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Does Density Aggravate the
COVID-19 Pandemic?
Early Findings and Lessons for Planners

Shima Hamidi Sadegh Sabouri Reid Ewing

ABSTRACT
Problem, research strategy, and findings: The impact of density on emerging highly contagious infec-
tious diseases has rarely been studied. In theory, dense areas lead to more face-to-face interaction
among residents, which makes them potential hotspots for the rapid spread of pandemics. On the other
hand, dense areas may have better access to health care facilities and greater implementation of social
distancing policies and practices. The current COVID-19 pandemic is a perfect case study to investigate
these relationships. Our study uses structural equation modeling to account for both direct and indirect
impacts of density on the COVID-19 infection and mortality rates for 913U.S. metropolitan counties, con-
trolling for key confounding factors. We find metropolitan population to be one of the most significant
predictors of infection rates; larger metropolitan areas have higher infection and higher mortality rates.
We also find that after controlling for metropolitan population, county density is not significantly related
to the infection rate, possibly due to more adherence to social distancing guidelines. However, counties
with higher densities have significantly lower virus-related mortality rates than do counties with lower den-
sities, possibly due to superior health care systems.

Takeaway for practice: These findings suggest that connectivity matters more than density in the spread
of the COVID-19 pandemic. Large metropolitan areas with a higher number of counties tightly linked
together through economic, social, and commuting relationships are the most vulnerable to the pan-
demic outbreaks. They are more likely to exchange tourists and businesspeople within themselves and
with other parts, thus increasing the risk of cross-border infections. Our study concludes with a key rec-
ommendation that planners continue to advocate dense development for a host of reasons, including
lower death rates due to infectious diseases like COVID-19.

Keywords: COVID-19, density, infectious diseases, pandemic, urban sprawl

The COVID-19 pandemic is a perfect case study
to investigate the relationship between density
and the spread of highly contagious infectious
diseases. This novel coronavirus outbreak was

first recorded in Wuhan (China) in December 2019
(Cascella et al., 2020). In less than 4months, it has
spread to more than 212 countries and territories
around the world and was declared a pandemic by the
World Health Organization (WHO) on March 11, 2020
(WHO, 2020). As of May 27, there are more than
1,697,459 confirmed cases of COVID-19 in the United
States, with 100,271 confirmed COVID-19-related deaths.

On April 23, 2020, the New York Times published an
article titled, “America’s Biggest Cities Were Already
Losing Their Allure. What Happens Next?” (Tavernise &
Mervosh, 2020). The article confounds population size
with density, as in this passage: “The pandemic has

been particularly devastating to America’s biggest cities,
as the virus has found fertile ground in the density that
is otherwise prized.” In fact, metropolitan population
and county density are distinct. The New York metropol-
itan area (the epicenter of the virus) is huge but has
low-density counties as well as high-density counties.
The virus may take root in the city center but then
spread into the suburbs due to the inextricable connec-
tions between them.

Even in smaller metropolitan statistical areas (MSAs)
like New Orleans (LA), which is 1/20th the size of the New
York MSA and has eight counties with widely varying
densities, densities vary much more than confirmed infec-
tion rates. The simple correlation between the two is just
over 0.48, meaning that for this metropolitan area, density
accounts for only 23% of the variation in the virus rate.
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On May 2, CNN published “Coronavirus Is Making
Some People Rethink Where They Want to Live,” which
described an exodus from New York for smaller and less
dense places (Shoichet & Jones, 2020). The article
quoted the governor’s explanation: “It’s very simple. It’s
about density. It’s about the number of people in a
small geographic location allowing that virus to
spread.… Dense environments are its feeding
grounds.” The article then quoted an academic from the
Los Angeles area as crediting that city’s “sprawling”
development with slowing the spread of coronavirus.

As these examples illustrate, compactness (mainly
density) versus sprawl is one of the most controversial
topics in urban planning. In a recent review article, two of
us (Ewing & Hamidi, 2015a) summarize existing evidence
on major costs and benefits of urban sprawl. Many scholars
have pointed to the benefits of compact development for
individuals and society. According to this line of research,
compact development is associated with open space pres-
ervation (Nelson & Sanchez, 2005), higher innovation and
overall economic productivity (Hamidi & Zandiatashbar,
2019), more opportunities for upward mobility (Ewing
et al., 2016), greater social capital (Nguyen, 2010), less likeli-
hood of obesity and related chronic diseases (Ewing et al.,
2014), less car dependency and its associated quality of life
outcomes such as traffic congestion (Zolnik, 2011),
improved traffic safety (Ewing & Hamidi, 2015b; Ewing
et al., 2016), improved air quality (Stone, 2008), and
increased overall life expectancy (Hamidi et al., 2018).

Urban sprawl, on the other hand, could mitigate
racial segregation and close the gap between rates of
suburban homeownership for African Americans and
Whites (Galster & Cutsinger, 2007; M. Kahn, 2001). During
the Cold War, dispersal of population was frequently
mentioned as a countermeasure to a nuclear attack
(Kargon & Molella, 2004). After 9/11, similar arguments
were occasionally put forth as a means of making us less
vulnerable to terrorist attacks (Briffault, 2002; Glaeser &
Shapiro, 2002). Though the mechanism is different, the
purpose is the same as with infectious diseases: Self-pro-
tection may accompany dispersal of population.

Yet, the impact of density on emerging infectious dis-
eases has been rarely studied. In theory, density leads to
closer contact and more interaction among residents,
which makes them potential hotspots for the rapid
spread of emerging infectious diseases. In the case of
worldwide pandemics such as the recent COVID-19 virus,
larger, dense urban centers, particularly if coupled with
strong tourism, could become epicenters of a worldwide
health crisis and lead to thousands of deaths in the
United States and internationally. At the same time, their
superior health and educational systems could help miti-
gate the full impact of the disease for those who are
infected, leading to higher rates of recovery and lower
rates of mortality. Even the relationship between density

and exposure is not a straight line. Dense areas may be
more likely to put in place policies that foster social dis-
tancing, thus reducing actual rates of infection or simply
leading to greater social distancing due to greater public
awareness of the threat. In addition, it is possible that
denser environments make it easier for people to stay
somewhat connected with neighbors, families, and
friends while they are sheltering in place.

There is little empirical evidence related to this the-
ory. Spencer et al. (2020) finds that a nonlinear and
Kuznets-shaped urban transition could increase the likeli-
hood of recurring outbreaks of infectious diseases such as
avian influenza in Vietnam due to limited household-level
sanitation infrastructure. However, it is not clear whether
and to what extent dense development could exacerbate
the spread of life-threatening infectious diseases.

Our study is to our knowledge the first peer-
reviewed publication to investigate the relationship
between density and the COVID-19 spread and mortality
in the United States, controlling for confounding factors.
This is a perfect example of the application of structural
equation modeling, as explained in the Conceptual
Framework and Research Design section. Our outcome
variables are COVID-19 confirmed cases and deaths per
10,000 population. We find metropolitan population to
be one of the most significant predictors of infection
rates, with larger metropolitan areas experiencing higher
infection and higher mortality rates. We also find that
after controlling for metropolitan population, county
density is unrelated to the infection rate and negatively
related to the mortality rate, possibly due to greater
adherence to social distancing policies and practices in
denser areas and better quality of health care.

These findings suggest that connectivity matters
more than density in the spread of the COVID-19 pan-
demic. Large metropolitan areas (and megaregions)
with a higher number of counties tightly linked
together through economic, social, and commuting
relationships are the most vulnerable to the pandemic
outbreak. They are more likely to exchange tourists and
businesspeople with each other and with other parts of
the world, thus increasing the risk of cross-border infec-
tions. Our study concludes with a strong recommenda-
tion that planners continue to advocate compact
development for a host of reasons, including lower
death rates due to infectious diseases like COVID-19.

Built Environment, Urban Sprawl, and
Highly Contagious Infectious Diseases
Compact development has been empirically linked to
higher economic productivity and likelihood of innov-
ation generation by facilitating the formation of an
urban buzz that hosts the frequent face-to-face contacts,
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leading to higher chances of knowledge spillover and,
in turn, higher knowledge-based economic productivity
(Hamidi et al., 2019; Zandiatashbar et al., 2019).

For the same reasons, dense areas could also facili-
tate the transmission of highly contagious diseases. If
people are close enough to each other to exchange
ideas, they can exchange highly contagious diseases,
too, at least in theory (Glaeser, 2011). The empirical evi-
dence to support this theory is rare and offers
mixed findings.

According to Kao et al. (2012), the H1N1 pandemic
of 2009 persisted for a relatively longer period of time in
areas in Taiwan with higher population density. In the
same line, Garrett (2010) finds a positive and significant
relationship between the death rate from the 1918
influenza pandemic and the state-level population
density in the United States. On the other hand,
Chowell et al. (2008) and Nishiura and Chowell (2008)
find quite the opposite: There is no significant relation-
ship between population density, degree of transmissi-
bility, and mortality during the same 1918 pandemic in
the United Kingdom and Japan, respectively. In the
same line, Mills et al. (2004), in their letter to Nature,
state there are no significant associations between mor-
tality rate and population density during the 1918 influ-
enza pandemic in 45 large U.S. cities, whereas Parmet
and Rothstein (2018), in an editorial piece in the
American Journal of Public Health, argue that if we look
at the rates rather than counts during the 1918 pan-
demic, rural/low-density areas were hit harder than the
cities with lower mortality rates.

One possible explanation for these conflicting find-
ings is that the dynamics behind a pandemic spread are
highly complex. There are several other variables that
could potentially confound contagious disease trans-
mission, including demographic characteristics (Valeri
et al., 2016), socioeconomic disparities (Quinn & Kumar,
2014), and tourism (Alirol et al., 2011).

Sociodemographic characteristics and social inequi-
ties could contribute to a faster spread of infectious dis-
eases, but also could prevent access to health care,
which consequently leads to substantially higher rates
of mortality. Quinn, Kumar, and colleagues
(Blumenshine et al., 2008; Quinn & Kumar, 2014; Quinn
et al., 2011), in a series of studies, point to the significant
roles of income, race, and ethnicity in higher rates of
H1N1 infection and mortality. Low-income and minority
populations have higher exposure to contagious dis-
eases such as flu virus and have lower access to health
care once the disease has developed, which is a key
determinant of infectious disparities between and
within U.S. regions. Their higher level of exposure is due
to the lack of access to resources such as workplace pol-
icies, paid sick days, and job security that would enable
social distancing, the single most effective preventive

intervention at the time of a disease epidemic (Kumar
et al., 2012). Lower educational attainment is also
reported to increase the rate of hospitalization at the
time of epidemics, such as the 2009 H1N1 (Lowcock
et al., 2012). Finally, age is a determinant of vulnerability
to novel viruses and the severity of the disease once
developed due to weakened immune systems among
older populations. In the case of COVID-19, as of March
18, about 80% of deaths in the United States were
among those 65 years and older (Centers for Disease
Control and Prevention [CDC], 2020b).

Travel and tourism are other key contributors to the
emergence of pandemics in the United States and inter-
nationally (Neiderud, 2015). Epidemics spread through
major travel destinations in both compact and sprawl-
ing cities (Alirol et al., 2011). SARS, for instance, emerg-
ing as a pandemic in 2003, originated from the wildlife
markets in Guangdong (China) and spread rapidly
throughout the world with international travel (WHO,
2007). Another example is the Ebola virus disease out-
break in 2014 in Western Africa. Guinea and Sierra
Leone were the centers of this regional epidemic due
to high connectivity and substantial cross-border traffic,
even though 64% and 60% of their populations were
living in low-density rural areas (WHO, 2014). Global
travel is only expected to expand, and research points
to the role of governments and organizations such as
WHO to be fast and efficient in taking necessary pre-
ventive measures before the epidemic gets out of con-
trol (Neiderud, 2015).

Finally, the most effective way to slow the spread
of highly contagious diseases is to minimize human-to-
human contact through different measures of social
distancing. Social distancing can be implemented by
governments at the local and state levels through one
or a combination of interventions, including the closure
of schools, bars, restaurants, and any social or sporting
events; sick leave; work-from-home policies; splitting
shifts to reduce workplace interactions; sheltering in
place; and travel/trade bans (Chu et al., 2017). These
interventions are critical to stopping the disease’s out-
break, but quick and efficient actions by local, state, and
federal governments at early stages before the epi-
demic gets out of control are even more critical (Katz
et al., 2019). This is another source of spatial variation of
the disease spread because state and local govern-
ments across the United States take different actions at
different times, which could make a difference in dis-
ease outcomes.

These factors could be applied to both compact
and sprawling areas, which makes any theoretical con-
clusion about the role of density in disease pandemic
complex and unclear. Still, the role of density in the
spread and severity of highly contagious diseases has
not been rigorously studied. Our study seeks to address
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this gap and investigate the relationship between dens-
ity and the spread and deadliness of COVID-19 in the
United States. We use the term COVID-19 to refer to
both the virus itself and the disease it causes.1

Conceptual Framework and
Research Design
Our outcome variables are the rates of COVID-19 con-
firmed cases and mortality per 10,000 population. There
are mediating variables between density and COVID-19
mortality rates, such as infection rates and hospitaliza-
tion rates. There are confounding influences, such as
the age distribution and income levels. There are mod-
erating influences, such as the number of intensive care
unit (ICU) beds per capita, that affect the probabilities of
infections becoming fatal. The selection of explanatory
variables to predict the two outcome variables is based
on common sense, theory, and early reports on the inci-
dence of the virus (CDC, 2020b). Different variables are
tested for significance as predictors of the virus rate and
mortality rate, whereas our final model only includes
the independent variables that have a statistically sig-
nificant relationship to the outcome variables. Table 1
presents the definition and descriptive statistics for all
variables investigated in our model. We understand that
rates of infection and mortality are recorded at the indi-
vidual’s place of residence, not at the place of occur-
rence. Thus, we would expect a direct casual pathway
from county-level measures of density to county-level
measures of COVID-19 mortality. Our hypothesis is that
denser counties have better health care infrastructure
that is more prepared to respond to the pandemic and
thus reduce the severity and mortality rate of the pan-
demic. We also expect an indirect causal pathway from
density to the COVID-19 mortality rates. Our conceptual
framework is based on the hypothesis that density leads
to more exposure to the virus and more exposure leads
to higher rates of infection, which, in turn, results in
higher rates of mortality, controlling for other variables.

The complex causal chain described above is best
modeled with structural equation modeling (SEM).
Using SEM analysis, we can investigate the relationship
between county density and COVID-19 mortality rates,
both directly and indirectly, via COVID-19 infection rates
as the mediator. For more detailed explanation of SEM,
please see Technical Appendix 1. The SEM model in this
study was estimated for a total of 913 metropolitan
counties with no missing data as of May 25, 2020, using
Amos 22 software. Technical Appendix 2 shows the
location of these metropolitan counties in the United
States. Working with complete data sets allowed us to
compute modification indices, which, in turn, allowed
us to identify and include missing links in the model

and improve the model’s goodness of fit. Basically, varia-
bles were included in the model and causal links were
added if one of two conditions were met: Variables and
relationships were either theoretically or statistically
significant.

The county is the unit of analysis in this study. This
is the smallest geographic unit for which consistent
virus infection and death data are available and is cer-
tainly less likely to suffer from aggregation bias than
would an analysis at the state or metropolitan area level.
Virus spread occurs with people’s interactions and
movements, and peoples’ movements (travel) typically
extend beyond their immediate neighborhoods. Data
from the National Household Travel Survey (U.S.
Department of Transportation, 2017) show that about
87% of daily trips in the United States take place in per-
sonal vehicles, and the average driver drives about 29
miles per day. County is the best geographical unit to
capture the virus spread as the outcome of these move-
ments. Density could also be related to the pandemic
spread in smaller geographies such as the density of
occupants in living units, which could be the subject of
future studies once COVID-19 data are available for
smaller spatial units. Finally, we tested the possibility of
spatial dependence among cases, or spatial autocorrel-
ation, and found no significant evidence on the spatial
clustering of cases (see Technical Appendix 1).

Outcome Variables
Our outcome variables are the natural log of confirmed
cases of coronavirus per 10,000 population and natural
log of confirmed deaths per 10,000 population due to
COVID-19, both at the county level. An infection is con-
firmed when an individual tests positive for the virus
using an approved test administered and reported by a
health professional. A death is confirmed when an indi-
vidual who has tested positive for the virus dies of a
complication or, in some counties, has COVID symp-
toms and dies of a complication. We use rates and SEM
with linear regression models because the number of
cases of the virus now far exceeds the “rare event” cri-
terion of count models such as Poisson regression and
negative binomial regression.

According to the CDC Portal (CDC, 2020c), the
highest infection counts since the beginning of the
pandemic in the United States occurred on April 6,
2020. Since April 21, we have observed an overall
decreasing trend in COVID-19-related deaths. These
trends show signs of flattening of the pandemic curve
(for the first wave). We performed sensitivity analyses by
estimating the models multiple times since March 23
with updated COVID-19 data and obtained very similar
results in terms of the signs and relative magnitudes of
the relationships.
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Table 1. Variables used to explain COVID-19 per capita death rate (N¼913).

Description Mean SD Source

Outcome variables

Death rate No. deaths per 10,000
population as of May 25

2.12 3.15 Dong et al. (2020)

ln of death rate Natural log of no. deaths per
10,000 as of May 25

�0.02 1.26

Virus rate No. COVID-19 cases per
10,000 population as of
May 25

42.91 77.48

ln of virus rate Natural log of no. COVID-19
cases per 10,000 as of
May 25

3.21 0.98

Explanatory variables

Days since first case No. days since the first case
was confirmed

68.94 8.78 Dong et al. (2020)

Activity density Populationþ employment per
square mile

907 2,387 ACS 5-year estimates (U.S.
Census Bureau, 2020a) and
LEHD (U.S. Census Bureau,
2020b) for 2017

ln of activity density Natural log of activity density
(populationþ employment
per square mile

5.78 1.37 ACS 5-year estimates (U.S.
Census Bureau, 2020a) and
LEHD (U.S. Census Bureau,
2020b) for 2017

Metropolitan population MSA population 2,027,153 3,481,763 ACS 5-year estimates (U.S.
Census Bureau, 2020a)

ln of
metropolitan population

Natural log of
MSA population

13.54 1.40

% of Black population % of Black or African
American race

12.49 14.15

% of college-
educated population

% of adult population with
some education beyond
high school

57.44 10.44

% of population aged
60 þ

% of population aged 60
years and over

21.73 4.69

Primary care
physician rate

Primary care physicians per
10,000 population

6.54 3.57 County Health Rankings
(University of Wisconsin
Population Health
Institute, 2020)

% of adults
currently smoking

% of adults that reported
currently smoking

16.61 3.13

Air pollution Average daily amount of fine
particulate matter in
micrograms per cubic
meter (PM2.5)

9.93 1.66

ICU beds rate ICU beds per
10,000 population

2.04 2.09 Kaiser Health News (2019)

COVID-19 testing rate Statewide number of COVID-
19 testing per 10,000

437.45 157.26 The COVID Tracking
Project (2020)

Enplanements rate Annual enplanements in
metropolitan area per
10,000 population

21,102 25,557 Federal Aviation
Administration (2018)

% Staying at home Average % of population
staying at home (i.e., no
trips with a non-home trip
end more than 1mile away
from home) since the first
case was confirmed until
May 25

27.23 5.49 Maryland Transportation
Institute (2020)
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We log-transformed both outcome variables to make
them closer to normal distributions because both of
them vary exponentially (see Technical Appendix 3). As a
result, 252 counties from our sample of 1,165 counties
were eliminated when we logged the death rate, the
downstream outcome variable in our structural equation
model. However, it improved the model’s goodness of fit.
Note that we estimated a model with New York City and
New York State in our main analysis but dropped them
from the sample in a sensitivity analysis in Technical
Appendix 4. Our rationale for dropping these cases in the
Appendix is one of face validity. This one city and one
state contributed to 23% and 32%, respectively, of the
total COVID-19 deaths in our data set.

Explanatory Variables
Our explanatory variables control for the major determi-
nants of a pandemic outbreak, such as socioeconomic
characteristics, health care facilities, county density, and
metropolitan population size. Explanatory variables
came from various sources. We downloaded data on
population, sex, age, and race/ethnicity from the
American Community Survey (ACS) 2017 (5-year esti-
mates) and computed percentage of the population
that is Black, percentage of adults with some education
beyond high school, and the natural log of metropol-
itan population. We also tested the number of days
since the first positive test was confirmed in each
county. The data again come from the Novel
Coronavirus Visual Dashboard developed by Johns
Hopkins University (Dong et al., 2020). The first reported
coronavirus case in the United States was in King
County (WA) on January 22, 2020.

Our analyses control for a number of variables
related to health care facilities. We obtained these vari-
ables from County Health Rankings and Roadmaps,
which is a collaboration between the Robert Wood
Johnson Foundation and the University of Wisconsin
Population Health Institute (2020). From the same data
source, we obtained the county-level average daily
concentration of fine particulate matter (PM2.5) as our
measure of air pollution. In addition, we tested the
number of ICU beds per 10,000 population from a
Kaiser Health News (2019) analysis of hospital cost
reports filed with the Centers for Medicare &
Medicaid Services.

The explanatory variable of greatest interest is a
measure of county compactness. We summed the
county population and employment and divided it by
the land area to obtain activity density that accounts
for both employment and population concentrations
in the county. The county population data come from
the ACS 2017 (5-year estimates), and the county
employment data come from the Longitudinal

Employer–Household Dynamics (LEHD) 2017; both
data sources are compiled and released by the U.S.
Census Bureau (2020a, 2020b).

Activity density is distinct from crowding or over-
crowding. Crowding is defined as a large number of per-
sons gathered closely together. Even at high activity
densities, crowding is confined to specific venues such as
transit vehicles, bars and restaurants, schools, sports events,
airports, downtown sidewalks, and so forth. Elsewhere
(and even in these settings), people can maintain and usu-
ally do maintain some social distance in their desire to
maintain personal space. Notwithstanding evening news
reports of crowding on beaches and at protest events, we
suspect crowding is the exception in this period of social
distancing. Moreover, by this definition, crowding may
occur even at low activity densities at all of the venues
listed above. We did test one formal measure of crowding,
the percentage of households with more than one person
per room from the ACS, and found it has no relationship
to the virus rate. Instead, we include in our model a spe-
cific measure of social distancing, “staying at home,” which
is defined as not having any home-based trip that is more
than 1mile away from the place of residence.

Our model includes two measures of connectivity
to account for the degree of connectivity between
counties in the same region (internal connectivity) and
the degree of connectivity to the outside world (exter-
nal connectivity). Both measures slightly correlate with
activity density, with correlation coefficients of 0.327
and 0.128, respectively. We cast metropolitan size
measured in terms of population as a measure of con-
nectivity of counties within the metropolitan area. This
aligns with the definition of metropolitan areas.
According to the U.S. Census Bureau, a metropolitan
area consists of a densely populated urban core and
surrounding counties that are economically and
socially linked to each other and the core (U.S. Census
Bureau, n.d.). Metropolitan population is a regional
variable that accounts for the context of counties
beyond their boundaries and as a proxy for counties’
social, economic, and commuting relationships with
the neighboring counties within the same metropol-
itan area. Metropolitan population has been used in
several previous county-level studies to capture higher
needs for travel (and commuting) between counties in
the same metropolitan area and also longer trips
(vehicle miles traveled) in studying outcomes such as
traffic fatalities, air quality, and life expectancy (e.g.,
Ewing et al., 2016; Hamidi et al., 2018).

Per a suggestion from an anonymous reviewer, we
came up with a more direct measure of connectivity for
metropolitan areas. Using the Smart Location Database
of the U.S. Environmental Protection Agency (U.S. EPA
Smart Growth Program, 2020), we computed a measure
of destination accessibility for all metropolitan areas in
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our sample. The measure is the average number of jobs
accessible within a 45-min travel time by automobile in
2010. This covers work and nonwork trip accessibility: A
grocery store’s employees, for example, would be
included in the total jobs reachable within that travel
time. The simple correlation between this variable and
metropolitan population size is 0.95. The Smart Location
Database uses data that are now 10 years old, which is
one reason for using metropolitan population as a
proxy for connectivity within a metropolitan area
instead of the more direct measure. The other reason is
that connections may take many forms not captured by
job accessibility. For example, a social–recreational trip
or a phone call to a friend or business associate that
ultimately ends with face-to-face contact is not well rep-
resented by job accessibility metrics.

We also account for the degree of connectivity to
the outside world using annual enplanements per
10,000 population. The raw data for passenger (enplane-
ment) rate comes from the Air Carrier Activity
Information System, a Federal Aviation Administration
(2018) database that contains revenue passenger board-
ing data. We summed enplanements at all commercial
service airports within a metropolitan area and com-
puted the rate per 10,000 population.

In addition, our model controls for the level of
adherence to social distancing advisories by including
a variable that measures the average percentage of
the population staying at home since the first case
was confirmed in each county. This variable is devel-
oped and reported on a daily basis by the University
of Maryland based on location data from multiple
sources such as smartphones and vehicle sensors to
capture person and vehicle movements. More informa-
tion is available via the University of Maryland’s
COVID-19 Impact Analysis Platform (Maryland
Transportation Institute, 2020).

Finally, we developed a measure of the COVID-19
testing rate to account for testing availability. We col-
lected the total number of people tested for COVID-19
in each state from the COVID Tracking Project (CTP,
2020) website and computed the testing rate per
10,000 population. Note that these data are only avail-
able at the state level. For most states, CTP obtains the
data directly from state public health authorities. For a
few states such as California and New York, where state-
wide information is not available, the CTP is using other
reporting tools such as trusted news sources, interview-
ing officials, and news conferences. Because testing is
usually a statewide function, we expect more variation
between states than within states.

Data and Methodological Limitations
We acknowledge four limitations related to the data
and methodology. First, the COVID-19 pandemic is a

rapidly evolving situation, and the number of deaths
and infections grow by the day. As our title says, this
study presents early findings. Although we have
observed consistent signs and magnitudes of relation-
ships between variables in our modeling between
March 23 and May 25, more research is needed to
investigate the reliability of these findings over time. In
the same line, we recommend a longitude time-series
analysis to explore the impact of density on the pan-
demic growth curves of different counties.

Second, although the measure of COVID-19 death
rates is fairly straightforward, the number of confirmed
infections largely depends on the number of individuals
being tested; currently, there is a nationwide shortage
of testing capacity. As a result, clinicians follow CDC
guidelines on how to “prioritize” testing patients with
COVID-19 symptoms (CDC, 2020a). We only had access
to the statewide testing rate, which we include in our
models. There are likely to be local variations in the rate
of testing that will have to be captured in future studies
once data are available at the local level. In addition,
increasing testing capacity will allow clinicians to con-
duct COVID-19 testing for a wider group of patients.
Parenthetically, there are reports that some people
dying at home may have the virus but are not counted
in the official totals. We therefore acknowledge this as
another possible limitation but are unclear about its
effects on our results. That is, it is unclear whether
deaths are more likely to be undercounted in
dense areas.

Third, the sample in this study is limited to U.S.
metropolitan counties and therefore our findings are
not generalizable to other counties. More than 75% of
metropolitan counties are urban and thus our sample is
more representative of urban and suburban counties
and less representative of rural counties. By 2010, 84%
of the U.S. population lived in metropolitan areas. We
further acknowledge a potential urban bias by our inclu-
sion only of counties with one or more COVID-related
deaths (see Technical Appendix 3).

Fourth, the dynamic of pandemic spread and mor-
tality is complex, and there are potential contributing
factors that are not accounted for in this study due to
the lack of data availability. Health-related pre-existing
conditions such as obesity, diabetes, asthma, cardiovas-
cular disease, and hypertension most likely contribute
to the severity of COVID-19 (CDC, 2020b) and should be
studied at a finer geographic scale and with a sub-
sample of patients. Pre-existing condition data at the
county level are largely modeled variables based on the
raw data from health surveys, with income and other
socioeconomic characteristics used as part of the mod-
eling. It is for this reason that they were not included in
our models. Many other variables for which we do have

Does Density Aggravate the COVID-19 Pandemic?501

https://doi.org/10.1080/01944363.2020.1777891


current data, such as transit ridership, could also con-
tribute to the spread of the virus (Harris, 2020).

The Role of Density in COVID-19
Spread and Mortality Rates: Empirical
Evidence From the National
Investigation
Table 2 presents the correlation between each of the
explanatory variables and outcome (both logged and
unlogged) variables. The simple correlation between
the natural logarithm of activity density and outcome
variables shows that higher density is correlated with
higher infection and mortality rates (correlation coeffi-
cients of 0.280 and 0.196, respectively). However, these
relationships change with the addition of confounding
factors in the SEM model.

Figure 1 shows the best fit model from our SEM
analysis. As explained in our conceptual framework, the
density variable, socioeconomic factors, and the health
care infrastructure have direct paths to the COVID-19
death rate but also affect it indirectly through the
COVID-19 infection rate as the mediator. The best fit
model has an acceptable low chi-square relative to the
degrees of freedom and the insignificant (>.05) p value,
which are indicators of a good model fit. Table 3
presents the direct effects of explanatory variables on
outcome variables, and Table 4 presents the direct,
indirect, and total effects of county-level density and
other variables on the COVID-19 death rate.

County Density, Metropolitan Population,
and the COVID-19 Infection Rate
We begin with the variables of greatest interest:
county activity density and metropolitan area popula-
tion. Our findings indicate that the infection rate
increases with activity density, but the relationship is
not statistically significant. This runs counter to our ini-
tial expectations. One possible reason for the insignifi-
cant relationship is that density plays two conflicting
roles, which could cancel each other out. On the one
hand, density increases contact with other people and
likelihood of transmission of diseases. On the other
hand, density could facilitate the implementation of
social distancing orders due to better home delivery
services and higher perceived susceptibility to the
threat and therefore more precautionary behaviors.
According to Gallup polls, residents of dense places
are more likely to practice basic social distancing than
their counterparts in suburban and exurban areas
(Saad, 2020).

On the other hand, larger metropolitan areas have
significantly higher rates of infection. In fact, metropol-
itan population has one of the most significant relation-
ships of all explanatory variables with the infection rate.
Pandemics spread with the movement and interaction
of people, and large metropolitan areas are where most
of these movements and interactions occur. Counties in
metropolitan areas share transportation and commuting
patterns, or “movement of people,” between counties
and within the metropolitan areas (Ratcliffe et al., 2016),
which is an ideal situation for the spread of pandemics.
These findings suggest the role of connectivity versus

Table 2. Pearson correlation between explanatory variables and confirmed virus and death rates.

Virus rate ln of virus rate Death rate ln of death rate

Days since first case 0.054 0.185�� 0.162�� 0.135��
Activity density 0.204�� 0.270�� 0.364�� 0.235��
ln of activity density 0.125�� 0.280�� 0.233�� 0.196��
MSA population 0.285�� 0.352�� 0.454�� 0.322��
ln of MSA population 0.152�� 0.255�� 0.257�� 0.250��
% of Black population 0.151�� 0.318�� 0.221�� 0.235��
% of college educated �0.098� �0.015 �0.029 �0.038

% of smokers 0.027 �0.032 �0.048 �0.018

Air pollution �0.018 0.046 �0.021 0.027

Primary care physicians rate �0.008 0.065 0.088�� 0.069�
ICU bed rate �0.040 <0.001 �0.049 �0.055

% of population aged 60þ �0.090 �0.174�� �0.003 0.028

Enplanement rate 0.043 0.086�� 0.055 0.085�
% Staying at home 0.124�� 0.275�� 0.341�� 0.284��
COVID-19 test rate 0.247�� 0.341�� 0.408�� 0.327��

Notes: �Correlation is significant at the .05 level (two-tailed). ��Correlation is significant at the .01 level (two-tailed).
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density on the pandemic spread as a potential direction
for future research.

County Density, Metropolitan Population,
and the COVID-19 Mortality Rate
We find that dense counties have significantly lower
death rates. This is possibly due to better health care
systems in dense counties. On the other hand, larger
metropolitan areas (measured in terms of population)
have significantly higher COVID-19 death rates. These
results suggest that the pandemic outbreak is more
about connectivity than density. The pandemic spread
is facilitated more by the connectivity of a major urban
hub to the surrounding geographic units than by the
density of the hub (county in our study). This finding is
supported by the existing evidence on the major role of
connected cities in the spread of pandemics (Alirol
et al., 2011). The megacities and megaregions (either

compact or sprawling) that are superconnected are the
incubators of pandemic outbreaks (Neiderud, 2015).

Note that our model controls for two measures of
connectivity: connectivity within the metropolitan area
(with metropolitan population as a proxy) and connect-
ivity to the outside world (through the enplanement
rate). We find that counties with higher enplanement
rates have significantly lower infection rates. This is
unexpected. However, according to the literature and
our data, the enplanement rate causes the pandemic to
reach globally connected cities more quickly. The rea-
son this does not necessarily lead to higher infection
rates could be that these cities adopted travel restriction
policies very early in the pandemic (Neiderud, 2015). In
other words, global connectivity may determine the
advent of the pandemic, but once travel restrictions
have been adopted, infections due to international
travel may drop off. Considering that this is a cross-
sectional study and does not account for the changes

Figure 1. Causal path diagram for COVID-19 death rate in terms of county density and other variables (correlational arrows among
explanatory variables are not shown for the sake of simplicity and clarity).
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over time, we recommend future studies further investi-
gate these relationships over time though a longitudinal
research design.

Other Determinants of the COVID-19
Infection and Death Rates
We find significant and expected associations between
most socioeconomic factors and the COVID-19 infection
and mortality rates. Counties with a higher percentage
of Black population have significantly higher infection

rates. Likewise, counties with a higher percentage of
adults with some education beyond high school have
significantly lower COVID-19 infection rates.

These findings are consistent with the literature
that reports minorities are more likely to become
infected during pandemics (Quinn & Kumar, 2014) due
to a higher prevalence of underlying conditions such as
hypertension, diabetes, and obesity. They also may have
less recourse to workplace policies that enable social
distancing. There are multiple reasons for having lower
COVID-19 infection rates among counties with a higher

Table 3. Direct effects of density, socioeconomic, and health care characteristics on COVID-19 infection and mortal-
ity rates.

Variables Coefficient SE Critical ratio p Value

ln of activity density ! ln of virus rate 0.005 0.035 0.159 .874

% of Black population ! ln of virus rate 0.018 0.002 8.716 <.001

% of population aged 60þ ! ln of virus rate �0.021 0.006 �3.474 <.001

% of college-educated population ! ln of virus rate �0.021 0.004 �5.902 <.001

ln of MSA population ! ln of virus rate 0.135 0.028 4.81 <.001

COVID-19 testing rate ! ln of virus rate 0.002 2�4 8.838 <.001

Enplanement rate ! ln of virus rate �3�6 1�6 �2.204 .028

% Staying at home ! ln of virus rate 0.056 0.009 6.276 <.001

% of smokers ! ln of death rate 0.021 0.011 1.847 .065

% of Black population ! ln of death rate 0.003 0.002 1.581 .114

ln of virus rate ! ln of death rate 0.974 0.028 35.391 <.001

% of population aged 60þ ! ln of death rate 0.048 0.005 8.958 <.001

ln of MSA population ! ln of death rate 0.087 0.022 4.033 <.001

ln of activity density ! ln of death rate �0.118 0.058 �2.05 .040

ICU bed rate ! ln of death rate �0.029 0.014 �2.043 .041

% Staying at home ! ln of death rate 0.044 0.018 2.371 .018

Note: Analysis was restricted to counties without missing values. Chi-square ¼ 3.528; degrees of freedom ¼ 2; p value ¼ .171; root mean square error of approxima-
tion ¼ 0.029 (p value ¼ .698); comparative fit index ¼ 1.0.

Table 4. Direct, indirect, and total effects of the county-level density and other variables on COVID-19
mortality rate.

Direct effect Indirect effect Total effect

ln of activity density �0.118 0.005 �0.113

ln of MSA population 0.087 0.132 0.219

Enplanement rate 0 �36 �36

COVID-19 testing rate 0 0.002 0.002

% of population aged 60þ 0.048 �0.021 0.028

% of college-educated population 0 �0.020 �0.020

% of Black or African American population 0.003 0.017 0.021

% of smokers 0.021 0 0.021

ICU bed rate �0.029 0 �0.029

ln of virus rate 0.974 0 0.974

% Staying at home 0.044 0.055 0.099
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percentage of educated individuals. In principle, workers
with higher education are less likely to rely on public
transportation, more able to work remotely, and more
likely to have a better understanding of the virus and
take shelter-in-place restrictions seriously (Lowcock
et al., 2012).

We also find that counties with a higher percentage
of the population over age 60 have higher mortality
rates. Indeed, this variable is the most significant pre-
dictor of the mortality rate other than the infection rate
itself. This may be due to their weaker immune systems
(K. Liu et al., 2020). In addition, counties with a higher
percentage of smokers have higher mortality rates from
COVID-19, at the .10 significance level. This is consistent
with the existing research showing a history of smoking
is a predictor of COVID-19 severity in Chinese patients
(W. Liu et al., 2020). Most of the deaths associated with
COVID-19 are respiratory related.

As expected, the death rate significantly declines
with number of ICU beds per 10,000 population.
Counties with a higher number of ICU beds are less
likely to be overwhelmed by COVID-19 patients in need
of intensive care. We find that counties with a higher
percentage of residents staying at home have higher
infection and mortality rates. Considering that this is a
cross-sectional study, these findings are consistent with
previous studies in the United States, Australia, the
United Kingdom, Canada, and Europe that find residents
in areas with more severe pandemics have higher per-
ceived susceptibility to contagious diseases such as
SARS and swine flu and, in turn, show more precautious
behaviors in adhering to social distancing recommenda-
tions such as avoiding public gatherings, not making
nonessential trips, and avoiding public transit (Barr et al.,
2008; Blendon et al., 2004; Cava et al., 2005). Finally, the
statewide testing rate is the most significant predictor
of the county virus infection rate. This makes sense
because estimates suggest that 25% to 50% of people
with COVID-19 are unaware they have the virus. Its high
significance level may also be a result of treating coun-
ties in the same state as independent, when in fact they
share the testing rate in this multilevel study.

Sensitivity Analyses
Our most important finding is that density is unrelated
to confirmed virus infection rates and inversely related
to confirmed virus death rates, after controlling for other
variables. This finding runs counter to the conventional
wisdom and to the very few (unpublished) reports on
this topic (Wheaton & Thompson, 2020). Therefore, we
conducted two sets of sensitivity analyses, one with dif-
ferent samples and the other one with different inde-
pendent variables, to test the reliability of our findings.
For the sake of simplicity and familiarity, we used

ordinary least squares regression in these sets of analy-
ses. The log-transformed version of the death rate is
used as the dependent variable in our sensitivity analy-
ses because the death rate is a more reliable measure of
COVID-19 incidence than is the infection rate, which
varies differentially with the testing rate. The results are
presented in Technical Appendix 4.

There are two takeaways from these sensitivity
tests. First, the results did not change with the exclusion
of New York City or New York State. Second, the results
did not change with the changes in independent varia-
bles. One might ask why our findings are in disagree-
ment with the very few existing analyses such as
Wheaton and Thompson’s (2020) that show higher
density is associated with more COVID-19 deaths. The
reason is that this other study used the number of
deaths rather than the per capita death rate in their
regression analyses. We obtained a result similar to
theirs when we changed our dependent variable from a
per capita rate to total death counts. However, as
Wheaton and Thompson (2020) conclude, the per cap-
ita rate is the best outcome variable for studying the
COVID-19 pandemic. In addition, we include many
more control variables than Wheaton and Thompson
(2020) and use SEM rather than ordinary least squares
regression, both of which represent refinements.

Concluding Remarks and Lessons
for Planners
The new coronavirus (COVID-19) is recognized as the
most serious public health threat since the 1918 influenza
pandemic, and the impacts of density on the COVID-19
pandemic are at the center of current dialogues in
PLANETNEW,2 public opinion, and planning practice.
News outlets blame density for the rapid spread of
COVID-19 in New York City and refer to suburban living
as the United States’ “secret weapon” against coronavirus
(see, for example, Olsen, 2020; Rosenthal, 2020).
Accordingly, the State of California’s pioneering statewide
plan for infill and transit-oriented housing development is
increasingly criticized for potentially facilitating the spread
of future viruses (D. Kahn, 2020). These concerns and
assumptions, in the absence of empirical evidence, would
challenge the foundation of modern city planning: that
density at least in some places is found to be a positive
counter to sprawl (see Park et al., 2020).

It is a general assumption that density is associated
with higher rates of transmission, infection, and mortal-
ity from highly contagious diseases such as COVID-19
(Olsen, 2020; Rosenthal, 2020). Our national analysis of
the relationship between density and the COVID-19
infection and mortality rates for 913 metropolitan coun-
ties in the United States suggests quite the opposite.
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We are the first to admit that this study is the first
word, not the last, on the relationship between urban
form and the COVID-19 virus. Many will follow later in
the course of the pandemic when more definitive
results are possible. Many will be longitudinal, which
will permit stronger statements of causality than does
this cross-sectional study. Some may be at smaller geo-
graphic scales, which will allow planners to reach con-
clusions about neighborhood design (as they have in
connection with physical activity and obesity).

In this early and preliminary study, we find that dens-
ity is not linked to rates of COVID-19 infection, after con-
trolling for metropolitan area population, socioeconomics,
and health care infrastructure in U.S. counties. Surprisingly,
we find that COVID-19 death rates are lower in denser
counties and higher in less dense counties, at a high level
of statistical significance. This is likely due to better access
to health care facilities and easier management of social
distancing interventions such as sheltering in place.

On the other hand, we find metropolitan popula-
tion to have the third most significant relationship to
COVID-19 death rates. These findings suggest that con-
nectivity between counties matters more than county
density for pandemic spread and lethality. The more
connected the places (either compact or sprawling) in
large metropolitan areas are, the harder they are hit by
the pandemic. It could start with the major urban core
and eventually spread to lower density suburban and
rural areas. No place is immune from the spread, and if
we look at the rates rather than counts during the 1918
pandemic, rural/low-density areas were hit harder than
cities (Parmet & Rothstein, 2018).

The fact that connectivity is a significant predictor of
COVID-19 infection and death rates calls for more in-depth
research on measuring urban connectivity and its impact
on pandemic spread. Future studies could contribute to
the conversation by developing and using more sophisti-
cated measures of internal connectivity, such as location-
based social networks (Andris, 2016). In fact, the degree of
contact tracing that some countries are currently undertak-
ing could eventually result in more reliable and valid data
and provide opportunities for developing regional con-
nectivity measures at the time of a pandemic.

Our study suggests that the planner’s role in address-
ing the pandemic crisis is not necessarily through a
change in paradigm because we find no evidence that
sprawling areas are more immune to the pandemic or
that sprawling areas experience lower death rates. Indeed,
we find that pandemics are deadlier in low-density areas
that have less access to quality health care. Our findings
suggest that planners should continue to practice and
advocate for compact places rather than sprawling ones
due to several environmental, transportation, health, and
economic benefits of compact development confirmed
by dozens of empirical studies.

The fact that density is unrelated to confirmed virus
infection rates and inversely related to confirmed virus
death rates is important, unexpected, and profound. It
has implications for community design, regional plan-
ning, transportation expenditures, urban redevelop-
ment, tax policy, congestion pricing, smart growth,
affordable housing, and nearly every other front-burner
issue important to planners. It counters a narrative that,
absent data and analysis, would challenge the founda-
tion of modern city planning that density at least in
some places (urban and suburban centers) is a positive
counter to sprawl (Park et al., 2020).

The role of planners and local governments in
addressing pandemic outbreaks is crucial, but not
through advocating for the low density and suburban
types of development. Rather, planners and local govern-
ments play a key role in adopting measures tailored to
their community for more effective implementation of
social distancing measures and to mitigate the adverse
impacts on businesses, households, and citizens.
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NOTES

1. Viruses, and the diseases they cause, may have different
names. For example, HIV is the virus that causes the disease AIDS.
People often know the name of a disease, such as measles, but
not the name of the virus that causes it (rubeola). Here we use
the same name for both virus and disease (WHO, 2019).

2. PLANETNEW is a closed Google listserv shared by planning
faculty in the U.S and internationally.
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