Hn;

dTka
dt
¼ � 2pe2

a

ma

X1
n¼�1

ð
dkhdE2

ki
ð

dv
kkvk
x

Hn;

Hn ¼
1

1þ K2 þ T2

x
Xa

K sin hþ T cos h�
kvk
x

� �� �(

� JnðbÞ
b
� dJnðbÞ

db


2

�v2
? dðx� nXa � kkvkÞ

� 1�
kkvk
x

� �
@

v?@v?
þ

kk
x

@

@vk

" #
fa: (29)

Another caveat concerning the present approach is that

Eq. (28) is based upon the implicit assumption that the insta-

bility is weakly growing such that the growth/damping rate

is considered much lower than the real frequency, c� x.

Such an assumption is valid for weakly growing cyclotron

instabilities, which are the subject of the present analysis.

However, for mirror instability, which is aperiodic, x¼ 0,

the quasilinear diffusion equation of the type (28) is

not applicable. Consequently, in a recent work,7 where we

considered the weakly growing mirror instability, the full

resonance condition in the quasilinear kinetic equation was

adopted before we took the velocity moments.

For bi-Maxwellian fa given by (21), and carrying out the

velocity integral, we have

dT?a

dt
¼ p1=2e2

a

ma

X1
n¼�1

ð
dkhdE2

ki
nXa

x
Hn;

dTka
dt
¼ 2p1=2e2

a

ma

X1
n¼�1

ð
dkhdE2

ki 1� nXa

x

� �
Hn;

Hn ¼
1

1þK2þT2

T?a

Tka
� T?a

Tka
� 1

� �
nXa

x

" #
e� fa

nð Þ2

jkkakaj

� x2

X2
a

K sinhþ T

cosh
nXa

x
� sin2 h

� �� �2

þ n2

( ) 

� InðkaÞe�ka

ka
�2

x
Xa

K sinhþ T

cosh
nXa

x
� sin2 h

� �� ��

þka

)
d InðkaÞe�ka
� �

dka

!
;

ka ¼
k2
?a

2
?a

2X2
a

; fa
n ¼

x� nXa

kkaka
: (30)

Note that the definition for Hn in Eq. (29) is different from

Eq. (30).

A. Quasilinear moment theory of weakly growing EMIC
instability for Bi-Maxwellian temperatures

For the EMIC mode, we make use of the dispersion rela-

tion (9) and the definition (11). Restricting to protons in Eq.

(30), we obtain explicit expressions as given below. In the

following results, however, we have retained harmonic con-

tributions from n¼ 0 and 1 terms only, since these are the

only terms that have finite contributions. We have checked

this by including other harmonic terms also but found no dif-

ference from the result in which only n¼ 0 and 1 terms are

retained. The results are thus given by

dT?i

dt
¼ � p1=2e2

mi

ð
dk

hdE2
ki

s2 þ cos4 h
Xi

x
H1;

dTki
dt
¼ 2p1=2e2

mi

ð
dk

hdE2
ki

s2 þ cos4 h
H0 þ

Xi

x
� 1

� �
H1

� �
;

H0 ¼
T?i

Tki
2k I0ðkÞ � I1ðkÞ½ �e�k exp ð�n2Þ

jkkakij
;

H1 ¼
T?i

Tki
� 1

� �
Xi

x
� T?i

Tki

" #
I1ðkÞe�k

k
ðs2 þ cos4 hÞ

�

þ2
d I1ðkÞe�k
� �

dk
ðs� k cos2 hÞ cos2 h

�
exp ð�f2Þ
jkkakij

;

k ¼ k2
?a

2
?i

2X2
i

; f ¼ x� Xi

kkaki
; n ¼ x

kkaki
: (31)

The wave kinetic equation is simply given by the customary

form, @hdE2
ki=@t ¼ 2ckhdE2

ki.

B. Quasilinear moment theory of weakly growing
EMEC instability for Bi-Maxwellian temperatures

For the weakly growing EMEC case, we restrict Eq.

(30) to the electrons and retain only n¼ 0 and 1 terms (again,

we have verified that other terms make no contributions)
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dT?e

dt
¼ p1=2e2

meXe

ð
dk

Xe

x
GH1hdE2

ki;

dTke
dt
¼ 2p1=2e2

meXe

ð
dk 1� nXe

x

� �
G H0 þ H1ð ÞhdE2

ki;

G ¼ Xe

x
1

cos2 h
cos h� x=Xeð Þ2

2 cos h� x=Xeð Þ2 þ sin2 h
;

L ¼ x2 sin2 h

X2
e cos h� x=Xeð Þ

;

H0 ¼ L2 I0ðkÞe�k

k
þ 2 cos h L� k cos hð Þ d I0ðkÞe�k

� �
dk

� 


� T?e

Tke
n exp �n2

	 

;

H1 ¼ Lþ 1ð Þ2 þ cos2 h
h i

I1ðkÞe�k

k

�

þ 2 cos h Lþ 1� k cos hð Þ d I1ðkÞe�k
� �

dk




� T?e

Tke

x
Xe
� T?e

Tke
� 1

� �� �
Xe exp �f2

	 

kake cos h

;

n ¼ x
kkake

; f ¼ x� Xe

kkake
; k ¼ k2

?a
2
?e

2X2
e

: (32)

The wave kinetic equation for the EMEC wave is also given

by the standard form, @hdE2
ki=@t ¼ 2ckhdE2

ki.

IV. NUMERICAL EXAMPLES

On the basis of the analytical theory of cyclotron insta-

bilities developed in Secs. II and III, we now consider 2D

EMIC and 2D EMEC instabilities for sample weakly grow-

ing cases indicated in Figs. 1 and 2. In the present calcula-

tion, we have checked the conservation of total energy. The

particle plus field energy is given by

E ¼
X

a

nma

2

ð
dv v2

?fa þ
nma

2

ð
dv v2

kfa þ
ð

dk
hdE2

ki
B2

0

þ
ð

dk
hdB2

ki
B2

0

þ B2
0

8p
: (33)

First we discuss the EMIC instability. We solved Eq.

(31) for the evolution of temperatures, or equivalently, the

betas, b?i ¼ 8pn0T?i=B2
0 and bki ¼ 8pn0Tki=B2

0. In Fig. 5,

we plot the result of quasilinear calculation. For case 1,

we chose the initial input parameters corresponding to

½bkið0Þ; T?ið0Þ=Tkið0Þ� ¼ ð0:1; 2:24Þ. Case 2 parameters are

½bkið0Þ; T?ið0Þ=Tkið0Þ� ¼ ð1; 1:52Þ, while for case 3, the ini-

tial parameters are ½bkið0Þ; T?ið0Þ=Tkið0Þ� ¼ ð6:3; 1:15Þ. The

FIG. 5. Time evolution of b?iðtÞ and

bkiðtÞ [left] and normalized wave mag-

netic field energy density dB2ðtÞ=B2
0

associated with EMIC instability

[right] versus normalized time Xit, for

initial conditions (case 1) bki ¼ 0:1
and T?i=Tki ¼ 2:24, (case 2) bki ¼ 1

and T?i=Tki ¼ 1:52, and (case 3) bki
¼ 6:3 and T?i=Tki ¼ 1:15.
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left-hand panels plot the perpendicular and parallel proton

betas, b?iðtÞ and bkiðtÞ, versus normalized time Xit, and on

the right, normalized wave magnetic field energy density

associated with the EMIC instability

dB2ðtÞ
B2

0

¼
ð

dk
c2k2

x2
k

hdE2
ki

B2
0

; (34)

is plotted versus Xit. In all the cases we ran, the total energy

(33) is conserved.

It can be seen that the free energy source, that is, the

excessive perpendicular temperature anisotropy, is reduced

as EMIC instability is excited, but the time scales are

vastly different for three cases. The perpendicular beta is

reduced while the parallel beta increases in all three cases.

The wave energy density first exponentially increases, fol-

lowed by saturation, but after the wave intensity reaches

the peak, the net energy density decreases again. This is

owing to the reabsorption of the wave energy by the par-

ticles as the range of unstable mode generally shrinks in

size.

Figure 6 represents the snapshots of the growth rate,

ck=Xi, for the three sample cases shown in Fig. 7, each at dif-

ferent time intervals. The color bar indicates the magnitude

of the growth rate. As the instability progresses, the instanta-

neous growth rate is reduced for each case, as can be judged

from the color bar. Also the unstable range of wave numbers

shrinks as the system approaches saturation. Note that for the

right-hand panels (case 3), the x axis is defined over a very

small perpendicular wave number range, 10�3 < ck?=xpi

< 4� 10�3, which is indicated in the axis labels with an

overall multiplicative factor �10�3.

For EMEC, as noted in the Introduction, in the low beta

regime, the maximum growth rate shifts from the quasi par-

allel direction to oblique propagation angles.3,4 The analyti-

cal growth rate formula (27) reproduces this behavior.

Figure 7 is the result of quasilinear calculation based upon

Eq. (32). We plot the evolution of normalized temperatures,

or equivalently, the electron betas, b?e ¼ 8pn0T?e=B2
0 and

bke ¼ 8pn0Tke=B2
0, versus normalized time Xet. In Fig. 7, the

left-hand panels plot b?eðtÞ and bkeðtÞ for three different ini-

tial values of parallel betas and temperature anisotropies

FIG. 6. The snapshots of instantaneous growth rate ck=Xi for the three sample cases shown in Fig. 5, each at different time intervals. Note that for case 3, the x
axis is defined over a very small perpendicular wave number range, 10�3 < ck?=xpi < 4� 10�3, which is indicated in the axis labels with an overall multipli-

cative factor �10�3.
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indicated in Fig. 2, namely, bkeð0Þ ¼ 0:1 and T?eð0Þ=Tkeð0Þ
¼ 4:5 (case 1), bkeð0Þ ¼ 1 and T?eð0Þ=Tkeð0Þ ¼ 1:14125

(case 2) and bkeð0Þ ¼ 5:6 and T?eð0Þ=Tkeð0Þ ¼ 1:12 (case

3). The middle panel plots bkeðtÞ versus normalized time Xet

and the bottom panel plots the normalized wave magnetic

field energy density associated with EMEC instability

dB2ðtÞ
B2

0

¼
ð

dk
c2k2

x2
k

hdE2
ki

B2
0

; (35)

versus Xet. For all three cases, the initial electron tempera-

ture anisotropy corresponds to T?eð0Þ=Tkeð0Þ ¼ 4. As EMIC

instability is excited, the temperature ratio is reduced while

the electrons are heated in the parallel direction. Among the

three cases, case 1 with high initial parallel beta implies the

highest initial growth rate. As such, the wave growth shown

in the bottom panel is the fastest for case 1, followed by

cases 2 and 3. The anisotropy reduction and parallel heating

are also in accordance with the magnitude of initial parallel

electron beta. Again, in all the cases we have checked the

conservation of the total energy (33), and indeed, the energy

conservation is preserved.

As discussed by Refs. 3 and 4, EMEC instability for low

b is characterized by the maximum growth rate occurring for

the oblique wave propagation angle. Figure 8 plots the

instantaneous growth rate, ck=Xe, for the three cases. The

left-hand panels, which correspond to case 1 parameters

show that indeed, the EMEC instability is highly oblique. As

the instability progresses, the instantaneous growth rate is

generally reduced in magnitude and the range of unstable

modes shrinks.

V. SUMMARY

Kinetic plasma instabilities are important for regulating

the temperature anisotropies in solar wind,8–13 and they are

one of the outstanding problems in the contemporary space

and astrophysics to model large scale or macroscopic solar

wind quantities by incorporating kinetic/microscopic physics

into the global model of the solar wind.14–18 In such efforts,

one must generally allow various instabilities to operate

simultaneously and compete for the available free energy,

which resides with the temperature anisotropies. In this con-

text, electromagnetic ion/electron cyclotron (EMIC/EMEC)

instabilities, which are customarily discussed under the

assumption of parallel propagation, must be extended to

two- or three-dimensional configurations, since other insta-

bilities such as mirror and oblique fire hose instabilities are

operative for general propagation directions. The aim of the

present paper was to develop analytical models of 2 D EMIC

and EMEC instabilities within the context of linear and

quasilinear formalisms so that eventually the theoretical

FIG. 7. Time evolution of the perpen-

dicular and parallel betas, b?eðtÞ and

bkeðtÞ [left-hand panels] and normal-

ized wave magnetic field energy density

dB2ðtÞ=B2
0 associated with EMEC insta-

bility [right] versus normalized time

Xet. For the initial conditions, we chose

bkeð0Þ ¼ 0:1 and T?eð0Þ=Tkeð0Þ ¼ 4:5
(case 1), bkeð0Þ ¼ 1 and T?eð0Þ=Tkeð0Þ
¼ 1:14125 (case 2), and bkeð0Þ ¼ 5:6
and T?eð0Þ=Tkeð0Þ ¼ 1:12 (case 3).
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formalism developed in the present paper may be general-

ized to include other unstable modes.

Our aim had been to limit the scope of the theoretical

development to the weakly growing instability regime. For

such a situation, it is generally acceptable to treat the real

frequency with the cold plasma approximation while com-

puting the growth rate with the approximate Landau type of

formula. For a high instability growth rate, which is not the

focus of the present paper, the problem generally requires

the full solution of the transcendental dispersion relation that

involves the plasma dispersion function with complex fre-

quency. Such a task is beyond the scope of the present dis-

cussion, and some preliminary work along this line can be

found in the literature.19

To summarize the major findings and to recapitulate the

present investigation, in Sec. II we first validated the approx-

imate approach by comparing against the exact solutions,

based upon which we chose three representative input

parameters for both EMIC and EMEC instabilities, which

were extrapolated for the general case of arbitrary propaga-

tion. We then formulated the analytical model of the linear

theory of 2 D EMIC and 2 D EMEC instabilities. In Sec. III,

we extended the analysis to the quasilinear regime. In

order to simplify the quasilinear analysis, we assumed that

the particle velocity distribution functions maintain the bi-

Maxwellian form, which is an approximation, but previous

comparative studies by Refs. 25–27, and to a certain

extent, the simulation by Ref. 4, showed that such an

assumption is valid at least as a first cut approach. In the

subsequent Sec. IV, we presented some sample numerical

results in order to demonstrate the outcome of the present

theoretical formalism.

In the future, we plan to make use of the present formal-

ism to explore the quasilinear development of these instabil-

ities as they compete with other unstable modes such as the

electron/proton mirror instability.7 Such a calculation may

be useful in understanding the recent simulation work by

Ahmadi et al.5 or by Riquelme et al.,6 for instance. Finally,

the present analytical approach may be applied to the situa-

tion beyond the strict bi-Maxwellian models. One of the lim-

itations of relying on exact linear Vlasov analysis is that the

computation of the velocity integral is severely constrained

by the choice of particle velocity distributions. However, for

a relatively weak instability growth rate, for which the

FIG. 8. The instantaneous growth rate ck=Xe for three cases is plotted versus ck?=xpe and ckk=xpe.
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present analytical method is applicable, it may be possible to

analyze the unstable properties of the plasma without being

restricted by the mathematical choice of the underlying parti-

cle velocity distribution function.

ACKNOWLEDGMENTS

N.N. acknowledges support from the Higher Education

Commission (HEC), Pakistan. P.H.Y. acknowledges NSF

Grant No. AGS1550566 to the University of Maryland and

the BK21 plus program from the National Research

Foundation (NRF), Korea, to the Kyung Hee University.

1S. P. Gary and H. Karimabadi, J. Geophys. Res. 111, A11224, https://

doi.org/10.1029/2006JA011764 (2006).
2S. P. Gary, M. D. Montgomery, W. C. Feldman, and D. W. Forslund,

J. Geophys. Res. 81, 1241, https://doi.org/10.1029/JA081i007p01241 (1976).
3S. P. Gary and I. H. Cairns, J. Geophys. Res. 104, 19835, https://doi.org/

10.1029/1999JA900296 (1999).
4S. P. Gary, K. Liu, and D. Winske, Phys. Plasmas 18, 082902 (2011).
5N. Ahmadi, K. Germaschewski, and J. Raeder, J. Geophys. Res. 121,

5350, https://doi.org/10.1002/2016JA022429 (2016).
6M. A. Riquelme, E. Quataert, and D. Verscharen, Astrophys. J. 824, 123

(2016).
7N. Noreen, P. H. Yoon, R. A. L�opez, and S. Zaheer, J. Geophys. Res. 122,

6978, https://doi.org/10.1002/2017JA024248 (2017).
8S. P. Gary and J. Wang, J. Geophys. Res. 101, 10749, https://doi.org/

10.1029/96JA00323 (1996).
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