ORIGINAL ARTICLE

Shape- and size-controlled superparamagnetic iron oxide nanoparticles using various reducing agents and their relaxometric properties by Xigo acorn area

Shahid Ali1 · Safyan A. Khan1 · Zain H. Yamani1 · Muhammad T. Qamar2 · Mohamed A. Morsy³ · Sadaf Sarfraz4

Received: 10 October 2018 / Accepted: 26 October 2018 © Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract

Superparamagnetic iron oxide nanoparticles (SPIONs) were investigated owing to their potential relaxometric properties for magnetic resonance imaging (MRI) applications. For this purpose, shape- and size-controlled SPIONs were prepared using various reducing agents via a facile chemical coprecipitation method. The optimization of reaction parameters such as stirring rate, temperature, reaction time, and pH was carried out to study the particle's growth, size, and shape of nanoparticles (NPs). Transmission electron microscopy (TEM) images reveal that the spherical $(9.1 \pm 1.5 \text{ nm})$ - and cubic $(11.7 \pm 1.8 \text{ nm})$ shaped NPs were attained using NH4OH and NaOH as reducing agents, respectively. X-ray diffraction (XRD) analysis of as-synthesized SPIONs shows the formation of magnetite (Fe_3O_4) phase having cubic inverse spinel structure. The various oxidation states of Fe were investigated via X-ray photoelectron spectroscopy (XPS) by analyzing Fe 2*p* spectra of SPIONs. The magnetic character and chemical stability of SPIONs were monitored in the synthetic seawater (SW) having salinity 36.03 g L⁻¹; which is the critical requirement for oil reservoir applications. Spin–spin (T_2) relaxation signals were attained using miniaturized Acorn Area analyzer to determine the relaxometric properties. The transverse relaxivities (r_2) for MNP–NH₄OH (41.0 mM⁻¹ s⁻¹) and MNP–NaOH (28.5 mM⁻¹ s⁻¹) were 2.11 and 1.47 times higher than MNP–KOH $(19.4 \text{ mM}^{-1} \text{ s}^{-1})$, respectively. This study affirms that by controlling the reaction parameters, we can selectively design Fe₃O₄ NPs of desired size and shape, which give enhanced T_2 -relaxation and excellent relaxivity properties in SW for potential MRI applications associated with oil reservoirs.

Keywords SPIONs · Reducing agents \cdot T_2 -relaxation \cdot Xigo Acorn area \cdot Relaxometric properties

Electronic supplementary material The online version of this article [\(https://doi.org/10.1007/s13204-018-0907-5\)](https://doi.org/10.1007/s13204-018-0907-5) contains supplementary material, which is available to authorized users.

 \boxtimes Shahid Ali shali@kfupm.edu.sa

 \boxtimes Safyan A. Khan safyan@kfupm.edu.sa

- Center of Research Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
- ² Department of Chemistry, Forman Christian College (A Chartered University), Ferozepur Road, Lahore 54600, Pakistan
- ³ Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
- Department of Chemistry, Lahore Garrison University, Lahore, Pakistan

Introduction

Superparamagnetic iron oxide nanoparticles (SPIONs) have received substantial interest owing to their potential applications in the field of magnetic storage (Liu et al. [2005](#page-9-0)), catalysis (Wu et al. [2009;](#page-10-0) Gawande et al. [2013\)](#page-9-1), electrocatalysis (Mitra et al. [2006](#page-10-1); Odagawa et al. [2007\)](#page-10-2), bimolecular separation (Moeser et al. [2002](#page-10-3); Ditsch et al. [2005\)](#page-9-2), and biomedical field, e.g., hyperthermia treatments (Shi et al. [2009](#page-10-4); Jiang et al. [2014\)](#page-9-3), targeted drug delivery (Kim et al. [2008b](#page-9-4); Maeng et al. [2010\)](#page-9-5), and contrast agents for magnetic resonance imaging (MRI) (Wang et al. [2010](#page-10-5)). In the past 2 decades, researchers extensively investigated SPIONs as contrast agents for biomedical imaging. Recently, hydrophilic and hydrophobic SPIONs have also been reported as contrast agents for MRI of the oil reservoirs (Chi et al. [2016](#page-9-6); Zhang and Daigle [2017\)](#page-10-6). However, the efficiency/contrasting

ability of these nano-contrast agents remains a challenging area of research.

The contrasting ability of MRI contrast agents is conventionally represented by longitudinal (r_1) and transverse (r_2) relaxivities, which can be evaluated from spin–lattice (T_1) relaxation and spin–spin (T_2) relaxation, respectively. The positive contrast agents enhance T_1 -relaxation and provide a brighter image, while negative contrast agents increase the T_2 -relaxation and deliver a darker image in MRI (Li et al. [2012\)](#page-9-7). It is well known that T_2 -relaxation signal depends on the size and shape homogeneity of NPs; smaller size delivers higher r_2 value (Gao et al. [2016\)](#page-9-8). Therefore, the current research work is focused on investigating the capability of size- and shape-controlled magnetite $(Fe₃O₄)$ NPs as T_2 -contrast agents by computing r_2 -relaxivity. For such applications, the importance of finely tuned size- and shapecontrolled SPIONs is crucial.

Various synthesis protocols such as thermal decomposition (Unni et al. [2017](#page-10-7)), hydrothermal (Kolen'ko et al. [2014](#page-9-9)), solvothermal (Patsula et al. [2016\)](#page-10-8), thermolysis (Cha et al. [2010\)](#page-9-10), microemulsion (Okoli et al. [2012\)](#page-10-9), polyol (Abbas et al. [2014](#page-9-11)), and coprecipitation method (Yazdani and Seddigh [2016](#page-10-10); Khan et al. [2017](#page-9-12)) have been adopted to control the size and shape of SPIONs. Amongst these, coprecipitation is one of the most convenient, widely adopted, and commercially viable methods for aqueous phase synthesis of magnetite NPs. Moreover, coprecipitation can be performed at a relatively low temperature within short reaction time. The synthesis involves coprecipitation of Fe^{3+} and Fe^{2+} (2:1) in the presence of a reducing agent under an inert atmosphere to produce magnetite ($Fe₃O₄$) NPs based on chemical equation (1) (1) (Roth et al. [2015\)](#page-10-11):

$$
2 \text{ Fe}^{3+} + \text{ Fe}^{2+} + 8 \text{ OH}^- \rightarrow \text{ Fe}_3\text{O}_4 + 4 \text{ H}_2\text{O}. \tag{1}
$$

To achieve the distinctive characteristics of magnetite NPs, various reducing agents such as $NH₄OH$ (Tajabadi and Khosroshahi [2012\)](#page-10-12), KOH (Du et al. [2009](#page-9-13)), NaOH (Sayar et al. 2006), and $(C_2H_5)_4NOH$ (Mascolo et al. 2013) have been utilized in coprecipitation method. The addition of different precipitants manipulates the pH of precursor's $(Fe²⁺)$ and Fe³⁺) solution to reach around 9–10 at which Fe₃O₄ NPs produced. The mechanism of $Fe₃O₄$ NPs formation during coprecipitation was not clearly understood. Recently, reaction pathways of magnetite NPs have been investigated based on the rate of addition of a reducing agent into precursor's mixture (Ahn et al. [2012](#page-9-14)). Upon fast addition, goethite (α -FeOOH) and ferrous hydroxide (Fe(OH)₂) are the key intermediates controlling phase transformation and growth of stable $Fe₃O₄$ NPs.

The magnetite NPs reveal a variety of applications due to their high saturation magnetization ($M_S^{\text{bulk}} \sim 92 \text{ emu } g^{-1}$) (Nikiforov et al. [2013\)](#page-10-15). The magnetic characteristics of $Fe₃O₄$ are size dependent and show superparamagnetic

characteristics at room temperature when their size is <25 nm (Khosroshahi and Tajabadi [2016](#page-9-15)). This phenomenon allows the suitability of SPIONs in various MRI applications. However, it is difficult to control the size and shape of $Fe₃O₄$ NPs during the synthesis as only kinetic factors are available to monitor the growth. To overcome this obstacle, various approaches were adopted such as the use of chelating agents and tight control over reaction parameters, i.e., temperature, pH, metal cation concentrations, stirring rate, and type of reducing agent. In addition, various surfactants can be added to the reaction mixture, where micelle control the size and shape of NPs in continuous phase (Willard et al. [2004\)](#page-10-16). However, it is laborious work to remove surfactant from nanoparticle's surface entirely, which results in decreasing their superparamagnetic characteristics. Thus, controlling size and shape of SPIONs without using surfactant remain a challenging task.

Over the years, researchers investigated the effect of different reaction parameters on particle size of $Fe₃O₄$ NPs synthesized via coprecipitation protocol. The average crystallite size of magnetite NPs gradually decreased from 24.0 to 22.3 nm until 700 rpm and then contrarily increased to 25 nm until 900 rpm (Rahmawati et al. [2017](#page-10-17)). The effect of temperature (20, 70 °C) and NH₄OH concentration (0.9–2.1 M) was also studied on size and magnetic properties of $Fe₃O₄$ NPs (Tajabadi and Khosroshahi [2012](#page-10-12)). The role of pH has been investigated on structural, optical, and magnetic properties of $Fe₃O₄$ NPs. The complete coprecipitation of magnetite NPs occurred at high pH 10 (Wu et al. [2008](#page-10-18); Rani and Varma [2015](#page-10-19)). It is challenging to synthesize pure magnetite phase with less concentration of OH− ions efficiently.

The size of $Fe₃O₄$ NPs controlled between 8 and 50 nm by varying the amount of urea decomposition via adjusting the reaction time (Jiang et al. [2004](#page-9-16)). Furthermore, the role of reaction parameters on particle size has also been investigated during coprecipitation and the smallest particle size attained was 40.9 nm with a polydispersity of 0.194 (Sayar et al. [2006\)](#page-10-13). The observed particle size was still higher than the critical diameter ($D_p \sim 25$ nm) for magnetite NPs to behave like superparamagnetic materials. It is hard to find a comprehensive published work which systematically focuses on the influence of all possible parameters on size, shape, and magnetic properties of magnetite NPs. In most of the reported studies, only one or two parameters are considered together, which may not be sufficient to fully understand the effects of interdependent optimum conditions for shape- and size-controlled coprecipitation of $Fe₃O₄$ NPs.

In the present work, we experimentally optimized a range of possible reaction parameters to obtain relatively smaller particle size (<15 nm) and various shapes of SPIONs via chemical coprecipitation. We extensively investigated the role of stirring rate, temperature, reaction time, pH, and

type of reducing agent on nucleation, particle's growth, size, shape, and morphology of SPIONs via TEM. The synthesized SPIONs were further characterized by various material characterization techniques. Finally, T_2 -relaxation measurements and relaxometry properties of synthesized SPIONs were investigated in harsh saline water to determine the possibility of these contrast agents for MRI of the oil reservoirs. The presented work describes the novelty in terms of synthesis of shape-controlled SPIONs under optimum conditions without using a surfactant and determination of relaxometric properties using a miniaturized revolutionary instrument, i.e., Acorn Area analyzer.

Experimental

Synthesis of SPIONs

SPIONs were prepared via chemical coprecipitation of $Fe³⁺$ and $Fe²⁺$ (2:1) using NH₄OH as a reducing agent. The mixing was performed by overhead Teflon stirrer in Ar atmosphere. A series of experiments (E1–E16, Table [1\)](#page-2-0) were conducted to optimize the stirring rate, temperature, pH, and reaction time for synthesis of SPIONs. After optimizing the reaction parameters with $NH₄OH$, three experiments (E17–E19, Table [1\)](#page-2-0) were further performed to study the effect of reducing agents ($NH₄OH$, KOH, and NaOH) on particle shape, size, and magnetic properties of SPIONs. The magnetite NPs synthesized by various reducing agents were labeled as MNP–NH₄OH, MNP–KOH, and MNP–NaOH, respectively. For each experiment, 0.5 mL of conc. HCl was mixed with 50 mL of deionized water to make it acidified (pH 1.5) and purged it with Ar gas for 15 min. Then, 0.6 M FeCl₃.6H₂O and 0.3 M FeCl₂·4H₂O solutions were prepared in acidified water. The precursor's solutions were mixed and heated up to a certain temperature. Then, required amount of reducing agent be vigorously poured into the iron precursor's solution at a particular stirring rate. The color of solution changed to brownish black or black showing the NPs' growth. The reaction mixture was continuously heated and stirred for a particular time, and tetramethyl ammonium hydroxide (TMAH, 25 wt%) was added dropwise to stabilize the synthesized particles. The mixture was cool down to ambient temperature. The NPs were centrifuged at 15,000 rpm, washed with ethanol, and dried at 80 °C for 24 h. The schematic representation of SPIONs' formation under optimized reaction conditions is provided in Fig. [1](#page-3-0). A detail of material characterization techniques and preparation of synthetic seawater (SW) is provided in ESI section.

*T***2‑relaxation measurements**

To assess the feasibility of synthesized magnetite NPs as $T₂$ -contrast agents, relaxation measurements were performed using a portable NMR-based Acorn Area particle analyzer (Xigo Nanotools, USA). For each measurement, 1 mL

The molar ratio Fe^{3+}/Fe^{2+} (2:1) in all these experiments

Table 1 Various experimental conditions for synthesis of magnetite NPs

Fig. 1 Schematic representation of SPIONs formation during chemical coprecipitation

aqueous dispersion of magnetite NPs, prepared in SW, was kept in NMR sample tube. A standard pulse sequence, i.e., Carr–Purcell–Meiboom–Gill (CPMG), was applied to measure T_2 -decay curve (Coates et al. [1999](#page-9-17)). All the experimental parameters such as tau (*τ*) value, recycle delay, NMR filed strength, resonating frequency, and number of scans are pro-vided in our recent research work (Ali et al. [2018](#page-9-18)). *T*₂-relaxation curves versus various concentrations of magnetite NPs were recorded, and each measurement was repeated three times to attain the average T_2 value, which help to determine the contrasting ability in terms of r_2 value.

Results and discussion

A critical optimization of reaction parameters was performed to control the size, shape, and superparamagnetic characteristics of the synthesized NPs. The effect of various parameters such as (i) stirring rate, (ii) temperature, (iii) reaction time, and (iv) pH was comprehensively investigated via TEM. A detailed discussion of these parameters on particle's growth, size, and morphology is provided in ESI section along with their corresponding TEM images (Figs. S1–S4). After optimization of all the reaction conditions, the effect of various reducing agents on size and shape of SPIONs was examined. The synthesized MNP–NH₄OH, MNP–KOH, and MNP–NaOH nanomaterials were further characterized and their chemical stability was monitored in SW. Finally, T_2 -relaxation measurements and relaxometry properties of SPIONs were investigated in SW for potential MRI application.

Role of reducing agents on shape of SPIONs

The reducing agents have a significant effect on size, shape, and magnetic properties of magnetite NPs. The saturation magnetization of magnetite NPs also increased as the strength of reducing agent decreased as follows (Gribanov et al. [1990](#page-9-19)): $KOH > NaOH > NH₄OH$. Based on the preliminary studies, the effect of reducing agents, i.e., NH₄OH, KOH, and NaOH on the synthesis of SPI-ONs was investigated. Rest of the optimized parameters, i.e., stirring rate ~ 500 rpm, temperature ~ 80 °C, reaction time \sim 1.0 h, and pH 9.0, were kept constant (E17–E19, Table [1](#page-2-0)). The correspondent $(a-c)$ TEM images and $(d-f)$ histograms are provided in Fig. [2.](#page-4-0) The different shapes of magnetite NPs observed by various reducing agents indicate that their strength plays a vital role in controlling the growth rate of crystal facets in different directions. The spherical-shaped NPs were mainly prepared with $NH₄OH$ having average particle diameter $\sim 9.1 \pm 1.5$ nm (Fig. [2a](#page-4-0)). The spherical shape was predominantly formed due to its least surface free-energy compared to other shapes (Kim et al. [2003\)](#page-9-20). However, KOH gives a mixture of spherical- $(-9.4 \pm 1.9 \text{ nm})$ and irregular $(-18.7 \pm 2.5 \text{ nm})$ -shaped NPs (Fig. [2](#page-4-0)b). Owing to the highest strength of KOH, the faster growth rate of crystal facets observed in various direction. Moreover, NaOH mainly produces cubic-shaped magnetite NPs having average size \sim 11.7 \pm 1.8 nm (Fig. [2](#page-4-0)c). The cubic shape of magnetite NPs was dominantly formed due to the faster crystal growth along (1 1 1) direction as compared to $(1\ 0\ 0)$ plane (Yang et al. 2011). The comparison indicates that the smaller spherical- and cubic-shaped NPs were achieved using $NH₄OH$ and NaOH, respectively, which are

Fig. 2 a–**c** TEM images (insets: HRTEM images), and **d**–**f** histograms of samples (S17–S19) synthesized via NH4OH, KOH, and NaOH, respectively

much lower than the reported size (-40 nm) of magnetite NPs under optimized conditions (Daou et al. [2006](#page-9-21); Sayar et al. [2006\)](#page-10-13). The crystal structure of magnetite NPs was further investigated via HRTEM as presented in the insets of Fig. [2a](#page-4-0)–c. The observed separation of lattice fringes matches well with the reported *d*-spacing value of 0.253 nm, which correspond to (3 1 1) crystal plane of magnetite structure.

The magnetic NPs show superparamagnetic behavior below the critical size (D_p) . The approximate value of D_p can be calculated for spherical-shaped magnetite NPs using Eq. [2](#page-4-1) (Khosroshahi and Tajabadi [2016](#page-9-15)):

$$
V_p = k_b T / K, \tag{2}
$$

where V_p is volume of spherical-shaped NPs, k_b denotes Boltzmann constant, and *T* is absolute temperature. The magnetic anisotropy constant (*K*) is temperature dependent, and its value is 1.35×10^4 J m⁻³ at 300 K for Fe₃O₄ NPs (Yoon [2011](#page-10-21)). From the above equation, the estimated D_p value for superparamagnetic behavior of magnetite NPs is \sim 25 nm. Our TEM results indicate that as-synthesized MNP–NH4OH, MNP–KOH, and MNP–NaOH NPs have sizes<25 nm which affirm their superparamagnetic

behavior. The comparative study confirms that controlling reaction parameters and selectively choosing reducing agents during coprecipitation, we can selectively design SPIONs of the desired size and shape for advanced applications.

Fig. 3 a XRD and **b** Raman spectra of SPIONs synthesized using NH4OH, KOH, and NaOH

Structural properties and phase analyses

The phase, crystal structure, and purity of SPIONs were investigated via X-rays diffraction (XRD) analysis. Figure [3a](#page-5-0) displays the diffraction patterns of SPIONs prepared using three different reducing agents (NH₄OH, KOH, and NaOH). The observed diffractograms match-well with standard pattern (JCPDS card-71-6339) suggesting the formation of magnetite phase (Sun et al. [2012\)](#page-10-22). The five characteristics peaks appeared at 2*θ*=30.50°, 35.87°, 43.65°, 57.54°, and 63.28° assigned to (2 2 0), (3 1 1), (4 0 0), (5 1 1), and (4 4 0) crystalline planes, respectively. Moreover, $Fe₃O₄$ NPs exhibit a cubic inverse spinel structure (*Fd-3m* space group) (Cornell and Schwertmann [2003](#page-9-22)). The average crystallite size of magnetite NPs was evaluated from (3 1 1) diffraction plane using Debye–Scherrer equation (Ali et al. [2017b](#page-9-23), [a\)](#page-9-24). It was found to be \sim 11.2, \sim 12.0 and \sim 13.9 nm for MNP–NH₄OH, MNP–KOH, and MNP–NaOH, respectively (Table [2](#page-5-1)). The unit cell parameters (*a*) and cell volume (*V*) for SPIONs are also provided in Table [2](#page-5-1). The comparison shows estimated values of average crystallite sizes of SPIONs are consistent with unit cell parameters. The average crystallite size, cell parameters, and cell volume increase in the following order: $NH_4OH < KOH < NaOH$. This order indicates that the reducing agent plays a pivotal role in controlling the dimensions and crystal structure of particles. Moreover, calculated values of crystallite sizes are also agree-well with particles sizes estimated from TEM images. It is well-established that γ -Fe₂O₃ and Fe₃O₄ reveal similar XRD profiles (Zhang et al. [2013\)](#page-10-23). Therefore, SPIONs were further characterized by surface-enhanced Raman scattering (SERS) and X-ray photoelectron spectroscopy (XPS) techniques, which exclusively identify the presence of γ -Fe₂O₃ and Fe₃O₄ phases.

The phases of iron oxides NPs were elucidated via SERS technique by detecting their Raman active phonon modes. Figure [3b](#page-5-0) shows Raman spectra of as-synthesized powder materials. The observed Raman spectra are similar and show the broad bands with low signal-to-noise ratio. The broad characteristic band in each spectrum having two shoulders observed around ~ 670 cm⁻¹ and ~ 705 cm⁻¹ corresponded to phonon modes (A_{1g}) of Fe₃O₄ and γ -Fe₂O₃, respectively

Table 2 Summary of various parameters evaluated from XRD, Raman, TEM, and BET results of SPIONs

SPIONs Sample	XRD				Raman	TEM		BET	
	Crystallite $size$ (nm)	Unit cell parameter (A)	Unit cell volume (\AA^3)	Phase composi- tion	Surface composition	Shape	Size (nm)	Specific surface area $(m^2 g^{-1})$	Diam- eter D_{BET} (nm)
$MNP-NH_4OH$	11.2	8.299	571.7	Fe ₃ O ₄	$Fe_3O_4 + \gamma$ -Fe ₂ O ₃	Spherical	9.1 ± 1.5	101.4	11.4
MNP-KOH	12.0	8.303	572.4	Fe ₃ O ₄	$Fe_3O_4 + \gamma - Fe_2O_3$	Spherical Irregular	9.4 ± 1.9 18.7 ± 2.5	81.5	14.2
MNP-NaOH	13.9	8.326	577.2	Fe_3O_4	$Fe_3O_4 + \gamma - Fe_2O_3$	Cubic	11.7 ± 1.8	75.3	15.4

(Shebanova and Lazor [2003](#page-10-24); Jubb and Allen [2010\)](#page-9-25). This indicates the coexistence of Fe₃O₄ with γ -Fe₂O₃ phase at the surface due to overoxidation of NPs surfaces. Moreover, two broad bands having center near \sim 505 cm⁻¹ and 340 cm⁻¹ associated with E_g and T_{2g} modes of the admixture (Fe₃O₄, γ-Fe₂O₃), respectively (Zhang et al. [2013](#page-10-23)). A similar phenomenon, i.e., the coexistence of Fe₃O₄ with γ-Fe₂O₃ at the outermost surface of magnetite NPs, is reported in the literature (Kolen'ko et al. [2014](#page-9-9)). This is due to the oxidation–reduction phenomenon of magnetite NPs surfaces under basic conditions. Another reason is described and supported by the mechanism of mixing domain at the molecular level during synthesis process (Wang and Shaw [2014](#page-10-25)).

X-rays photoelectron spectroscopy technique was further utilized to determine the oxidation states of constituent elements present in SPIONs. Figure [4a](#page-6-0), b shows Fe 2*p* spectra of MNP-NH₄OH, MNP-KOH, and MNP-NaOH before and after 50 s etching. XPS profiles of Fe in Fig. [4a](#page-6-0) exhibit two separate peaks appeared at binding energies of 711.0 and 724.5 eV (spin–orbit splitting, *Δ*=13.5 eV) assigned to Fe $2p_{3/2}$ and Fe $2p_{1/2}$ of γ -Fe₂O₃ phase. Furthermore, the appearance of satellite peaks at 719.0 eV in Fe profiles (encircled in Fig. [4a](#page-6-0)) confirms the presence of γ-Fe₂O₃ phase. It is well-established that Fe 2p_{3/2} spectrum does not shows satellite peak for $Fe₃O₄$ (Wang et al. [2014](#page-10-26); Liu et al. [2015\)](#page-9-26). After 50 s of etching (Fig. [4b](#page-6-0)), Fe $2p_{3/2}$ and Fe $2p_{1/2}$ peaks shifted to the binding energies of 710.6 and 724.1 eV $(\Delta = 13.5 \text{ eV})$ with no satellite peak, which confirms the presence of $Fe₃O₄$ phase in the bulk material. The observed spectra match-well with the standard $Fe₃O₄$ sample (Yamashita and Hayes [2008\)](#page-10-27).

The specific surface area and porosity of SPIONs synthesized by $NH₄OH$, KOH, and NaOH were estimated from the N_2 adsorption–desorption isotherms. The isotherms

were attained by plotting the relative pressure (P/P_0) against volume adsorbed $\text{cm}^3 \text{ g}^{-1}$ at STP), as provided in Fig. [5](#page-7-0)a. Brunauer, Emmett, and Teller (BET) surface area of MNP–NH4OH, MNP–KOH, and MNP–NaOH was found to be 101.4, 81.5, and 75.3 m^2 g⁻¹, respectively. The average diameter of NPs (D_{BET}) was also estimated from BET surface area (Mascolo et al. [2013](#page-10-14)), and the values were found to be 11.4, 14.2, and 15.4 nm, respectively (Table [2\)](#page-5-1). The adsorption isotherms indicate that NPs' sizes of synthesized materials are in good agreement with their TEM results. The pore sizes (20.0, 13.9, and 12.4 nm) and pore volumes $(0.47, 0.28, \text{ and } 0.24 \text{ cm}^3 \text{ g}^{-1})$ were also evaluated from Barrett–Joyner–Halenda (BJH) adsorption isotherms (Fig. [5](#page-7-0)b), respectively. Furthermore, BET and BJH results suggest that synthesized SPIONs are slightly mesoporous.

Chemical stability and magnetic properties of SPIONs

The magnetic character and chemical stability of magnetite NPs in the harsh saline environment have vital role for their ultimate well-logging application. Therefore, the magnetic properties and stability of SPIONs were examined in SW having salinity 36.03 g L⁻¹ and pH 8.0. For each test, 10.0 mg of nano-powder was dispersed in 2.5 mL of deionized water by ultrasonication for 30 min. Figure [6](#page-7-1)a–c demonstrates the stable dispersion of (a) MNP–NH₄OH, (b) MNP–KOH, and (c) MNP–NaOH in SW environment in the absence of an applied magnetic field. It was observed that synthesized $Fe₃O₄$ NPs possess hydrophilic characteristics due to the presence of –OH groups on their surface due to the hydroxylation phenomenon during coprecipitation (Shaterian and Aghakhanizadeh [2013\)](#page-10-28). After applying a magnetic field, SPIONs showed magnetic behavior

Fig. 4 XPS (Fe 2*p*) profiles of SPIONs (**a**) before and (**b**) after 50 s etching

Fig. 5 a N_2 adsorption–desorption isotherms and **b** pore size distribution of SPIONs

Fig. 6 Magnetic behavior of MNP–NH4OH, MNP–KOH, and MNP– NaOH samples in ASW (**a**–**c**) before and (**d**–**f**) after applying external magnetic field

and strongly attracted to the magnet, as demonstrated in Fig. [6](#page-7-1)d–f. Moreover, SPIONs persisted chemical stability in the saline environment for 1 week, because the magnetite nanoparticles are pH dependent and their surface gets oxidized in aqueous medium when $pH < 7$ (Sayar et al. [2006](#page-10-13)). Owing to their chemical stability and magnetic behavior, these NPs can be utilized as T_2 -contrast agents for MRI of fluids present within the oil-bearing rocks.

Relaxometry studies of SPIONs

NMR T_2 -relaxation measurements were carried out for various concentrations of as-synthesized SPIONs, and relaxivity properties $(r_2$ values) were assessed for targeted oil reservoir applications. For each synthesized nanomaterial, six various concentrations such as 0.001, 0.005, 0.010, 0.025, 0.050, and 0.100 mM having Fe concentrations, i.e., 0.03, 0.015, 0.030, 0.075, 0.150, and 0.300 mM were produced to measure relaxometry characteristics of SPIONs in SW. T_2 -relaxation signals as well as T_2 values of (a) MNP–NH4OH, (b) MNP–KOH, and (c) MNP–NaOH having various Fe (mM) are presented in Fig. [7.](#page-8-0) It was observed that increase in concentration of magnetite NPs enhanced the $T₂$ -relaxation signal. This phenomenon can be explained by NMR relaxation which occurred owing to the exchange in energy of neighboring protons in SW. The magnetic material induces field inhomogeneity and de-phase the magnetic moments of protons in the presence of an applied magnetic field, which increased the surface relaxation. The enhanced surface relaxation values, i.e., 78, 157, and 110 ms against Fe (0.300 mM) concentration observed for MNP–NH₄OH, MNP–KOH, and MNP–NaOH, respectively. The comparison indicates that MNP–NH₄OH exhibits the better relaxation due to the smaller size and higher surface area of NPs. The incorporation of SPIONs in SW enhanced the surface

Fig. 7 a–**c** *T*₂-relaxation signals for various Fe (mM) concentrations of MNP–NH₄OH, MNP–KOH, and MNP–NaOH, respectively. **d** Inverse of relaxation time $(1/T₂)$ against various Fe (mM) concentrations of magnetite NPs

relaxation of water protons, which enable the NMR well-logging at higher speed. Therefore, $MNP-NH_4OH$ can be promising NMR T_2 -contrast agent for well-logging application.

To estimate the relaxometry properties in terms of transverse (r_2) relaxivity, the inverse of relaxation time $(1/T_2, s^{-1})$ values were plotted against various Fe (mM) concentrations (Fig. [7d](#page-8-0)) by the following equation (3) (3) :

$$
1/T_2 = 1/T_2^o + r_2[Fe],
$$
\n(3)

where T_2 is the relaxation time of NPs dispersion, T_2° is the relaxation time of SW, and $r₂$ is the transverse relaxivity. The *r*₂ values were found to be 41.0, 28.5, and 19.4 mM⁻¹ s⁻¹ for MNP–NH4OH, MNP–KOH, and MNP–NaOH, respectively. The comparison shows that the $r₂$ values for MNP–NH4OH (spherical) and MNP–NaOH (cubic) are 2.11 and 1.47 times higher than MNP–KOH (irregular), respectively. The spherical- and cubic-shaped SPIONs showed higher relaxivity owing to their smaller size, better shape homogeneity and higher surface area as compared to the irregular-shaped SPIONs. Moreover, the observed r_2 value for MNP–NH₄OH (41.0 mM⁻¹ s⁻¹) is ~7.8 times greater

than commercial contrast agent (Gd-DTPA, r_2 =5.3 mM⁻¹ s⁻¹) and found competitive with ultrasmall magnetite NPs $(r_2=35.1 \text{ mM}^{-1} \text{ s}^{-1})$ (Li et al. [2012](#page-9-7)). The enhanced surface relaxation and observed relaxivity properties indicate that the synthesized SPIONs can be efficiently utilized as *T*₂-contrast agents for MRI applications.

Conclusions

Shape- and size-controlled SPIONs have been successfully prepared via chemical coprecipitation protocol without using surfactant. The optimum reaction conditions for the synthesis were found to be (i) stirring rate \sim 500 rpm; (ii) temperature ~ 80 °C; (iii) reaction time ~ 1.0 h; and (iv) pH 9.0. Among all the studied parameters, the effect of pH, temperature, and reducing agent was significant on the size, shape, and magnetic properties of SPIONs. Our straightforward approach to synthesize SPIONs of spherical- and cubic-shaped having size $(9.1 \pm 1.5 \text{ nm})$ and $(11.7 \pm 1.8 \text{ nm})$ just by changing the reducing agent, i.e., NH₄OH and NaOH,

respectively, is more advantageous as compared to some previously reported thermal decomposition strategies (Kim et al. [2008a;](#page-9-27) Yang et al. [2008\)](#page-10-29). The spherical shape was predominantly formed due to its least surface free-energy compared to other shapes, while cubic shape was primarily observed owing to the faster crystal growth along (1 1 1) direction as compared to (1 0 0) plane. The magnetite phase of SPIONs was confirmed XRD and XPS analyses. The synthesized SPIONs were found stable in saline water. The enhanced NMR T_2 -relaxation and excellent transverse relaxivity properties of SPIONs in SW exhibit their potential utilization as T_2 -contrast agents for MRI of oil reservoirs. Future work will be focused on the utility of these SPIONs in brine/oil saturated carbonate and sandstone rock cores for NMR signals separation and their quantification.

Acknowledgements The authors are thankful to the "Center of Research Excellence in Nanotechnology (CENT) at King Fahd University of Petroleum and Minerals (KFUPM) in the Kingdom of Saudi Arabia." for providing the research facilities.

Compliance with ethical standards

Conflict of interest On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

- Abbas M, Parvatheeswara Rao B, Nazrul Islam M et al (2014) Highly stable-silica encapsulating magnetite nanoparticles ($Fe₃O₄/SiO₂$) synthesized using single surfactantless-polyol process. Ceram Int 40:1379–1385. <https://doi.org/10.1016/j.ceramint.2013.07.019>
- Ahn T, Kim JH, Yang H-M et al (2012) Formation Pathways of magnetite nanoparticles by coprecipitation method. J Phys Chem C 116:6069–6076.<https://doi.org/10.1021/jp211843g>
- Ali S, Khan I, Khan SA et al (2017a) Plasmon aided (BiVO₄)x- $(TiO₂)1-x$ ternary nanocomposites for efficient solar water splitting. Sol Energy 155:770–780. [https://doi.org/10.1016/J.SOLEN](https://doi.org/10.1016/J.SOLENER.2017.07.031) [ER.2017.07.031](https://doi.org/10.1016/J.SOLENER.2017.07.031)
- Ali S, Khan SA, Khan I et al (2017b) Surfactant-free synthesis of ellipsoidal and spherical shaped TiO 2 nanoparticles and their comparative photocatalytic studies. J Environ Chem Eng 5:3956–3962. <https://doi.org/10.1016/j.jece.2017.07.066>
- Ali S, Khan SA, Eastoe J et al (2018) Synthesis, characterization, and relaxometry studies of hydrophilic and hydrophobic superparamagnetic $Fe₃O₄$ nanoparticles for oil reservoir applications. Colloids Surf A Physicochem Eng Asp 543:133–143. [https://doi.](https://doi.org/10.1016/J.COLSURFA.2018.02.002) [org/10.1016/J.COLSURFA.2018.02.002](https://doi.org/10.1016/J.COLSURFA.2018.02.002)
- Cha J, Cui P, Lee J-K (2010) A simple method to synthesize multifunctional silica nanocomposites, $NPs@SiO₂$, using polyvinylpyrrolidone (PVP) as a mediator. J Mater Chem 20:5533. [https://doi.](https://doi.org/10.1039/b924702e) [org/10.1039/b924702e](https://doi.org/10.1039/b924702e)
- Chi L, Cheng K, Heidari Z (2016) Improved assessment of interconnected porosity in multiple-porosity rocks by use of nanoparticle contrast agents and nuclear-magnetic-resonance relaxation measurements. SPE Reserv Eval Eng 19:095–107. [https://doi.](https://doi.org/10.2118/170792-PA) [org/10.2118/170792-PA](https://doi.org/10.2118/170792-PA)
- Coates G, Xiao L, Prammer M (1999) NMR logging: principles and applications. Haliburton Energy Services, Houston

- Cornell RM, Schwertmann U (2003) The iron oxides. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
- Daou TJ, Pourroy G, Begin-Colin S et al (2006) Hydrothermal synthesis of monodisperse magnetite nanoparticles. Chem Mater 18:4399–4404
- Ditsch A, Lindenmann S, Laibinis PE et al (2005) High-gradient magnetic separation of magnetic nanoclusters. Ind Eng Chem Res 44:6824–6836
- Du X, Wang C, Chen M et al (2009) Electrochemical performances of nanoparticle $Fe₃O₄/activated carbon supercapacitor using KOH$ electrolyte solution. J Phys Chem C 113:2643–2646
- Gao Z, Ma T, Zhao E et al (2016) Small is smarter: nano MRI contrast agents—advantages and recent achievements. Small 12:556–576. <https://doi.org/10.1002/smll.201502309>
- Gawande MB, Branco PS, Varma RS (2013) Nano-magnetite (Fe₃O₄) as a support for recyclable catalysts in the development of sustainable methodologies. Chem Soc Rev 42:3371–3393. [https://doi.](https://doi.org/10.1039/C3CS35480F) [org/10.1039/C3CS35480F](https://doi.org/10.1039/C3CS35480F)
- Gribanov NM, Bibik EE, Buzunov OV, Naumov VN (1990) Physicochemical regularities of obtaining highly dispersed magnetite by the method of chemical condensation. J Magn Magn Mater 85:7–10
- Jiang W, Yang HCC, Yang SYY et al (2004) Preparation and properties of superparamagnetic nanoparticles with narrow size distribution and biocompatible. J Magn Magn Mater 283:210–214. [https://doi.](https://doi.org/10.1016/j.jmmm.2004.05.022) [org/10.1016/j.jmmm.2004.05.022](https://doi.org/10.1016/j.jmmm.2004.05.022)
- Jiang QL, Zheng SW, Hong RY et al (2014) Folic acid-conjugated $Fe₃O₄$ magnetic nanoparticles for hyperthermia and MRI in vitro and in vivo. Appl Surf Sci 307:224–233. [https://doi.org/10.1016/j.](https://doi.org/10.1016/j.apsusc.2014.04.018) [apsusc.2014.04.018](https://doi.org/10.1016/j.apsusc.2014.04.018)
- Jubb AM, Allen HC (2010) Vibrational spectroscopic characterization of hematite, maghemite, and magnetite thin films produced by vapor deposition. ACS Appl Mater Interfaces 2:2804–2812
- Khan US, Rahim A, Khan N et al (2017) Aging study of the powdered magnetite nanoparticles. Mater Chem Phys 189:86–89. [https://doi.](https://doi.org/10.1016/J.MATCHEMPHYS.2016.12.047) [org/10.1016/J.MATCHEMPHYS.2016.12.047](https://doi.org/10.1016/J.MATCHEMPHYS.2016.12.047)
- Khosroshahi ME, Tajabadi M (2016) Characterization and cellular fluorescence microscopy of superparamagnetic nanoparticles functionalized with third generation nanomolecular dendrimers: in-vitro cytotoxicity and uptake study. J Nanomater Mol Nanotechnol 5:1–11
- Kim DK, Mikhaylova M, Zhang Y, Muhammed M (2003) Protective coating of superparamagnetic iron oxide nanoparticles. Chem Mater 15:1617–1627
- Kim D, Lee N, Park M et al (2008a) Synthesis of uniform ferrimagnetic magnetite nanocubes. J Am Chem Soc 131:454–455
- Kim J, Lee JE, Lee SH et al (2008b) Designed fabrication of a multifunctional polymer nanomedical platform for simultaneous cancer-targeted imaging and magnetically guided drug delivery. Adv Mater 20:478–483
- Kolen'ko YV, Bañobre-López M, Rodríguez-Abreu C et al (2014) Large-scale synthesis of colloidal $Fe₃O₄$ nanoparticles exhibiting high heating efficiency in magnetic hyperthermia. J Phys Chem C 118:8691–8701
- Li Z, Yi PW, Sun Q et al (2012) Ultrasmall water-soluble and biocompatible magnetic iron oxide nanoparticles as positive and negative dual contrast agents. Adv Funct Mater 22:2387–2393. [https://doi.](https://doi.org/10.1002/adfm.201103123) [org/10.1002/adfm.201103123](https://doi.org/10.1002/adfm.201103123)
- Liu F, Cao PJ, Zhang HR et al (2005) Novel nanopyramid arrays of magnetite. Adv Mater 17:1893–1897
- Liu XD, Chen H, Liu SS et al (2015) Hydrothermal synthesis of superparamagnetic $Fe₃O₄$ nanoparticles with ionic liquids as stabilizer. Mater Res Bull 62:217–221. [https://doi.org/10.1016/j.materresbu](https://doi.org/10.1016/j.materresbull.2014.11.022) [ll.2014.11.022](https://doi.org/10.1016/j.materresbull.2014.11.022)
- Maeng JH, Lee D-H, Jung KH et al (2010) Multifunctional doxorubicin loaded superparamagnetic iron oxide nanoparticles for

chemotherapy and magnetic resonance imaging in liver cancer. Biomaterials 31:4995–5006

- Mascolo MC, Pei Y, Ring TA (2013) Room temperature co-precipitation synthesis of magnetite nanoparticles in a large pH window with different bases. Materials (Basel) 6:5549–5567. [https://doi.](https://doi.org/10.3390/ma6125549) [org/10.3390/ma6125549](https://doi.org/10.3390/ma6125549)
- Mitra S, Poizot P, Finke A, Tarascon J (2006) Growth and electrochemical characterization versus lithium of $Fe₃O₄$ electrodes made by electrodeposition. Adv Funct Mater 16:2281–2287
- Moeser GD, Roach KA, Green WH et al (2002) Water-based magnetic fluids as extractants for synthetic organic compounds. Ind Eng Chem Res 41:4739–4749
- Nikiforov VN, Koksharov YA, Polyakov SN et al (2013) Magnetism and Verwey transition in magnetite nanoparticles in thin polymer film. J Alloys Compd 569:58–61. [https://doi.org/10.1016/j.jallc](https://doi.org/10.1016/j.jallcom.2013.02.059) [om.2013.02.059](https://doi.org/10.1016/j.jallcom.2013.02.059)
- Odagawa A, Katoh Y, Kanzawa Y et al (2007) Electroforming and resistance-switching mechanism in a magnetite thin film. Appl Phys Lett 91:133503
- Okoli C, Sanchez-Dominguez M, Boutonnet M et al (2012) Comparison and functionalization study of microemulsion-prepared magnetic iron oxide nanoparticles. Langmuir 28:8479–8485
- Patsula V, Kosinová L, Lovrić M et al (2016) Superparamagnetic $Fe₃O₄$ nanoparticles: synthesis by thermal decomposition of iron(III) glucuronate and application in magnetic resonance imaging. ACS Appl Mater Interfaces 8:7238–7247. [https://doi.org/10.1021/](https://doi.org/10.1021/acsami.5b12720) [acsami.5b12720](https://doi.org/10.1021/acsami.5b12720)
- Rahmawati R, Permana MG, Harison B et al (2017) Optimization of frequency and stirring rate for synthesis of magnetite (Fe₃O₄) nanoparticles by using coprecipitation-ultrasonic irradiation methods. Proc Eng 170:55–59
- Rani S, Varma GD (2015) Superparamagnetism and metamagnetic transition in $Fe₃O₄$ nanoparticles synthesized via co-precipitation method at different pH. Phys B Condens Matter 472:66–77
- Roth H-C, Schwaminger SP, Schindler M et al (2015) Influencing factors in the CO-precipitation process of superparamagnetic iron oxide nano particles: a model based study. J Magn Magn Mater 377:81–89
- Sayar F, Güen G, Pişkin E (2006) Magnetically loaded poly(methyl methacrylate-co-acrylic acid) nano-particles. Colloid Polym Sci 284:965–978. <https://doi.org/10.1007/s00396-005-1383-5>
- Shaterian HR, Aghakhanizadeh M (2013) Aminopropyl coated on magnetic $Fe₃O₄$ and SBA-15 nanoparticles catalyzed mild preparation of chromeno [2, 3-d] pyrimidines under ambient and solvent-free conditions. Catal Sci Technol 3:425–428
- Shebanova ON, Lazor P (2003) Raman spectroscopic study of magnetite (FeFe₂O₄): a new assignment for the vibrational spectrum. J Solid State Chem 174:424–430. [https://doi.org/10.1016/S0022](https://doi.org/10.1016/S0022-4596(03)00294-9) [-4596\(03\)00294-9](https://doi.org/10.1016/S0022-4596(03)00294-9)
- Shi D, Cho HS, Chen Y et al (2009) Fluorescent polystyrene—Fe₃O₄ composite nanospheres for in vivo imaging and hyperthermia. Adv Mater 21:2170–2173
- Sun H, Chen B, Jiao X et al (2012) Solvothermal synthesis of tunable electroactive magnetite nanorods by controlling the side reaction. J Phys Chem C 116:5476–5481
- Tajabadi M, Khosroshahi ME (2012) Effect of alkaline media concentration and modification of temperature on magnetite synthesis

method using FeSO₄/NH₄OH. Int J Chem Eng Appl 3:206-210. <https://doi.org/10.7763/IJCEA.2012.V3.187>

- Unni M, Uhl AM, Savliwala S et al (2017) Thermal decomposition synthesis of iron oxide nanoparticles with diminished magnetic dead layer by controlled addition of oxygen. ACS Nano 11:2284–2303
- Wang C, Shaw LL (2014) On synthesis of $Fe₂SiO₄/SiO₂$ and $Fe₂O₃/$ $SiO₂$ composites through sol–gel and solid-state reactions. J Sol Gel Sci Technol 72:602–614. [https://doi.org/10.1007/s1097](https://doi.org/10.1007/s10971-014-3483-5) [1-014-3483-5](https://doi.org/10.1007/s10971-014-3483-5)
- Wang L, Neoh K-G, Kang E-T et al (2010) Biodegradable magneticfluorescent magnetite/poly(dl-lactic acid-co-α,β-malic acid) composite nanoparticles for stem cell labeling. Biomaterials 31:3502– 3511. <https://doi.org/10.1016/j.biomaterials.2010.01.081>
- Wang G, Zhang X, Skallberg A et al (2014) One-step synthesis of water-dispersible ultra-small $Fe₃O₄$ nanoparticles as contrast agents for T1 and T2 magnetic resonance imaging. Nanoscale 6:2953–2963. <https://doi.org/10.1039/c3nr05550g>
- Willard MA, Kurihara LK, Carpenter EE et al (2004) Chemically prepared magnetic nanoparticles. Int Mater Rev 49:125–170. [https](https://doi.org/10.1179/095066004225021882) [://doi.org/10.1179/095066004225021882](https://doi.org/10.1179/095066004225021882)
- Wu W, He Q, Jiang C et al (2008) Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res Lett 3:397–415.<https://doi.org/10.1007/s11671-008-9174-9>
- Wu X-J, Jiang R, Wu B et al (2009) Nano-iron oxide as a recyclable catalyst for intramolecular C–N cross-coupling reactions under ligand-free conditions: one-pot synthesis of 1,4-dihydroquinoline derivatives. Adv Synth Catal 351:3150–3156. [https://doi.](https://doi.org/10.1002/adsc.200900481) [org/10.1002/adsc.200900481](https://doi.org/10.1002/adsc.200900481)
- Yamashita T, Hayes P (2008) Analysis of XPS spectra of Fe^{2+} and Fe^{3+} ions in oxide materials. Appl Surf Sci 254:2441–2449. [https://doi.](https://doi.org/10.1016/j.apsusc.2007.09.063) [org/10.1016/j.apsusc.2007.09.063](https://doi.org/10.1016/j.apsusc.2007.09.063)
- Yang H, Ogawa T, Hasegawa D, Takahashi M (2008) Synthesis and magnetic properties of monodisperse magnetite nanocubes. J Appl Phys 103:07D526
- Yang C, Wu J, Hou Y (2011) $Fe₃O₄$ nanostructures: synthesis, growth mechanism, properties and applications. Chem Commun 47:5130–5141
- Yazdani F, Seddigh M (2016) Magnetite nanoparticles synthesized by co-precipitation method: the effects of various iron anions on specifications. Mater Chem Phys 184:318–323. [https://doi.](https://doi.org/10.1016/J.MATCHEMPHYS.2016.09.058) [org/10.1016/J.MATCHEMPHYS.2016.09.058](https://doi.org/10.1016/J.MATCHEMPHYS.2016.09.058)
- Yoon S (2011) Determination of the temperature dependence of the magnetic anisotropy constant in magnetite nanoparticles. J Korean Phys Soc 59:3069–3073
- Zhang B, Daigle H (2017) Oil-soluble contrast agents for NMR. In: SPWLA 58th Annual Logging Symposium, 17–21 June, Oklahoma, USA. Society of Petrophysicists and Well-Log Analysts.
- Zhang X, Niu Y, Meng X et al (2013) Structural evolution and characteristics of the phase transformations between α -Fe₂O₃, Fe₃O₄ and γ -Fe₂O₃ nanoparticles under reducing and oxidizing atmospheres. CrystEngComm 15:8166–8172

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

