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Formation of Nonlinear Solitary Vortical Structures by Coupled Electrostatic
Drift and Ion-Acoustic Waves
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Propagation of coupled electrostatic drift and ion-acoustic waves (DIAWs) is presented. It is shown that nonlinear
solitary vortical structures can be formed by low-frequency coupled electrostatic DIAWs. Primary waves of distinct
(small, intermediate and large) scales are considered. Appropriate set of 3D equations consisting of the generalized
Hasegawa–Mima equation for the electrostatic potential (involving both vector and scalar nonlinearities) and the
equation of motion of ions parallel to magnetic field are obtained. According to experiments of laboratory plasma
mainly focused to large scale DIAWs, the possibility of self-organization of DIAWs into the nonlinear solitary
vortical structures is shown analytically. Peculiarities of scalar nonlinearities in the formation of solitary vortical
structures are widely discussed.
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Drift waves play a crucial role in the magnetic trap-
ping of plasmas. The drift waves were anticipated by
Rudakov and Sagdeev,[1] and later Mikhailovskii[2−4]

greatly contributed to this research. Horton[5] eluci-
dated a detailed survey of drift waves, turbulence and
associated anomalous transport phenomena. Evolu-
tion of this nonlinear theory brings out the concepts
of solitons, solitary waves, solitary vortices, jets, fil-
aments, convective cells, double layers, shocks, and
zonal flow, which are discussed in an intensive man-
ner for the last years.

In the present work, we discuss nonlinear solitary
vortical structures on the low-frequency coupled elec-
trostatic drift and ion-acoustic waves (DIAWs). Drift
wave propagation oscillation velocity becomes greater
than the phase velocity even at a low energy density,
thus the wave front may become curved, incorporat-
ing so-called trapped particles, and traveling vortices
may form. Description of such an effect requires ex-
amination of nonlinear equations involving the dis-
persion and non-homogeneity of plasmas. Such self-
organized structural formations have great importance
to understand the macroscopic behavior of plasmas
in laboratory and space. Nonlinear dynamics of drift
waves in plasmas is primarily identified by the clas-
sical Hasegawa–Mima (HM) equation[6,7] giving dif-
ferent solutions which involve turbulent, coherent and
wave behaviors. It should be noted that the nonlin-
ear term in the standard HM equation has the struc-
ture of type 𝐽(𝑎, 𝑏) = [∇𝑎,∇𝑏]𝑧, where 𝑎 and 𝑏 are
certain functions of wave field. Such nonlinearity is
known as vector nonlinearity and it gives the exis-
tence of dipolar vortices. In the nonlinear theory of
drift waves, Petviashvili[8] indicated the importance
of other nonlinearity, called scalar, Korteweg de Vries
(KdV)-type nonlinearity ∝ 𝜙2. This nonlinearity is
responsible for the existence of monopolar vortices.
When Petviashvili[9] was investigating the problem of
Jovian great red spot, he simultaneous firstly took
into account both vector and scalar nonlinearities.
The detailed analysis of both (monopolar and dipo-
lar) types of drift vortical structures was provided by
Mikhailovskii.[10] Later, new localizing role of both

(scalar and vector) nonlinearities in the process of for-
mation of nonlinear solitary structures was provided
by Nezlin and Chernikov,[11] and it was emphasized
that depending on the wavelengths scale drift waves,
turbulence should be described by the more complex
so-called generalized HM equation.

As in the experiments of tokamak plasmas, large-
scale drift waves (𝑘⊥𝜌s 6 1, where 𝜌s is the ion Lar-
mor radius defined at the electron temperature) are
mainly observed, here we will keep our attention to
the large-scale solitary nonlinear structures and derive
the generalized HM equation for the coupled drift-ion-
acoustic waves. A system of basic equations, consist-
ing of the general HM equation for electrostatic po-
tential and an equation describing parallel to magnetic
field ions motion valid for arbitrary wavelengths of pri-
mary waves, is inferred. Linear regime is discussed in
detail. Basic nonlinear equations are separately con-
sidered in accordance with the wavelengths (small-,
intermediate- and large-scales) of primary waves. The
possibility of formation of such spatially localized non-
linear vortical structures by coupled electrostatic DI-
AWs is considered. It is noted that such investiga-
tion was started by Meiss and Horton[12] in the case
of small-scale structures. Finally, we discuss the ob-
tained results.

We take low-frequency electrostatic waves with the
frequency much smaller than the ion cyclotron fre-
quency (i.e., 𝜔 ≪ 𝜔ci) in an inhomogeneous (with the
density 𝑛0(𝑥) and temperature 𝑇e(𝑥)) and a magne-
tized (with the magnetic field) plasma. The linear
waves will be presented in such a plasma in form of
DIAWs if the phase velocity 𝜔/𝑘𝑧 in the direction of
the magnetic field is between the electron and ion ther-
mal velocities, i.e., 𝑣Te and 𝑣Ti.

The complete descriptions of low-frequency elec-
trostatic DIAWs in plasmas are carried out by the
equation of motion and the continuity for the ions,
and the Boltzmann distribution of electrons,

𝜕𝑣

𝜕𝑡
+ (𝑣 · ∇)𝑣 = − 𝑒

𝑚
∇𝜙 + 𝜔ci𝑣 × 𝑒𝑧, (1)

𝜕𝑛

𝜕𝑡
+ ∇ · (𝑛𝑣) = 0, (2)
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𝑛 = 𝑛0(𝑥) exp
(︁ 𝑒𝜙

𝑇e(𝑥)

)︁
, (3)

where 𝑛, 𝑣, 𝑒 and 𝑚 represent the ion density, veloc-
ity, charge and mass, respectively, 𝜙(𝑡, 𝑥, 𝑦, 𝑧) is the
electrostatic potential, and 𝜔ci = 𝑒𝐵/𝑚 is the ion
cyclotron frequency. The plasma is assumed to be
quasineutral, for which 𝑛e = 𝑛. The magnetic field
𝐵 = 𝐵𝑒𝑧 is assumed to be constant, homogeneous,
and 𝑇e ≫ 𝑇i, which means that the ion pressure in
the equation of motion can be ignored. We assume
the equilibrium density 𝑛0(𝑥) and electron tempera-
ture 𝑇e(𝑥) to be inhomogeneous in the 𝑥 direction.

Electrons attain the thermal equilibrium along the
magnetic field lines by Eq. (3), thus we must need that
the electrostatic perturbation’s phase velocity 𝜔/𝑘𝑧 ≪
𝑣Te along the magnetic field. Also, this must be
smaller than the Alfven velocity 𝑐A = 𝐵/(𝜇0𝑛0𝑚)1/2,
which is why we can ignore magnetic field perturba-
tions due to the parallel current. Therefore, 𝑘𝑧 must
be finite.

We take the drift wave’s coupling with ion-acoustic
ones and assume 𝑧-dependence of the fields is weak.
Taking the curl of Eq. (1) and using Eq. (2) we obtain
the following ‘freezing-in field equation’[13]

(︁ 𝜕

𝜕𝑡
+ 𝑣 · ∇

)︁(︁𝑒𝑧𝜔ci + Ω

𝑛

)︁
=

(︁𝑒𝑧𝜔ci + Ω

𝑛
· ∇

)︁
𝑣, (4)

where Ω = ∇×𝑣 is the vorticity. This equation is valid
for the 3D perturbations, and the new term describes
vortex stretching on the right-hand side.

Further we will apply the small expansion param-
eter 𝜀,

𝜀 ∼ 1

𝜔ci

𝜕

𝜕𝑡
∼ 1

𝑘𝑧𝑣Te

𝜕

𝜕𝑡
∼ Ω

𝜔ci
∼ 𝑒𝜙

𝑇e
∼ 𝐿

𝐿𝑛,𝑇
≪ 1, (5)

where 𝐿 is the typical length scale of fluctuation,
𝐿𝑛,𝑇 is the equilibrium density’s inhomogeneity scale
and temperature, respectively. The ion Larmor ra-
dius, which is the characteristic wave dispersion scale
length, is 𝜌s = (𝑇e/𝑚𝜔2

ci)
1/2 defined at the electron

temperature 𝑇e.
We represent the particle’s total velocity as 𝑣 =

𝑣⊥ + 𝑒𝑧𝑤 to express Eq. (4) in terms of potential
𝜙(𝑡, 𝑥, 𝑦, 𝑧). For low-frequency waves 𝜔 ≪ 𝜔ci, Eq. (1)
implies[10]

𝑣⊥ = 𝑣E + 𝑣I, (6)

where 𝑣E is the electric drift velocity (or cross field
drift velocity) defined as

𝑣E =
1

𝐵
𝑒𝑧 ×∇⊥𝜙 =

1

𝐵
𝐸 × 𝑒𝑧, (7)

and 𝑣I is the inertial part of the transverse velocity

𝑣I =
1

𝜔ci
𝑒𝑧 ×

𝑑0
𝑑𝑡

𝑣E, (8)

where 𝑑0/𝑑𝑡 = 𝜕/𝜕𝑡 + 𝑣E · ∇ + 𝑤𝜕/𝜕𝑧.

Taking into account the conditions (5) and using
Eqs. (6)–(8) in the 𝑧-component of Eq. (4) we obtain

𝜕𝜙

𝜕𝑡
− 𝜌2s

𝜕

𝜕𝑡
∆⊥𝜙− 𝜌2s𝜔ci

1

𝑛0

𝑑𝑛0

𝑑𝑥

𝜕𝜙

𝜕𝑦

+ 𝜌2s𝜔ci
1

𝑇e

𝑑𝑇e

𝑑𝑥
𝜙
𝜕𝜙

𝜕𝑦
− 𝜌4s𝜔ci𝐽(𝜙,∆⊥𝜙)

+ 𝑤
𝜕𝜙

𝜕𝑧
+

𝜕𝑤

𝜕𝑧
− 𝜌2s𝑤

𝜕

𝜕𝑧
∆⊥𝜙

+ 𝜌2s∆⊥𝜙
𝜕𝑤

𝜕𝑧
− 𝜌2s

𝜕𝑤

𝜕𝑥

𝜕2𝜙

𝜕𝑥𝜕𝑧

− 𝜌2s
𝜕𝑤

𝜕𝑦

𝜕2𝜙

𝜕𝑦𝜕𝑧
= 0. (9)

From the 𝑧-component of the equation of motion (1),
we obtain the other equation which describes the par-
allel to the magnetic field ions motion,

𝜕𝑤

𝜕𝑡
+ 𝜌2s𝜔ci𝐽(𝜙,𝑤) + 𝑤

𝜕𝑤

𝜕𝑧
= −𝑣2s

𝜕𝜙

𝜕𝑧
, (10)

where 𝑣s = (𝑇e/𝑚)1/2 is the ion-acoustic speed,
𝐽(𝑎, 𝑏) = 𝜕𝑥𝑎𝜕𝑦𝑏− 𝜕𝑦𝑎𝜕𝑥𝑏 is the Jacobian, and ∆⊥ =
𝜕2/𝜕𝑥2 + 𝜕2/𝜕𝑦2 is the 2D Laplacian. Equations (9)
and (10) describe the initial closed system of equations
which are valid for arbitrary 𝑘⊥𝜌s. In these equations
potential 𝜙 is normalized by 𝑇e/𝑒. As to the ion par-
allel motion, Eq. (10) contains both vector and scalar
nonlinearities. Note that in Eq. (9) we keep the fourth
small linear term to show the tendency of linear waves
to instability.

The generalized Eq. (9) contains an additional
three new scalar nonlinearities of KdV type:
𝜌2s𝜔ci

1
𝑇e

𝑑𝑇e

𝑑𝑥 𝜙𝜕𝜙
𝜕𝑦 compared with the classical HM equa-

tion with respect to the drift waves. The standard
HM equation contains only the vector nonlinearity
𝜌4s𝜔ci𝐽(𝜙,∆⊥𝜙), which is valid only for the small-
scale structures when the characteristic size 𝐿 6 𝜌s
and it predicts the existence of only dipolar vortices
(cyclone–anticyclone pairs). Generalizing the HM
equation, Eq. (9) containing scalar nonlinearities could
describe solitary monopole-type vortices (i.e., either
cyclones or anticyclones). Monopolar solitary struc-
tures were first observed in laboratory modeling of
solitary Rossby vortices.[14] In the numerical work of
Kaladze et al.,[15] it was shown that the presence of the
scalar nonlinearity plays the role of instability form-
ing monopole vortical structures of definite polarity
as a result of breaking large-scale dipole ones. The
new type mechanism of the formation of solitary drift
vortical structures due to the mutual action of scalar
and vector nonlinearities was elucidated by Nezlin and
Chernikov.[11] Dynamics of large-scale drift vortical
structures in electron-positron-ion plasmas was dis-
cussed in Kaladze et al.[16] It was shown by Kaladze
et al.[17] that in the Earth’s Hall conductive iono-
spheric E-layer, due to the latitudinal inhomogeneity
of both the Coriolis parameter and the geomagnetic
field, large-scale ULF coupled Rossby–Khantadze elec-
tromagnetic (EM) waves can be self-organized into
localized (solitary) dipole nonlinear structures prop-
agating parallel against the background of mean flow.
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Recently, the generation of zonal flow by coupled elec-
trostatics drift and ion-acoustic waves has been dis-
cussed by Kaladze et al.[18]

From Eqs. (9) and (10) for the linear regime, we
obtain the following system of equations

𝜕𝜙

𝜕𝑡
− 𝜌2s

𝜕

𝜕𝑡
∆⊥𝜙− 𝜌2s𝜔ci

1

𝑛0

𝑑𝑛0

𝑑𝑥

𝜕𝜙

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
= 0,

𝜕𝑤

𝜕𝑡
= −𝑣2s

𝜕𝜙

𝜕𝑧
. (11)

Taking the derivative of the first equation over 𝑡 and
using the second equation we obtain the following cou-
pled drift-ion acoustic waves equation

𝜕2𝜙

𝜕𝑡2
−𝜌2s

𝜕2

𝜕𝑡2
∆⊥𝜙−𝜌2s𝜔ci

1

𝑛0

𝑑𝑛0

𝑑𝑥

𝜕2𝜙

𝜕𝑡𝜕𝑦
−𝑣2s

𝜕2𝜙

𝜕𝑧2
= 0.

(12)

In the (𝑘, 𝜔) space we obtain the following appropriate
algebraic equation

𝜔2(1 + 𝑘2⊥𝜌
2
s ) − 𝜔𝑘𝑦𝜌

2
s𝛽𝑛𝜔ci − 𝑘2𝑧𝑣

2
s = 0, (13)

where 𝛽𝑛 = − 1
𝑛0

𝑑𝑛0

𝑑𝑥 > 0. The roots of this equation
are given as follows:

𝜔1,2 =
𝑘𝑦𝜌

2
s𝜔ci𝛽𝑛 ±

√︁
𝑘2𝑦𝜌

4
s𝜔

2
ci𝛽

2
𝑛 + 4𝑘2𝑧𝑣

2
s (1 + 𝑘2⊥𝜌

2
s )

2(1 + 𝑘2⊥𝜌
2
s )

,
(14)

where 𝜔1 corresponds to the fast, and 𝜔2 to the slow
coupled DIAWs.

From Eq. (14) for the generated wave frequencies
we obtain the following expressions for linear phase
velocities,

(︁ 𝜔

𝑘𝑦

)︁
1,2

=
𝑣*

2(1 + 𝑘2⊥𝜌
2
s )

{︁
1 +

[︁
1 + 4

𝑘2𝑧
𝑘2𝑦

1

𝜌2s𝛽
2
𝑛

(1

+ 𝑘2⊥𝜌
2
s )
]︁1/2}︁

, (15)

where 𝑣* = 𝛽𝜌2s𝜔ci is diamagnetic drift velocity ob-
tained at the electron temperature.

In the case of 𝑘𝑧 = 0, we have the pure drift waves

𝜔1 =
𝑘𝑦𝑣

*

1 + 𝑘2⊥𝜌
2
s

. (16)

In the case of 𝑘𝑦 = 0, we have the pure ion-acoustic
waves

𝜔1,2 = ± 𝑘𝑧𝑣s√︀
1 + 𝑘2⊥𝜌

2
s

. (17)

It is seen that the ion-acoustic waves become disper-
sive due to the coupling with drift waves.

For the sufficiently small longitudinal wave num-
bers 𝑘𝑧 ≪ 𝑘𝑦, we will obtain the following mixed fre-
quencies

𝜔1 =
𝑘𝑦𝑣

*

1+𝑘2⊥𝜌
2
s

(︁
1+

𝑘2𝑧𝑣
2
s (1+𝑘2⊥𝜌

2
s )

𝑘2𝑦𝑣
*2

)︁
, 𝜔2 = −𝑘2𝑧𝑣

2
s

𝑘𝑦𝑣*
,

(18)

where 𝜔1 and 𝜔2 correspond to upper and bottom
signs, respectively, in Eq. (17).

For sufficiently small 𝑘𝑦 ≪ 𝑘𝑧, we obtain

𝜔1 =
𝑘𝑧𝑣s√︀

1 + 𝑘2⊥𝜌
2
s

(︁
1 +

𝑘𝑦𝑣
*

2𝑘𝑧𝑣s
√︀

1 + 𝑘2⊥𝜌
2
s

)︁
,

𝜔2 = − 𝑘𝑧𝑣s√︀
1 + 𝑘2⊥𝜌

2
s

(︁
1 − 𝑘𝑦𝑣

*

2𝑘𝑧𝑣s
√︀

1 + 𝑘2⊥𝜌
2
s

)︁
. (19)

For nonlinear regime, here we will take Eqs. (9) and
(10) for different wavelength’s scales and obtain ap-
propriate nonlinear equations.

For intermediate wavelengths 𝑘⊥𝜌s > 1, using es-
timations

𝜔 ∼ 𝑘𝑦|
1

𝑛0

𝑑𝑛0

𝑑𝑥
|𝜌2s𝜔ci ∼ 𝑘2⊥𝜌

2
s𝜔ci

𝐿

𝐿𝑛
∼ 𝜔ci

𝐿

𝐿𝑛
∼ 𝑘𝑧𝑣s,

(20)

we obtain 𝑘𝑧 ∼ 1/𝐿𝑛. Further comparing first terms
of both sides in Eq. (10) we obtain 𝑤 ∼ 𝑘𝑧𝜙𝑣

2
s /𝜔.

Putting here 𝜔 ≈ 𝑘𝑧𝑣s, we obtain estimation

𝜔𝜙 ∼ 𝑘𝑧𝑤 ∼ 𝑤

𝐿𝑛
. (21)

Under conditions (20) and (21) we obtain the follow-
ing system of simplified initial equations of Eqs. (9)
and (10) as follows:[14]

𝜕𝜙

𝜕𝑡
− 𝜌2s

𝜕

𝜕𝑡
∆⊥𝜙 + 𝜌2s𝜔ci𝛽𝑛

𝜕𝜙

𝜕𝑦

− 𝜌4s𝜔ci𝐽(𝜙,∆⊥𝜙) +
𝜕𝑤

𝜕𝑧
= 0,

𝜕𝑤

𝜕𝑡
+ 𝜌2s𝜔ci𝐽(𝜙,𝑤) = −𝑣2s

𝜕𝜙

𝜕𝑧
. (22)

For large-scale wavelengths 𝑘⊥𝜌s ≪ 1, as it is seen
from Eq. (20),

𝜔𝜙 ∼ 𝑘𝑧𝑤 ∼ 𝜔ci𝑘
2
⊥𝜌

2
s

𝐿

𝐿𝑛
𝜙. (23)

Under this condition, Eqs. (9) and (10) can be reduced
to

𝜕𝜙

𝜕𝑡
− 𝜌2s

𝜕

𝜕𝑡
∆⊥𝜙 + 𝜌2s𝜔ci𝛽𝑛

𝜕𝜙

𝜕𝑦
− 𝜌2s𝜔ci𝛽T𝜙

𝜕𝜙

𝜕𝑦

− 𝜌4s𝜔ci𝐽(𝜙,∆⊥𝜙) + 𝑤
𝜕𝜙

𝜕𝑧
+

𝜕𝑤

𝜕𝑧
= 0,

𝜕𝑤

𝜕𝑡
+ 𝜌2s𝜔ci𝐽(𝜙,𝑤) + 𝑣2s

𝜕𝜙

𝜕𝑧
= 0, (24)

where 𝛽T = − 1
𝑇e

𝑑𝑇e

𝑑𝑥 > 0. It is seen that both non-
linearities in Eq. (24) are of the same order when
𝑘2⊥𝜌

2
s ∼ 𝐿/𝐿T.
Vortex structures deserve attention because they

carry along trapped medium particles and thus make
an essential contribution to global circulation pro-
cesses. Next, we will construct the appropriate nonlin-
ear solitary vortices on the basis of equations obtained
above.[19]

For intermediate-scale structures, 𝑘⊥𝜌s > 1, if we
normalize time by 𝜔−1

ci , lengths by 𝜌s, and velocity 𝑤
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by 𝜌s𝜔ci then we can rewrite the system (22) in the
following dimensionless form

𝜕𝜙

𝜕𝑡
− 𝜕

𝜕𝑡
∆⊥𝜙 + 𝛽𝑛

𝜕𝜙

𝜕𝑦
− 𝐽(𝜙,∆⊥𝜙) +

𝜕𝑤

𝜕𝑧
= 0,

𝜕𝑤

𝜕𝑡
+ 𝐽(𝜙,𝑤) +

𝜕𝜙

𝜕𝑧
= 0, (25)

where 𝛽𝑛 = − 1
𝑛0

𝑑𝑛0

𝑑𝑥 > 0 is the dimensionless value.
As the system (25) contains only the vector non-
linearity, it is expected that it has a dipolar vor-
tex solution.[20] Such solutions have been constructed
by Meiss and Horton[12] and we will represent here
only the final results. Let us find the solutions 𝜑
and 𝑤 of system (25) in the form of traveling along
the 𝑦-axis waves, i.e., 𝑋(𝑥, 𝑦, 𝑧, 𝑡) ⇒ 𝑋(𝑥, 𝜂), where
𝜂 = 𝑦 − 𝑈𝑡 + 𝛼𝑧. In this transformation, 𝑈 is the
velocity of vortical structure propagating at the right
angle to the magnetic field, and 𝛼 is the inclination
angle of vortex front with respect to the plane, which
is normal to 𝐵0𝑒𝑧. Thus small angles 𝛼 ≪ 1 corre-
spond to the waves propagating almost perpendicular
to the equilibrium magnetic field 𝐵0𝑒𝑧. Then the sys-
tem (25) can be transformed in terms of Jacobians as
follows:

𝐽(𝜙− 𝑈𝑥,∆⊥𝜙− 𝑈𝑥 + 𝛽𝑛𝑥) =𝐽(𝛼𝑥,𝑤),

𝐽(𝜙− 𝑈𝑥,𝑤 − 𝛼𝑥) = 0. (26)

Choosing zero boundary conditions at infinity (𝑤,𝜙 →
0) we determine the particular solution of the second
equation of (26) as

𝑤 =
𝛼

𝑈
𝜙. (27)

Substituting Eq. (27) into the first equation of (26)
gives

𝐽
(︁
𝜙− 𝑈𝑥,∆⊥𝜙− 𝑈𝑥 + 𝛽𝑛𝑥 +

𝛼2

𝑈
𝑥
)︁

= 0. (28)

Introducing the circle of 𝑟 = 𝑎 radius we divide the
integration area into the internal (𝑟 < 𝑎) and the ex-
ternal (𝑟 > 𝑎) regions. Accordingly, we obtain the
following equation for external region,[12]

∆⊥𝜙e =
(︁

1 − 𝛽𝑛

𝑈
− 𝛼2

𝑈2

)︁
𝜙e, for 𝑟 > 𝑎. (29)

Similarly for the inner region we obtain the following
appropriate equation

∆⊥𝜙i =
(︁
𝑈 − 𝛽𝑛 − 𝛼2

𝑈

)︁
𝑥− 𝐶i(𝜙i − 𝑈𝑥), for 𝑟 > 𝑎,

(30)

where 𝐶i is an integration constant. Solutions to
Eq. (29), and Eq. (30) in the (𝑥, 𝜂) plane can be rep-
resented in the polar coordinates 𝑟 and 𝜗, i.e., 𝑥 =
𝑟 cos𝜗 and 𝑦 = 𝑟 sin𝜗. As we are looking for the ex-
ponentially vanishing at infinity (𝑟 → ∞) solution to
Eq. (29) then the following condition should be satis-
fied,

𝑝2 = 1 − 𝛼2

𝑈2
− 𝛽𝑛

𝑈
> 0. (31)

This equation is called the modified dispersion equa-
tion (MDE) of vortex. Then particular solution to
Eq. (29) in the external region is[12]

𝜙e(𝑟, 𝜗) = 𝐵𝐾1(𝑝𝑟) cos𝜗, for 𝑟 > 𝑎, (32)

where 𝐵 and 𝑝 > 0 are constants, while 𝐾𝑛 is the
McDonald function. Using formal substitutions 𝑝2 →
−𝑘2⊥, 𝑈 → 𝜔/𝑘𝑦, 𝛼 → 𝑘𝑧/𝑘𝑦 from the MDE equa-
tion we obtain the linear dispersion relation (14) in
dimensionless variables. The inequality (31) defines
the following areas of vortex velocity:

𝑈 >
1

2
(𝛽𝑛 +

√︀
𝛽2
𝑛 + 4𝛼2), positive velocities, (33)

𝑈 <
1

2
(𝛽𝑛 −

√︀
𝛽2
𝑛 + 4𝛼2), negative velocities. (34)

It is obvious that these intervals are outside the lin-
ear waves phase velocities intervals (15), which is the
necessary condition for zero linear wave radiation by
vortices.

As to the internal solution to Eq. (30) it can be
found in terms of the Bessel functions of first kind 𝐽𝑛
as follows:[12]

𝜙i(𝑟, 𝜗) =
[︁
𝐴𝐽1(𝑘𝑟) +

𝑝2 + 𝑘2

𝑘2
𝑈𝑟

]︁
cos𝜗, for 𝑟 < 𝑎.

(35)

where 𝐴 is a constant, and 𝑘2 = 𝐶i.
Correspondingly we can find the following expres-

sions for the vorticities,

∆⊥𝜙e =𝐵𝑝2𝐾1(𝑝𝑟) cos𝜗,

∆⊥𝜙i = −𝐴𝑘2𝐽1(𝑘𝑟) cos𝜗. (36)

To satisfy the solutions (26) on the circle 𝑟 = 𝑎 (i.e.,
on the whole 𝑥, 𝜂 plane) we require the fulfillment of
the following boundary conditions

𝜙i − 𝑈𝑟 cos𝜗|𝑟=𝑎 = 𝜙e − 𝑈𝑟 cos𝜗|𝑟=𝑎 = 0. (37)

From these conditions we define the integration con-
stants

𝐴 = −𝑝2

𝑘2
𝑈𝑎

𝐽1(𝑘𝑎)
, 𝐵 =

𝑈𝑎

𝐾1(𝑘𝑎)
. (38)

Note that with Eq. (38) the solutions (32), (35) and
vorticities (36) are also continuous. Condition (37) is
equivalent to the demand radial velocity component
in the reference frame moving with velocity 𝑈 to be
zero on the circle 𝑟 = 𝑎. Owing to Eq. (37) the cir-
cle 𝑟 = 𝑎 becomes a streamline. Lastly, requiring the
continuity of the first derivatives

𝜕𝜙i

𝜕𝑟

⃒⃒⃒
𝑟=𝑎

=
𝜕𝜙e

𝜕𝑟

⃒⃒⃒
𝑟=𝑎

, (39)

we obtain the so-called parameter matching condition
(PMC)

𝐽2(𝑘𝑎)

𝑘𝑎𝐽1(𝑘𝑎)
= − 𝐾2(𝑝𝑎)

𝑝𝑎𝐽1(𝑝𝑎)
, (40)
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which connects the parameters 𝑘, 𝑝 and 𝑎, and two
of them may be considered as the independent ones.
Physically the condition (39) corresponds to the con-
tinuity of tangent velocities, i.e., to the slipless motion
of the fluid. Thus only three parameters 𝛼, 𝑈 and 𝑎
remain undefined in the solution.

For large-scale structures, 𝑘⊥𝜌s ≪ 1, if we normal-
ize the time by 𝜔−1

ci , the lengths by 𝜌s, and the velocity
𝑤 by 𝜌s𝜔ci then we rewrite the system of Eq. (24) in
the following dimensionless system form

𝜕𝜙

𝜕𝑡
− 𝜕

𝜕𝑡
∆⊥𝜙 + 𝛽𝑛

𝜕𝜙

𝜕𝑦
− 𝛽T𝜙

𝜕𝜙

𝜕𝑦

− 𝐽(𝜙,∆⊥𝜙) + 𝑤
𝜕𝑤

𝜕𝑧
+

𝜕𝑤

𝜕𝑧
= 0,

𝜕𝑤

𝜕𝑡
+ 𝐽(𝜙,𝑤) +

𝜕𝜙

𝜕𝑧
= 0, (41)

where 𝛽𝑛 = − 1
𝑛0

𝑑𝑛0

𝑑𝑥 > 0 and 𝛽T = − 1
𝑇e

𝑑𝑇e

𝑑𝑥 > 0 are
the dimensionless values. Note that in Eq. (41) the
scalar and vector nonlinearities are of the same or-
der only in the case of large-scale structures, when
𝐿3/𝐿T ∼ 1.

If 𝐿3/𝐿T ≪ 1, we can ignore the scalar nonlin-
earity and the sixth nonlinear term in Eq. (41). Then
we obtain the system (25) describing dipole vortical
structures which have been considered. Significant
difference from the solution (32) is the weak spatial
localization of dipole vortices owing to the condition
𝑘⊥𝜌s ≪ 1, which means the parameter 𝑝 → 0.

If 𝐿3/𝐿T ≫ 1 from the system (41) we obtain the
following one

𝜕𝜙

𝜕𝑡
− 𝜕

𝜕𝑡
∆⊥𝜙 + 𝛽𝑛

𝜕𝜙

𝜕𝑦
−𝛽T𝜙

𝜕𝜙

𝜕𝑦
+𝑤

𝜕𝑤

𝜕𝑧
+
𝜕𝑤

𝜕𝑧
= 0,

𝜕𝑤

𝜕𝑡
+ 𝐽(𝜙,𝑤) +

𝜕𝜙

𝜕𝑧
= 0. (42)

This system contains the scalar nonlinearities and we
expect to find the monopolar vortical solutions. In the
case of the traveling waves 𝜂 = 𝑦−𝑈𝑡+𝛼𝑧, solution of
the second equation of (42) can be represented in the
form (33). Substituting this solution 𝑤 into Eq. (40)
gives(︁

1− 𝛼2

𝑈2
− 𝛽𝑛

𝑈

)︁𝜕𝜙
𝜕𝜂

− 𝜕

𝜕𝜂
∆⊥𝜙+

1

2

(︁𝛽T

𝑈
− 𝛼2

𝑈2

)︁𝜕𝜙2

𝜕𝜂
= 0.
(43)

Integration over 𝜂 yields

∆⊥𝜙− Λ𝜙 + 𝑆𝜙2 = 0, (44)

where

Λ = 1 − 𝛼2

𝑈2
− 𝛽𝑛

𝑈
, 𝑆 = − 1

2𝑈

(︁
𝛽T − 𝛼2

𝑈

)︁
. (45)

Equation (44) describes the scalar structures on the
drift-ion-acoustic waves. It is evident that even when
the temperature gradient parameter 𝛽T = 0, the
scalar nonlinearity coming from the fifth term of
Eq. (43) supports the solitary structure.

Further we use the technique developed by
Mikhailovskii[10] to obtain the explicit soliton solu-
tion. For sufficiently far distances, Eq. (44) reduces

to linear Eq. (29) with Λ > 0. Thus in the case of the
scalar structures (as in the case of vector ones), the
condition of spatially isolated structures means Λ > 0.
Multiplying Eq. (44) by 𝜙 and integrating over space
we obtain the following integral form∫︁

[(∇⊥𝜙)2 + Λ𝜙2 − 𝑆𝜙3]𝑑𝑟⊥ = 0. (46)

As Λ > 0, the given integral can be zero if sgn𝜙 =
sgn𝑆.

To obtain the analytical solution of scalar vortical
structures we examine the one-dimensional case when
𝜕2/𝜕𝑥2 ≪ 𝜕2/𝜕𝜂2, then Eq. (44) reduces to

𝜕2𝜙

𝜕𝜂2
− Λ𝜙 + 𝑆𝜙2 = 0. (47)

This equation has the following soliton solution

𝜙(𝜂) = 𝜙0 cosh−2(Λ1/2𝜂/2), (48)

where the amplitude is 𝜙0 = 3
2
Λ
𝑆 .

In summary, we have shown the possibility of for-
mation of nonlinear solitary vortical structures on the
low-frequency coupled electrostatic DIAWs. Taking
into account results of laboratory plasma experiments
we focus on large-scale (𝑘⊥𝜌s ≪ 1) coupled DIAWs.
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